Fast Feynman integration with tropical geometry

Michael Borinsky, ETH Zürich - Institute of Theoretical Studies December 2, CERN

Based on arXiv:2008.12310

Motivation

Quantum field theory

Quantum field theory

e.g.
$$\mathcal{L}=-rac{1}{2}(\partial arphi)^2+\lambda rac{arphi^4}{4!}$$

Quantum field theory

e.g.
$$\mathcal{L} = -\frac{1}{2}(\partial \varphi)^2 + \lambda \frac{\varphi^4}{4!}$$

perturbative expansions

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\operatorname{Aut} G|} \hbar^{L_G}$$

where
$$I_G = \prod_{\ell} \int d^D \boldsymbol{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\boldsymbol{k}\}, \{\boldsymbol{p}\}, m_e)}$$

Questions

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

Practical question

What is the value of $A_0, A_1, A_2, A_3, \ldots$?

How can we calculate them effectively?

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

Practical question

What is the value of $A_0, A_1, A_2, A_3, \ldots$?

How can we calculate them effectively?

Associated abstract question: Computability

```
Is there an algorithm to compute A_n?
```

What is *the fastest* algorithm to compute A_n ?

What is its runtime?

Is there an algorithm?

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n$$

Is there an algorithm?

 $\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n$

What is its runtime?

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\operatorname{Aut } G|} \hbar^{L_G}$$

Runtime to compute A_n for n large:

$$\mathcal{O}\left(\alpha^n \Gamma(n+\beta) \times F(n)\right)$$

$$\mathcal{O}\left(\alpha^n \Gamma(n+\beta) \times F($$

'Analytic calculation':

• Tough problem

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?
- Can ask for an expression within a specific function space, but no function space is known that works for all F. integrals

'Analytic calculation':

- Tough problem
- Unclear: What counts as analytic answer for an integral?
- Can ask for an expression within a specific function space, but no function space is known that works for all F. integrals

 \Rightarrow Tough to phrase runtime question for analytic computations.

$$\int \frac{d^4k}{\pi^2} \frac{1}{k^2(k+p_1)^2(k+p_1+p_2)^2}$$

slow 'brute-force' evaluation

fast evaluation

Approach here: slow but general

Approach here: slow but general

Direct evaluation

Algebraic geometric perspective

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\operatorname{Aut} G|} \hbar^{L_G}$$

where $I_G = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$

Algebraic geometric perspective

$$\mathcal{O}(\hbar) = \sum_{n \ge 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{I_G}{|\operatorname{Aut} G|} \hbar^{L_G}$$

where $I_G = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$

rewrite via Schwinger trick/Feynman parameters:

$$I_{G} = \Gamma(\omega_{G}) \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}(\mathbf{x})^{D/2}} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}}$$

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

where

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

where

- Ω is the standard volume form on \mathbb{P}^{E-1} : $\Omega = \sum_{k=1}^{E} (-1)^k dx_1 \wedge ... \wedge \widehat{dx_k} \wedge ... \wedge dx_E.$
- $\Psi_G = \sum_T \prod_{e \notin T} x_e$ (sum over spanning trees)
- $\Phi_G = \sum_F \|\boldsymbol{p}(F)\|^2 \prod_{e \notin F} x_e + \Psi_G \sum_e m_e^2 x_e$ (sum over 2-forests)
- Ψ_G and Φ_G are homogeneous polynomials in x_1, \ldots, x_E .
- We assume that the integral exists.

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_G^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

 $\Psi_G(\mathbf{x})$ and $\Phi_G(\mathbf{x})$ exhibit complicated geometric structures.

- $\Rightarrow\,$ These integrals are hard to evaluate
- \Rightarrow These integrals are very interesting

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}$$

Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of $\mathbb{P}_{>0}^{E-1}$.

