Fast Feynman integration with tropical geometry

Michael Borinsky, ETH Zürich - Institute of Theoretical Studies December 2, CERN

Based on arXiv:2008.12310

[Motivation](#page-1-0)

Quantum field theory

1

Quantum field theory

e.g.
$$
\mathcal{L} = -\frac{1}{2}(\partial\varphi)^2 + \lambda \frac{\varphi^4}{4!}
$$

 $\mathbf{1}$

Quantum field theory

e.g.
$$
\mathcal{L} = -\frac{1}{2}(\partial \varphi)^2 + \lambda \frac{\varphi^4}{4!}
$$

perturbative expansions

$$
\mathcal{O}(\hbar) = \sum_{n\geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\text{Aut } G|} \hbar^L G
$$

where
$$
I_G = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\},\{\mathbf{p}\},m_e)}
$$

 $\mathbf{1}$

Questions

$$
\mathcal{O}(\hbar)=\sum_{n\geq 0}A_{n}\hbar^{n}
$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

$$
\mathcal{O}(\hbar)=\sum_{n\geq 0}A_n\hbar^n
$$

Lower orders A_0 , A_1 , A_2 , ... needed to interpret experimental data.

Practical question

What is the value of A_0 , A_1 , A_2 , A_3 , ...?

How can we calculate them effectively?

$$
\mathcal{O}(\hbar)=\sum_{n\geq 0}A_n\hbar^n
$$

Lower orders A_0 , A_1 , A_2 , ... needed to interpret experimental data.

Practical question

What is the value of A_0 , A_1 , A_2 , A_3 , ...?

How can we calculate them effectively?

Associated abstract question: Computability

```
Is there an algorithm to compute A_n?
```
What is the fastest algorithm to compute A_n ?

What is its runtime?

Is there an algorithm?

$$
\mathcal{O}(\hbar)=\sum_{n\geq 0}A_n\hbar^n
$$

Is there an algorithm?

 $\mathcal{O}(\hbar)=\sum_{n\geq 0}A_n\hbar^n$

What is its runtime?

$$
\mathcal{O}(\hbar) = \sum_{n\geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\text{Aut } G|} \hbar^{L_G}
$$
\n\nRuntimeException to compute A_n for *n* large:

\n
$$
\mathcal{O}\left(\alpha^n \Gamma(n + \beta) \times F(n)\right)
$$
\n
$$
\longrightarrow
$$
\n $$

'Analytic calculation':

• Tough problem

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?
- Can ask for an expression within a specific function space, but no function space is known that works for all F. integrals

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?
- Can ask for an expression within a specific function space, but no function space is known that works for all F. integrals

 \Rightarrow Tough to phrase runtime question for analytic computations.

$$
\int \frac{d^4k}{\pi^2} \frac{1}{k^2(k+p_1)^2(k+p_1+p_2)^2}
$$

6

slow 'brute-force' evaluation fast evaluation 6

Approach here: slow but general

Approach here: slow but general

[Direct evaluation](#page-23-0)

Algebraic geometric perspective

$$
\mathcal{O}(\hbar) = \sum_{n\geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\text{Aut } G|} \hbar^{L_G}
$$

where $I_G = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$

Algebraic geometric perspective

$$
\mathcal{O}(\hbar) = \sum_{n\geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\text{Aut } G|} \hbar^{L_G}
$$

where $I_G = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$

rewrite via Schwinger trick/Feynman parameters:

$$
I_G = \Gamma(\omega_G) \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G(\mathbf{x})^{D/2}} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})}\right)^{\omega_G}
$$

$$
\int_{\mathbb{P}_{>0}^{\mathcal{E}-1}}\frac{\Omega}{\Psi_{\mathcal{G}}(\boldsymbol{\mathsf{x}})^{D/2}}\left(\frac{\Psi_{\mathcal{G}}(\boldsymbol{\mathsf{x}})}{\Phi_{\mathcal{G}}(\boldsymbol{\mathsf{x}})}\right)^{\omega_{\mathcal{G}}}
$$

where

$$
\int_{\mathbb{P}_{>0}^{\mathcal{E}-1}} \frac{\Omega}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}
$$

where

- Ω is the standard volume form on \mathbb{P}^{E-1} : $\Omega = \sum_{k=1}^{E} (-1)^k dx_1 \wedge ... \wedge \widehat{dx_k} \wedge ... \wedge dx_E.$
- $\Psi_G = \sum_{\mathcal{T}} \prod_{e \not\in \mathcal{T}} x_e$ (sum over spanning trees)
- $\bullet \ \ \Phi_G = \sum_{F} \| \bm{p}(F) \|^2 \prod_{e \not\in F} x_e + \Psi_G \sum_{e} m_e^2 x_e \text{(sum over 2-forests)}$
- Ψ_G and Φ_G are homogeneous polynomials in x_1, \ldots, x_E .
- We assume that the integral exists.