- I.e. vanishing locus of Ψ_G and Φ_G meets the boundary of $\mathbb{P}_{>0}^{E-1}$.
- \Rightarrow Singularities have to be blown up first

$$\int_0^1 \int_0^1 \frac{\mathrm{d}x\mathrm{d}y}{x+y}$$

$$\mathbf{Var} \approx \int_0^1 \int_0^1 \frac{\mathrm{d}x\mathrm{d}y}{(x+y)^2} = \infty$$

 \Rightarrow even direct 'brute-force' numerical Feynman integration is a non-trivial problem
Traditional solution

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})} \right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega$$

Feynman integral

generalization

Traditional solution

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})} \right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\mathbf{x})^{\mu_{i}}}{\prod_{j} q_{j}(\mathbf{x})^{\nu_{i}}} \Omega$$

Feynman integral

generalization

Sector decomposition approach

- Algorithms to perform blowups in the general case: Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation: Kaneko, Ueda '09

(No use of rich structure of Feynman integrals)

Projective algebraic integrals

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G} \rightarrow \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_j q_j(\mathbf{x})^{\nu_i}} \Omega$$

Feynman integral

generalization

The general right hand side

- is essentially a 'Stringy integral' Arkani-Hamed, He, Lam 2019.
- is also a generalized Mellin transform Nilsson, Passare 2010; Berkesch, Forsgård, Passare 2011.
- can be interpreted in terms of toric geometry/varieties
 Schultka 2018.

 $\int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{i} q_{i}(\boldsymbol{x})^{\nu_{i}}} \Omega$

Numerical evaluation using sector decomposition for blowups:

$$\int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i(\boldsymbol{x})^{\mu_i}}{\prod_j q_j(\boldsymbol{x})^{\nu_i}} \Omega$$

Numerical evaluation using sector decomposition for blowups:

• Runtime to evaluate the integral up to δ -accuracy

$$pprox \mathcal{O}(V^2 \cdot \delta^{-2})$$

where V is the number of monomials in $\frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_i q_i(\mathbf{x})^{\nu_i}}$.

$$\int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i(\boldsymbol{x})^{\mu_i}}{\prod_j q_j(\boldsymbol{x})^{\nu_i}} \Omega$$

Numerical evaluation using sector decomposition for blowups:

• Runtime to evaluate the integral up to δ -accuracy

$$\approx \mathcal{O}(V^2 \cdot \delta^{-2})$$

where V is the number of monomials in $\frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_i q_i(\mathbf{x})^{\nu_i}}$.

• For Feynman integrals V grows \approx exponentially with n.

of edges

New results

1. Numerical integration is an exercise in tropical geometry.

- 1. Numerical integration is an exercise in tropical geometry.
- 2. The general (oblivious) approach can be accelerated:

$$\mathcal{O}(V^2 \cdot \delta^{-2}) \xrightarrow{\rhoartially} \mathcal{O}(V^2 + V\delta^{-2})$$

 \Rightarrow achievable accuracy 'decouples' from integral complexity.

- 1. Numerical integration is an exercise in tropical geometry.
- 2. The general (oblivious) approach can be accelerated:

$$\mathcal{O}(V^2 \cdot \delta^{-2}) \longrightarrow \mathcal{O}(V^2 + V \delta^{-2})$$

 \Rightarrow achievable accuracy 'decouples' from integral complexity.

3. Euclidean Feynman integration can be accelerated extremely:

$$\mathcal{O}(V^2 \cdot \delta^{-2}) \approx \mathcal{O}(2^{cn} \cdot \delta^{-2}) \quad \rightarrow \quad \mathcal{O}(n2^n + n^4 \delta^{-2})$$

with $c \gg 1$ where *n* is the number of edges of the graph.

There is a 'fast' algorithm to approximate the Feynman integral.

There is a 'fast' algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: \approx 17 loops possible (with basic implementation).

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: pprox 17 loops possible (with basic implementation).
- Caveat: Only Euclidean no Minkowski regime (so far).

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}_{>0}} \frac{1}{\Psi_G(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}_{>0}} \frac{1}{\Psi_{G}(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

• ~ 10 CPU secs to compute up to 10^{-3}-accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}_{>0}} \frac{1}{\Psi_{G}(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

- ~ 10 CPU secs to compute up to 10^{-3} -accuracy at 8 loops.
- \sim 30 CPU days to compute up to 10^{-6} -accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}_{>0}} \frac{1}{\Psi_{G}(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

- ~ 10 CPU secs to compute up to 10^{-3} -accuracy at 8 loops.
- \sim 30 CPU days to compute up to 10^{-6} -accuracy at 8 loops.
- Higher orders in ϵ can also be computed.