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}}
$$

 $\Psi_G(\mathbf{x})$ and $\Phi_G(\mathbf{x})$ exhibit complicated geometric structures.

- \Rightarrow These integrals are hard to evaluate
- \Rightarrow These integrals are very interesting

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}
$$

Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of $\mathbb{P}_{>0}^{\mathcal{E}-1}.$

l.e. vanishing locus of Ψ_{G} and Φ_{G} meets the boundary of $\mathbb{P}_{>0}^{E-1}.$

 \Rightarrow Singularities have to be blown up first

$$
\int_0^1 \int_0^1 \frac{dxdy}{x+y}
$$

naive Monte Carlo evaluation

$$
\mathbf{Var} \approx \int_0^1 \int_0^1 \frac{dxdy}{(x+y)^2} = \infty
$$

⇒ even direct 'brute-force' numerical Feynman integration is a non-trivial problem
Traditional solution

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}} \quad \to \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_{j}(\mathbf{x})^{\mu_{j}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{j}}} \Omega
$$

Feynman integral and the sense of the sense o

Traditional solution

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}} \quad \to \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_{j}(\mathbf{x})^{\mu_{j}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{j}}} \Omega
$$

Feynman integral generalization

Sector decomposition approach

- Algorithms to perform blowups in the general case: Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation: Kaneko, Ueda '09

(No use of rich structure of Feynman integrals)

Projective algebraic integrals

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}} \quad \to \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})^{\mu_{i}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{i}}} \Omega
$$

Feynman integral generalization

The general right hand side

- is essentially a 'Stringy integral' Arkani-Hamed, He, Lam 2019.
- is also a generalized Mellin transform **Nilsson, Passare 2010;** Berkesch, Forsgård, Passare 2011.
- can be interpreted in terms of toric geometry/varieties Schultka 2018.

($\mathbb{P}^{n-1}_{>0}$ $\prod_i p_i(\mathbf{x})^{\mu_i}$ $\prod_j q_j(\bm{x})^{\nu_i}$ Ω

Numerical evaluation using sector decomposition for blowups:

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_i(\mathbf{x})^{\mu_i}}{\prod_{j} q_j(\mathbf{x})^{\nu_i}} \Omega
$$

Numerical evaluation using sector decomposition for blowups:

• Runtime to evaluate the integral up to δ -accuracy

$$
\approx \mathcal{O}(V^2 \cdot \delta^{-2})
$$

where V is the number of monomials in $\frac{\prod_i p_i(x)^{\mu_i}}{\prod_i q_i(x)^{\nu_i}}$ $\frac{\prod_i p_i(x)^{n_i}}{\prod_j q_j(x)^{\nu_i}}$.

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_i(\mathbf{x})^{\mu_i}}{\prod_{j} q_j(\mathbf{x})^{\nu_i}} \Omega
$$

Numerical evaluation using sector decomposition for blowups:

• Runtime to evaluate the integral up to δ -accuracy

$$
\approx \mathcal{O}(V^2 \cdot \delta^{-2})
$$

where V is the number of monomials in $\frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_i q_i(\mathbf{x})^{\nu_i}}$ $\frac{\prod_i p_i(x)^{n_i}}{\prod_j q_j(x)^{\nu_i}}$.

• For Feynman integrals V grows \approx exponentially with n.

 \boldsymbol{q}

ofedges

[New results](#page-42-0)

1. Numerical integration is an exercise in tropical geometry.

- 1. Numerical integration is an exercise in tropical geometry.
- 2. The general (oblivious) approach can be accelerated:

$$
\mathcal{O}(V^2 \cdot \delta^{-2})_{\text{partial}} \rightarrow \mathcal{O}(V^2 + V\delta^{-2})
$$

 \Rightarrow achievable accuracy 'decouples' from integral complexity.

- 1. Numerical integration is an exercise in tropical geometry.
- 2. The general (oblivious) approach can be accelerated:

$$
\mathcal{O}(V^2 \cdot \delta^{-2}) \qquad \rightarrow \qquad \mathcal{O}(V^2 + V\delta^{-2})
$$

 \Rightarrow achievable accuracy 'decouples' from integral complexity.

3. Euclidean Feynman integration can be accelerated extremely:

$$
\mathcal{O}(V^2 \cdot \delta^{-2}) \approx \mathcal{O}(2^{cn} \cdot \delta^{-2}) \rightarrow \mathcal{O}(n2^n + n^4 \delta^{-2})
$$

with $c \gg 1$ where *n* is the number of edges of the graph.

There is a 'fast' algorithm to approximate the Feynman integral.

There is a 'fast' algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: ≈ 17 loops possible (with basic implementation).

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: ≈ 17 loops possible (with basic implementation).
- Caveat: Only Euclidean no Minkowski regime (so far).

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$
\Gamma(\varepsilon)\int_{\mathbb{P}^{\mathcal{E}-1}_{>0}}\frac{1}{\Psi_G(\textbf{x})^{2-\varepsilon}}\left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon}\Omega\approx \frac{1}{\varepsilon} \ 422.9610\cdot(1\pm10^{-6})+\ldots
$$

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$
\Gamma(\varepsilon)\int_{\mathbb{P}^{\mathcal{E}-1}_{>0}}\frac{1}{\Psi_G(\textbf{x})^{2-\varepsilon}}\left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon}\Omega\approx \frac{1}{\varepsilon} \ 422.9610\cdot(1\pm10^{-6})+\ldots
$$

• \sim 10 CPU secs to compute up to 10⁻³-accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$
\Gamma(\varepsilon)\int_{\mathbb{P}^{\mathcal{E}-1}_{>0}}\frac{1}{\Psi_G(\textbf{x})^{2-\varepsilon}}\left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon}\Omega\approx \frac{1}{\varepsilon} \ 422.9610\cdot(1\pm10^{-6})+\ldots
$$

- \sim 10 CPU secs to compute up to 10⁻³-accuracy at 8 loops.
- \sim 30 CPU days to compute up to 10^{-6} -accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$
\Gamma(\varepsilon)\int_{\mathbb{P}^{\underline{\mathcal{E}}-1}_{>0}}\frac{1}{\Psi_{G}(\textbf{x})^{2-\varepsilon}}\left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon}\Omega\approx\frac{1}{\varepsilon}\ 422.9610\cdot(1\pm10^{-6})+\ldots
$$

- \sim 10 CPU secs to compute up to 10⁻³-accuracy at 8 loops.
- \sim 30 CPU days to compute up to 10⁻⁶-accuracy at 8 loops.
- Higher orders in ϵ can also be computed.

Minimal runtime to evaluate a Euclidean Feynman integral with *n* edges up to δ -accuracy is at most $\mathcal{O}(n2^n + n^4\delta^{-2})$

Minimal runtime to evaluate a Euclidean Feynman integral with *n* edges up to δ -accuracy is at most $\mathcal{O}(n2^n + n^4\delta^{-2})$

 \Rightarrow Improvements likely!

[Tropicalized Feynman integrals](#page-58-0)

Algebraic geometric motivation

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}
$$

Algebraic geometric motivation

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}}
$$

Problem: Complicated geometry obstructs integration

Algebraic geometric motivation

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}}
$$

Problem: Complicated geometry obstructs integration

Solution: Simplify the geometry

Philosophy

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.

Let p be a homogeneous polynomial in n variables:

$$
p(x_1,\ldots,x_n)=\sum_{k\in\mathbb{N}_0^n}a_kx^k\sum_{\substack{r\mid n\\r\equiv r}}a_{\substack{k\\r\equiv r}}k_{\substack{r\\r\equiv r}}k_{\substack{r}}k_{
$$

Let p be a homogeneous polynomial in n variables:

$$
p(x_1, ..., x_n) = \sum_{k \in \mathbb{N}_0^n} a_k x^k
$$

\n
$$
\begin{cases}\n\text{tropicalize'} \\
p^{\text{tr}}(x_1, ..., x_n) = \max_{\substack{k \in \mathbb{N}_0^n \\ \text{s.t. } a_k \neq 0}} x^k\n\end{cases}
$$

 p^{tr} is the tropical approximation of p.