Minimal runtime to evaluate a Euclidean Feynman integral with *n* edges up to δ -accuracy is *at most* $\mathcal{O}(n2^n + n^4\delta^{-2})$

Minimal runtime to evaluate a Euclidean Feynman integral with *n* edges up to δ -accuracy is *at most* $\mathcal{O}(n2^n + n^4\delta^{-2})$

 \Rightarrow Improvements likely!

Tropicalized Feynman integrals

Algebraic geometric motivation

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\mathbf{x})} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})}\right)^{\omega_{G}}$$

Algebraic geometric motivation

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}$$

Problem: Complicated geometry obstructs integration

Algebraic geometric motivation

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})}\right)^{\omega_{G}}$$

Problem: Complicated geometry obstructs integration

Solution: Simplify the geometry

Philosophy

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.

Let p be a homogeneous polynomial in n variables:

$$p(x_1,\ldots,x_n)=\sum_{k\in\mathbb{N}_0^n}a_kx^k$$

Let p be a homogeneous polynomial in n variables:

$$p(x_1, \dots, x_n) = \sum_{\boldsymbol{k} \in \mathbb{N}_0^n} a_{\boldsymbol{k}} \boldsymbol{x}^{\boldsymbol{k}}$$

'tropicalize'
$$p^{\text{tr}}(x_1, \dots, x_n) = \max_{\substack{\boldsymbol{k} \in \mathbb{N}_0^n \\ \text{s.t. } a_{\boldsymbol{k}} \neq 0}} \boldsymbol{x}^{\boldsymbol{k}}$$

 p^{tr} is the tropical approximation of p.

The approximation property of the tropicalization

$$p(x_1,\ldots,x_n) = \sum_{\boldsymbol{k}\in\mathbb{N}_0^n} a_{\boldsymbol{k}} \boldsymbol{x}^{\boldsymbol{k}}; \qquad p^{\mathrm{tr}}(x_1,\ldots,x_n) = \max_{\substack{\boldsymbol{k}\in\mathbb{N}_0^n\\ \mathrm{s.t.}\ a_{\boldsymbol{k}}\neq 0}} \boldsymbol{x}^{\boldsymbol{k}}$$

The approximation property of the tropicalization

$$p(x_1,\ldots,x_n) = \sum_{\boldsymbol{k}\in\mathbb{N}_0^n} a_{\boldsymbol{k}} \boldsymbol{x}^{\boldsymbol{k}}; \qquad p^{\mathrm{tr}}(x_1,\ldots,x_n) = \max_{\substack{\boldsymbol{k}\in\mathbb{N}_0^n\\\mathrm{s.t.}\ a_{\boldsymbol{k}}\neq 0}} \boldsymbol{x}^{\boldsymbol{k}}$$

Theorem (MB 2020)

If $p(\mathbf{x})$ is completely non-vanishing on $\mathbb{P}_{>0}^n$, then

$$C_1 p^{ ext{tr}}(oldsymbol{x}) \leq |p(oldsymbol{x})| \leq C_2 p^{ ext{tr}}(oldsymbol{x})$$
 for all $oldsymbol{x} \in \mathbb{P}_{>0}^n$

for some positive constants $C_1, C_2 > 0$.

$$p(x_1,\ldots,x_n) = \sum_{\boldsymbol{k}\in\mathbb{N}_0^n} a_{\boldsymbol{k}} \boldsymbol{x}^{\boldsymbol{k}}; \qquad p^{\mathrm{tr}}(x_1,\ldots,x_n) = \max_{\substack{\boldsymbol{k}\in\mathbb{N}_0^n\\ \mathrm{s.t.}\ a_{\boldsymbol{k}}\neq 0}} \boldsymbol{x}^{\boldsymbol{k}}$$

If $p(\mathbf{x})$ is completely non-vanishing on $\mathbb{P}_{>0}^n$, then

 $C_1 p^{ ext{tr}}(oldsymbol{x}) \leq |p(oldsymbol{x})| \leq C_2 p^{ ext{tr}}(oldsymbol{x})$ for all $oldsymbol{x} \in \mathbb{P}_{>0}^n$

for some positive constants $C_1, C_2 > 0$.