The approximation property of the tropicalization

$$
p(x_1,\ldots,x_n)=\sum_{\mathbf{k}\in\mathbb{N}_0^n}a_{\mathbf{k}}\mathbf{x}^{\mathbf{k}};\qquad p^{\mathrm{tr}}(x_1,\ldots,x_n)=\max_{\mathbf{k}\in\mathbb{N}_0^n}\mathbf{x}^{\mathbf{k}}{\underset{\text{s.t. }a_{\mathbf{k}}\neq 0}{\text{max}}}.
$$

The approximation property of the tropicalization

$$
p(x_1,\ldots,x_n)=\sum_{\mathbf{k}\in\mathbb{N}_0^n}a_{\mathbf{k}}\mathbf{x}^{\mathbf{k}};\qquad p^{\mathrm{tr}}(x_1,\ldots,x_n)=\max_{\mathbf{k}\in\mathbb{N}_0^n}\mathbf{x}^{\mathbf{k}}{\underset{\text{s.t. }a_{\mathbf{k}}\neq 0}{\text{max}}}.
$$

Theorem (MB 2020)

If $p(x)$ is completely non-vanishing on $\mathbb{P}^n_{>0}$, then

$$
C_1\rho^{\mathrm{tr}}(\boldsymbol{x})\leq |\rho(\boldsymbol{x})|\leq C_2\rho^{\mathrm{tr}}(\boldsymbol{x})\text{ for all }\boldsymbol{x}\in\mathbb{P}^n_{>0}
$$

for some positive constants $C_1, C_2 > 0$.

The approximation property of the tropicalization

$$
p(x_1,\ldots,x_n)=\sum_{\mathbf{k}\in\mathbb{N}_0^n}a_{\mathbf{k}}\mathbf{x}^{\mathbf{k}};\qquad p^{\mathrm{tr}}(x_1,\ldots,x_n)=\max_{\mathbf{k}\in\mathbb{N}_0^n}\mathbf{x}^{\mathbf{k}}{\underset{\text{s.t. }a_{\mathbf{k}}\neq 0}{\text{max}}}.
$$

Theorem (MB 2020)

If $p(x)$ is completely non-vanishing on $\mathbb{P}^n_{>0}$, then

$$
C_1\rho^{\mathrm{tr}}(\boldsymbol{x})\leq |\rho(\boldsymbol{x})|\leq C_2\rho^{\mathrm{tr}}(\boldsymbol{x})\text{ for all }\boldsymbol{x}\in\mathbb{P}^n_{>0}
$$

for some positive constants $C_1, C_2 > 0$.

Proof:

Obvious if $p(x)$ has only positive coefficients. Otherwise not...

Application to Feynman graph polynomials

$$
\Psi_G = \sum_{T} \prod_{e \notin T} x_e \qquad \qquad \Rightarrow \quad \Psi_G^{\mathrm{tr}} = \max_{T} \prod_{e \notin T} x_e
$$

$$
\Psi_G = \sum_{T} \prod_{e \notin T} x_e \qquad \Rightarrow \qquad \Psi_G^{\text{tr}} = \max_{F} \prod_{e \notin T} x_e
$$
\n
$$
\Phi_G = \sum_{F} ||p(F)||^2 \prod_{e \notin F} x_e \qquad \Rightarrow \qquad \Phi_G^{\text{tr}} = \max_{F} \prod_{\text{s.t. } ||p(F)||^2 \neq 0} \prod_{e \notin F} x_e
$$
$$
\text{Feynman integral:} \qquad I_G = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}
$$

Feynman integral:

$$
\begin{aligned} I_G &= \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G} \\ I_G^{\mathrm{tr}} &= \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}}\right)^{\omega_G} \end{aligned}
$$

 \Rightarrow Tropicalized version:

Feynman integral:

\n
$$
I_G = \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}
$$
\n
$$
\Rightarrow \text{Topicalized version:}
$$
\n
$$
I_G^{\text{tr}} = \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_G^{\text{tr}})^{D/2}} \left(\frac{\Psi_G^{\text{tr}}}{\Phi_G^{\text{tr}}}\right)^{\omega_G}
$$

QFT tropicalization

Replace all instances of Ψ and Φ with their tropicalized versions.

There are constants $C_1, C_2 > 0$, such that

$$
\mathcal{C}_1 \frac{1}{(\psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\psi_G^{\mathrm{tr}}}{\varphi_G^{\mathrm{tr}}}\right)^{\omega_G} \leq \left|\frac{1}{(\psi_G)^{D/2}} \left(\frac{\psi_G}{\varphi_G}\right)^{\omega_G}\right| \leq \mathcal{C}_2 \frac{1}{(\psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\psi_G^{\mathrm{tr}}}{\varphi_G^{\mathrm{tr}}}\right)^{\omega_G}
$$

for all $x \in \mathbb{P}_{>0}^{E-1}$, if Ψ_G and Φ_G are completely non-vanishing.

There are constants $C_1, C_2 > 0$, such that

$$
C_1 \frac{1}{(\Psi_G^{\text{tr}})^{D/2}} \left(\frac{\Psi_G^{\text{tr}}}{\Phi_G^{\text{tr}}}\right)^{\omega_G} \le \left|\frac{1}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}\right| \le C_2 \frac{1}{(\Psi_G^{\text{tr}})^{D/2}} \left(\frac{\Psi_G^{\text{tr}}}{\Phi_G^{\text{tr}}}\right)^{\omega_G}
$$
\nfor all $\mathbf{x} \in \mathbb{P}_{>0}^{\mathcal{E}-1}$, if Ψ_G and Φ_G are completely non-vanishing.

 $\Rightarrow C_1 I_G^{\text{tr}} \leq |I_G| \leq C_2 I_G^{\text{tr}}$ G

 \Rightarrow The tropicalized integral gives both an upper and a lower bound

Evaluating tropicalized Feynman integrals is easy

Evaluating tropicalized Feynman integrals is easy

• At low order $(n = 1, \ldots, 20)$: Tropicalized Feynman integrals are easily calculated exactly All observables are rational numbers/functions. Panzer 2019; MB 2020

Evaluating tropicalized Feynman integrals is easy

- At low order $(n = 1, \ldots, 20)$: Tropicalized Feynman integrals are easily calculated exactly All observables are rational numbers/functions. Panzer 2019; MB 2020
- When the tropical version is known exactly, numerical integration of the original integrals is just an extra step. MB 2020

[Tropical Numerical integration](#page-80-0)

It is convenient to generalize first (and specify again later):

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}} \quad \to \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})^{\mu_{i}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{i}}} \Omega
$$

It is convenient to generalize first (and specify again later):

$$
\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}} \quad \to \quad \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})^{\mu_{i}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{i}}} \Omega
$$

Warm-Up

If q_i are all completely non-vanishing, then

$$
\int_{\mathbb{P}^{n-1}_{>0}}\frac{\prod_{j}p_{i}^{\text{tr}}(\mathbf{x})^{\mu_{i}}}{\prod_{j}q_{j}^{\text{tr}}(\mathbf{x})^{\nu_{i}}}\Omega<\infty\quad\Leftrightarrow\quad\int_{\mathbb{P}^{n-1}_{>0}}\frac{\prod_{j}p_{i}(\mathbf{x})^{\mu_{i}}}{\prod_{j}q_{j}(\mathbf{x})^{\nu_{i}}}\Omega<\infty,
$$

i.e. tropical convergence is equivalent to ordinary convergence.

Tropical numerical integration

Strategy

$$
\int_{\mathbb{P}_{>0}^{n-1}}\frac{\prod_{i}p_{i}(\mathbf{x})}{\prod_{j}q_{j}(\mathbf{x})}\Omega
$$

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_{j}(x)}{\prod_{j} q_{j}(x)} \Omega = \int_{\mathbb{P}_{>0}^{n-1}} \Omega \frac{\prod_{j} p_{j}^{\text{tr}}(x)}{\prod_{j} q_{j}^{\text{tr}}(x)} \frac{\prod_{j} \frac{p_{j}(x)}{p_{j}^{\text{tr}}(x)}}{\prod_{j} \frac{q_{j}(x)}{q_{j}^{\text{tr}}(x)}}
$$
\n
$$
\bigcup_{\text{bounded}}
$$

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_{j}(x)}{\prod_{j} q_{j}(x)} \Omega = \int_{\mathbb{P}_{>0}^{n-1}} \Omega \frac{\prod_{j} p_{j}^{\text{tr}}(x)}{\prod_{j} q_{j}^{\text{tr}}(x)} \frac{\prod_{j} \frac{p_{j}(x)}{p_{j}^{\text{tr}}(x)}}{\prod_{j} \frac{q_{j}(x)}{q_{j}^{\text{tr}}(x)}}
$$
\n
$$
+ \Gamma \circ \rho \text{`cal'} \circ \text{al'red} \qquad \qquad \text{found}
$$

Treat the exact integral as perturbation around the tropical one.