Proof:

Obvious if $p(\mathbf{x})$ has only positive coefficients. Otherwise not...

Application to Feynman graph polynomials

$$\Psi_{G} = \sum_{T} \prod_{e \notin T} x_{e} \qquad \Rightarrow \quad \Psi_{G}^{tr} = \max_{T} \prod_{e \notin T} x_{e}$$

$$\Psi_{G} = \sum_{T} \prod_{e \notin T} x_{e} \qquad \Rightarrow \qquad \Psi_{G}^{\mathrm{tr}} = \max_{T} \prod_{e \notin T} x_{e}$$
$$\Phi_{G} = \sum_{F} \|p(F)\|^{2} \prod_{e \notin F} x_{e} \qquad \Rightarrow \qquad \Phi_{G}^{\mathrm{tr}} = \max_{\substack{F \\ \mathrm{s.t.} \ \|p(F)\|^{2} \neq 0} \prod_{e \notin F} x_{e}}$$
Feynman integral:
$$I_G = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}$$

Feynman integral:

$$I_{G} = \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_{G})^{D/2}} \left(\frac{\Psi_{G}}{\Phi_{G}}\right)^{\omega_{G}}$$
$$I_{G}^{\text{tr}} = \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{(\Psi_{G}^{\text{tr}})^{D/2}} \left(\frac{\Psi_{G}^{\text{tr}}}{\Phi_{G}^{\text{tr}}}\right)^{\omega_{G}}$$

 \Rightarrow Tropicalized version:

$$\begin{array}{ll} \mbox{Feynman integral:} & I_G = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G} \\ \Rightarrow \mbox{Tropicalized version:} & I_G^{\rm tr} = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G^{\rm tr})^{D/2}} \left(\frac{\Psi_G^{\rm tr}}{\Phi_G^{\rm tr}}\right)^{\omega_G} \end{array}$$

QFT tropicalization

Replace all instances of Ψ and Φ with their tropicalized versions.

There are constants $C_1, C_2 > 0$, such that

$$C_1 \frac{1}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}} \right)^{\omega_G} \leq \left| \frac{1}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G} \right)^{\omega_G} \right| \leq C_2 \frac{1}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}} \right)^{\omega_G}$$

for all $\mathbf{x} \in \mathbb{P}_{>0}^{E-1}$, if Ψ_G and Φ_G are *completely non-vanishing*.

There are constants $C_1, C_2 > 0$, such that

$$C_1 \frac{1}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}}\right)^{\omega_G} \le \left|\frac{1}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}\right| \le C_2 \frac{1}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}}\right)^{\omega_G}$$

for all $\mathbf{x} \in \mathbb{P}_{>0}^{E-1}$, if Ψ_G and Φ_G are completely non-vanishing. $\Rightarrow C_1 I_G^{\text{tr}} \leq |I_G| \leq C_2 I_G^{\text{tr}}$

 \Rightarrow The tropicalized integral gives both an upper and a lower bound

Evaluating tropicalized Feynman integrals is easy

Evaluating tropicalized Feynman integrals is easy

 At low order (n = 1,...,20): Tropicalized Feynman integrals are easily calculated exactly All observables are rational numbers/functions.
Panzer 2019; MB 2020 Evaluating tropicalized Feynman integrals is easy

- At low order (n = 1,...,20): Tropicalized Feynman integrals are easily calculated exactly All observables are rational numbers/functions.
 Panzer 2019; MB 2020
- When the tropical version is known exactly, numerical integration of the original integrals is just an extra step.
 MB 2020

Tropical Numerical integration

It is convenient to generalize first (and specify again later):

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})} \right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega$$

It is convenient to generalize first (and specify again later):

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_{G}^{D/2}(\boldsymbol{x})} \left(\frac{\Psi_{G}(\boldsymbol{x})}{\Phi_{G}(\boldsymbol{x})} \right)^{\omega_{G}} \rightarrow \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\boldsymbol{x})^{\mu_{i}}}{\prod_{j} q_{j}(\boldsymbol{x})^{\nu_{i}}} \Omega$$

Warm-Up

If q_i are all completely non-vanishing, then

$$\int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i^{\mathrm{tr}}(\boldsymbol{x})^{\mu_i}}{\prod_j q_j^{\mathrm{tr}}(\boldsymbol{x})^{\nu_i}} \Omega < \infty \quad \Leftrightarrow \quad \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i(\boldsymbol{x})^{\mu_i}}{\prod_j q_j(\boldsymbol{x})^{\nu_i}} \Omega < \infty,$$

i.e. tropical convergence is equivalent to ordinary convergence.