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_{j}(x)}{\prod_{j} q_{j}(x)} \Omega = \int_{\mathbb{P}_{>0}^{n-1}} \Omega \frac{\prod_{j} p_{j}^{\text{tr}}(x)}{\prod_{j} q_{j}^{\text{tr}}(x)} \frac{\prod_{j} \frac{p_{j}(x)}{p_{j}^{\text{tr}}(x)}}{\prod_{j} \frac{q_{j}(x)}{q_{j}^{\text{tr}}(x)}}}{\sum_{i} \prod_{j} \frac{p_{j}(x)}{q_{j}^{\text{tr}}(x)}}
$$

Tropicalization solves the blowup problem!

The form $\tilde{\mu}^{tr}$ is the canonical measure on the common refinement of the normal fans of the Newton polytopes of the p_i, q_j .

The tropical form

$$
\widetilde{\mu}^{\text{tr}} = \frac{\prod_{i} p_{i}^{\text{tr}}(\bm{x})}{\prod_{j} q_{j}^{\text{tr}}(\bm{x})} \Omega
$$

Sampling from this measure allows numerical integration.

Theorem (MB 2020)

If the Newton polytopes of p_i and q_i are 'not too complicated', then there is a (reasonably) fast algorithm to sample the measure

$$
\mu^{\text{tr}} = \frac{1}{Z} \frac{\prod_{i} p_i^{\text{tr}}(\mathbf{x})}{\prod_{j} q_j^{\text{tr}}(\mathbf{x})} \Omega \quad \text{ on } \mathbb{P}_{>0}^{n-1}
$$

with Z chosen such that $\int_{\mathbb{P}_{>0}^{n-1}}$ $\mu^{\mathrm{tr}}=1.$

$$
\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{j} p_j(\mathbf{x})}{\prod_{j} q_j(\mathbf{x})} \Omega = Z \int_{\mathbb{P}_{>0}^{n-1}} \mu^{\text{tr}} \frac{\prod_{j} \frac{p_j(\mathbf{x})}{p_j^{\text{tr}}(\mathbf{x})}}{\prod_{j} \frac{q_j(\mathbf{x})}{q_j^{\text{tr}}(\mathbf{x})}}
$$

 \Rightarrow Can be evaluated by sampling from the measure μ^{tr} . (Monte Carlo)

runtime depends on the shape of the polytopes: $\mathcal{O}(V^2 + \mathbf{16}^{-2})$.

[Generalized permutahedra](#page-91-0)

The relevant polytopes that appear in QFT have a special shape.

They are generalized permutahedra Postnikov 2008.

Theorem (Schultka 2018) using results from (Brown 2015)

The Newton polytopes of the graph polynomials Ψ_G and Φ_G are generalized permutahedra.

 $(\Phi_G$ only if the momenta are Euclidean.)

(a) The permutahedron $\Pi_3\subset \mathbb{R}^3$.

(b) Dual of Π_3 : The corresponding braid arrangement fan.

This structure follows form the factorization properties of Ψ and Φ.

A direct and simple proof

Recall that

$$
\Psi_G = \sum_{T} \prod_{e \notin T} x_e
$$
 (sum over spanning trees)

$$
\Phi_G = \sum_{F} ||p(F)||^2 \prod_{e \notin F} x_e
$$
 (sum over 2-forests)

Classical combinatorial arguments show that,

- a given ordering of the edges fixes
	- a maximal spanning tree $\Rightarrow \Psi_G$ is a gen. permutahedron a maximal 2-forest^{*} $\Rightarrow \Phi_G$ is a gen. permutahedron

(Also slightly more general than Brown and Schultka)

Theorem (MB 2020)

If the Newton polytopes of p_i and q_i are gen. permutahedra, then there is a (very) fast algorithm to sample from the measure

$$
\mu^{\text{tr}} = \frac{1}{Z} \frac{\prod_{i} p_i^{\text{tr}}(\mathbf{x})}{\prod_{j} q_j^{\text{tr}}(\mathbf{x})} \Omega \quad \text{on } \mathbb{P}_{>0}^{n-1},
$$

with Z chosen such that $\int_{\mathbb{P}^{n-1}_{>0}}$ $\mu^{\mathrm{tr}}=1.$

Makes heavy use of tools from **Aguiar, Ardila 2017**.

Algorithm 4 to generate a sample from μ^{tr} for generalized permutahedra Set $A=[n]$ and $\kappa=1$ while $A \neq \emptyset$ do Pick a random $e \in A$ with probability $p_e = \frac{1}{J_r(A)} \frac{J_r(A \backslash e)}{r(A \backslash e)}$. Remove e from A, i.e. set $A \leftarrow A \setminus e$. Set $\sigma(|A|) = e$. Set $x_e = \kappa$. Pick a uniformly distributed random number $\xi \in [0,1]$. Set $\kappa \leftarrow \kappa \xi^{1/r(A)}$. end while Return $\mathbf{x} = [x_1, \ldots, x_n] \in \text{Exp}(\mathcal{C}_{\sigma}) \subset \mathbb{P}_{>0}^{n-1}$ and $\sigma = (\sigma(1), \ldots, \sigma(n)) \in S_n$.

easy to inplement code available on my website

[Outlook](#page-97-0)

• The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- \bullet Φ_G can vanish in the integration domain $(\Rightarrow$ analytic continuation is necessary).

But the approximation property still works.

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- \bullet Φ_G can vanish in the integration domain $(\Rightarrow$ analytic continuation is necessary).

But the approximation property still works.

• Vanishing locus of Φ_G for complex x important.

^Q What tropical geometries do appear

$$
A_n = \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{I_G}{|\text{Aut } G|}
$$

$$
A_n = \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{I_G}{|\text{Aut } G|}
$$

$$
= \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{1}{|\text{Aut } G|} \int_{\mathcal{T}_G} \mu_G^{\text{tr}} \left(\frac{\Psi_G^{\text{tr}}}{\Psi_G}\right)^{2-\omega_G} \left(\frac{\Phi_G^{\text{tr}}}{\Phi_G}\right)^{\omega_G}
$$

$$
A_n = \sum_{\substack{\text{graphs } G \\ \text{graphs } G}} \frac{I_G}{|\text{Aut } G|}
$$

$$
= \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{1}{|\text{Aut } G|} \int_{\mathcal{T}_G} \mu_G^{\text{tr}} \left(\frac{\Psi_G^{\text{tr}}}{\Psi_G}\right)^{2-\omega_G} \left(\frac{\Phi_G^{\text{tr}}}{\Phi_G}\right)^{\omega_G}
$$

Integral over version of Outer space/tropical moduli space

$$
A_n = \sum_{\substack{\text{graphs } G \\ \text{graphs } G}} \frac{I_G}{|\text{Aut } G|}
$$

$$
= \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{1}{|\text{Aut } G|} \int_{\mathcal{T}_G} \mu_G^{\text{tr}} \left(\frac{\Psi_G^{\text{tr}}}{\Psi_G}\right)^{2-\omega_G} \left(\frac{\Phi_G^{\text{tr}}}{\Phi_G}\right)^{\omega_G}
$$

Integral over version of Outer space/tropical moduli space

Figure 3: Outer space \mathcal{O}_2 which is a specific graph orbispace

Vogtmann 2018

[Conclusions](#page-107-0)
• Feynman integrals are surprisingly easy to evaluate numerically

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration
- Works also for other integrands:

e.g. associahedron type integrands evaluate in polynomial time

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration
- Works also for other integrands:
	- e.g. associahedron type integrands evaluate in polynomial time

Much left to explore:

- Generalize generalized permutahedra
- \Rightarrow IR singularities/Minkowski space
	- Tropical amplitudes
	- Relation to tropical moduli spaces/Outer space?
	- Gauge theory?

• ...

Generalized permutahedron property follows from factorizations:

For some $\gamma \subset \Gamma$, let $x'_e = \lambda_\gamma x_e$ if $e \in \gamma$ and else $x'_e = x_e$:

$$
\Psi'_{\Gamma} = \lambda_{\gamma}^{h_1(\gamma)} \Psi_{\gamma} \Psi_{\Gamma/\gamma} + \mathcal{O}(\lambda_{\gamma}^{h_1(\gamma)+1}) \text{ as } \lambda_{\gamma} \to 0
$$

$$
\Phi'_{\Gamma} = \lambda_{\gamma}^{h_1(\gamma)} \Psi_{\gamma} \Phi_{\Gamma/\gamma} + \mathcal{O}(\lambda_{\gamma}^{h_1(\gamma)+1}) \text{ as } \lambda_{\gamma} \to 0
$$

Degenerate case Brown 2015: If $\Phi_{\Gamma/\gamma} = 0$, then

$$
\Phi'_{\Gamma}=\lambda_\gamma^{h_1(\gamma)+1}\Phi_\gamma\Psi_{\Gamma/\gamma}+\mathcal{O}(\lambda_\gamma^{h_1(\gamma)+2})\,\,\text{as}\,\,\lambda_\gamma\to0.
$$

(only with Euclidean momenta)

Open question

Generalized permutahedra are universal with respect to their Hopf monoid structure Aguiar, Ardila 2017.