Tropical numerical integration

Strategy

Tropical numerical integration

Strategy

$$\int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_{i} p_{i}(\boldsymbol{x})}{\prod_{j} q_{j}(\boldsymbol{x})} \Omega$$

Strategy

$$\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})}{\prod_{j} q_{j}(\mathbf{x})} \Omega = \int_{\mathbb{P}_{>0}^{n-1}} \Omega \frac{\prod_{i} p_{i}^{\mathrm{tr}}(\mathbf{x})}{\prod_{j} q_{j}^{\mathrm{tr}}(\mathbf{x})} \frac{\prod_{i} \frac{p_{i}(\mathbf{x})}{p_{i}^{\mathrm{tr}}(\mathbf{x})}}{\prod_{j} \frac{q_{j}(\mathbf{x})}{q_{j}^{\mathrm{tr}}(\mathbf{x})}}$$

Strategy

Strategy

Treat the exact integral as perturbation around the tropical one.

$$\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})}{\prod_{j} q_{j}(\mathbf{x})} \Omega = \int_{\mathbb{P}_{>0}^{n-1}} \Omega \frac{\prod_{i} p_{i}^{\mathrm{tr}}(\mathbf{x})}{\prod_{j} q_{j}^{\mathrm{tr}}(\mathbf{x})} \frac{\prod_{i} \frac{p_{i}(\mathbf{x})}{p_{i}^{\mathrm{tr}}(\mathbf{x})}}{\prod_{j} \frac{q_{j}(\mathbf{x})}{q_{j}^{\mathrm{tr}}(\mathbf{x})}}$$

Tropicalization solves the blowup problem!

The form $\tilde{\mu}^{tr}$ is the canonical measure on the common refinement of the normal fans of the Newton polytopes of the p_i, q_j .

The tropical form

$$\widetilde{u}^{ ext{tr}} = rac{\prod_i p_i^{ ext{tr}}(oldsymbol{x})}{\prod_j q_j^{ ext{tr}}(oldsymbol{x})} \Omega$$

Sampling from this measure allows numerical integration.

Theorem (MB 2020)

If the Newton polytopes of p_i and q_j are 'not too complicated', then there is a (reasonably) fast algorithm to sample the measure

$$\mu^{ ext{tr}} = rac{1}{Z} rac{\prod_i p_i^{ ext{tr}}(oldsymbol{x})}{\prod_j q_j^{ ext{tr}}(oldsymbol{x})} \Omega \quad ext{ on } \mathbb{P}_{>0}^{n-1}$$

with Z chosen such that $\int_{\mathbb{P}^{n-1}_{>0}} \mu^{\mathrm{tr}} = 1.$

$$\int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_{i} p_{i}(\mathbf{x})}{\prod_{j} q_{j}(\mathbf{x})} \Omega = Z \int_{\mathbb{P}_{>0}^{n-1}} \mu^{\mathrm{tr}} \frac{\prod_{i} \frac{p_{i}(\mathbf{x})}{p_{i}^{\mathrm{tr}}(\mathbf{x})}}{\prod_{j} \frac{q_{j}(\mathbf{x})}{q_{j}^{\mathrm{tr}}(\mathbf{x})}}$$

 \Rightarrow Can be evaluated by sampling from the measure $\mu^{\rm tr}.$ (Monte Carlo)

runtime depends on the shape of the polytopes: $\mathcal{O}(V^2 + b^{5-2})$.

Generalized permutahedra

The relevant polytopes that appear in QFT have a special shape.

They are generalized permutahedra Postnikov 2008.