How general are Feynman integrals within this class of polytopes?

A gen. permutahedron has a *facet presentation* (Postnikov 2008):

$$
\mathcal{G}_z = \left\{ \mathbf{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n] \right\},
$$

A gen. permutahedron has a *facet presentation* (Postnikov 2008):

$$
\mathcal{G}_z = \left\{ \mathbf{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n] \right\},
$$

Complete geometric data is encoded in the boolean function

$$
z:\mathbf{2}^{[n]}\to\mathbb{R}
$$

A gen. permutahedron has a *facet presentation* (Postnikov 2008):

$$
\mathcal{G}_z = \left\{ \mathbf{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n] \right\},
$$

Complete geometric data is encoded in the boolean function

$$
z:\mathbf{2}^{[n]}\to\mathbb{R}
$$

 \Rightarrow good control over (tropical) geometry.

There is a surjective map from S_n to the vertices of \mathcal{G}_z :

There is a surjective map from S_n to the vertices of G_z : Given $\sigma \in S_n$, then $\mathbf{w}^{(\sigma,z)} \in \text{Vert}_{G_z}$ with

$$
w_{\sigma(k)}^{(\sigma,z)} = z(A_k^{\sigma}) - z(A_{k-1}^{\sigma})
$$
 for all $k \in [n],$

where $A_k^{\sigma} = {\{\sigma(1), \ldots, \sigma(k)\}} \subset [n] = \{1, \ldots, n\}.$

Computing the gen. permutahedral geometry (MB 2020)

For a boolean function $r: 2^{[n]} \to \mathbb{R}$ with $r(\emptyset) = 1$ and $r(A) > 0$ for all non-empty $A \subsetneq [n]$, we define the boolean function $J_r : 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ recursively as

$$
J_r(A) = \sum_{e \in A} \frac{J_r(A \setminus e)}{r(A \setminus e)}
$$
 for all non-empty $A \subset [n]$ where $J_r(\emptyset) = 1$.

Tropicalized integral is a special case (MB 2020)

If $r(A) = z_{\mathcal{A}}(A) - z_{\mathcal{B}}(A)$ for all non-empty $A \subsetneq [n]$ and $r(\emptyset) = 1$, then $I^{\text{tr}} = J_r([n])$.

Feynman integrand evaluation

$$
\frac{1}{\Psi_G({\bf x})^{D/2}}\left(\frac{\Psi_G({\bf x})}{\Phi_G({\bf x})}\right)^{\omega_G}
$$

$$
\Psi_G(\mathbf{x}) = \sum_{T} \prod_{e \notin T} x_e
$$

$$
\Phi_G(\mathbf{x}) = \sum_{F} \mathbf{p}(F)^2 \prod_{e \notin F} x_e
$$

Feynman integrand evaluation

$$
\frac{1}{\Psi_G({\bf x})^{D/2}}\left(\frac{\Psi_G({\bf x})}{\Phi_G({\bf x})}\right)^{\omega_G}
$$

$$
\Psi_G(\mathbf{x}) = \sum_{T} \prod_{e \notin T} x_e = \left(\prod_e x_e\right) \det(\widetilde{L})
$$

$$
\Phi_G(\mathbf{x}) = \sum_{F} \mathbf{p}(F)^2 \prod_{e \notin F} x_e = \Psi_G \left(\text{Tr}(P^T \widetilde{L}^{-1} P)\right)
$$

where $P_{\text{v},\mu}=p_{\mu}^{(\text{v})}$ and \widetilde{L} is the graph Laplacian.

Feynman integrand evaluation

$$
\frac{1}{\Psi_G({\bf x})^{D/2}}\left(\frac{\Psi_G({\bf x})}{\Phi_G({\bf x})}\right)^{\omega_G}
$$

$$
\Psi_G(\mathbf{x}) = \sum_{T} \prod_{e \notin T} x_e = \left(\prod_e x_e\right) \det(\widetilde{L})
$$

$$
\Phi_G(\mathbf{x}) = \sum_{F} \mathbf{p}(F)^2 \prod_{e \notin F} x_e = \Psi_G \left(\text{Tr}(P^T \widetilde{L}^{-1} P) \right)
$$

where $P_{\text{v},\mu}=p_{\mu}^{(\text{v})}$ and \widetilde{L} is the graph Laplacian.

Very fast algorithms for such graph Laplacian computations exist (see Spielman-Teng 2004).