Theorem (Schultka 2018) using results from (Brown 2015)

The Newton polytopes of the graph polynomials Ψ_G and Φ_G are generalized permutahedra.

 $(\Phi_G \text{ only if the momenta are Euclidean.})$

(a) The permutahedron $\Pi_3 \subset \mathbb{R}^3$.

(b) Dual of Π_3 : The corresponding braid arrangement fan.

This structure follows form the factorization properties of Ψ and Φ .

A direct and simple proof

Recall that

$$\Psi_{G} = \sum_{T} \prod_{e \notin T} x_{e} \text{ (sum over spanning trees)}$$
$$\Phi_{G} = \sum_{F} \|p(F)\|^{2} \prod_{e \notin F} x_{e} \text{ (sum over 2-forests)}$$

Classical combinatorial arguments show that,

a given ordering of the edges fixes

a maximal spanning tree $\Rightarrow \Psi_G$ is a gen. permutahedron a maximal 2-forest^{*} $\Rightarrow \Phi_G$ is a gen. permutahedron

(Also slightly more general than Brown and Schultka)

Theorem (MB 2020)

If the Newton polytopes of p_i and q_j are gen. permutahedra, then there is a (very) fast algorithm to sample from the measure

$$\mu^{ ext{tr}} = rac{1}{Z} rac{\prod_i p_i^{ ext{tr}}(oldsymbol{x})}{\prod_j q_j^{ ext{tr}}(oldsymbol{x})} \Omega \quad ext{on } \mathbb{P}^{n-1}_{>0},$$

with Z chosen such that $\int_{\mathbb{P}^{n-1}_{>0}} \mu^{\mathrm{tr}} = 1.$

Makes heavy use of tools from Aguiar, Ardila 2017.

Algorithm 4 to generate a sample from μ^{tr} for generalized permutahedra Set A = [n] and $\kappa = 1$ while $A \neq \emptyset$ do Pick a random $e \in A$ with probability $p_e = \frac{1}{J_r(A)} \frac{J_r(A \setminus e)}{r(A \setminus e)}$. Remove e from A, i.e. set $A \leftarrow A \setminus e$. Set $\sigma(|A|) = e$. Set $x_e = \kappa$. Pick a uniformly distributed random number $\xi \in [0, 1]$. Set $\kappa \leftarrow \kappa \xi^{1/r(A)}$. end while Return $\boldsymbol{x} = [x_1, \dots, x_n] \in \text{Exp}(\mathcal{C}_{\sigma}) \subset \mathbb{P}_{>0}^{n-1}$ and $\sigma = (\sigma(1), \dots, \sigma(n)) \in S_n$.

Outlook

• The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- Φ_G can vanish in the integration domain (\Rightarrow analytic continuation is necessary).

But the approximation property still works.

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- Φ_G can vanish in the integration domain (\Rightarrow analytic continuation is necessary).

But the approximation property still works.

• Vanishing locus of Φ_G for complex **x** important.

$$A_n = \sum_{\substack{\text{graphs } G \\ L_G = n}} \frac{I_G}{|\operatorname{Aut} G|}$$

$$A_{n} = \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{I_{G}}{|\operatorname{Aut } G|}$$
$$= \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{1}{|\operatorname{Aut } G|} \int_{\mathcal{T}_{G}} \mu_{G}^{\operatorname{tr}} \left(\frac{\Psi_{G}^{\operatorname{tr}}}{\Psi_{G}}\right)^{2-\omega_{G}} \left(\frac{\Phi_{G}^{\operatorname{tr}}}{\Phi_{G}}\right)^{\omega_{G}}$$

$$A_{n} = \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{I_{G}}{|\operatorname{Aut } G|}$$
$$= \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{1}{|\operatorname{Aut } G|} \int_{\mathcal{T}_{G}} \mu_{G}^{\operatorname{tr}} \left(\frac{\Psi_{G}^{\operatorname{tr}}}{\Psi_{G}}\right)^{2-\omega_{G}} \left(\frac{\Phi_{G}^{\operatorname{tr}}}{\Phi_{G}}\right)^{\omega_{G}}$$

Integral over version of Outer space/tropical moduli space

$$A_{n} = \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{I_{G}}{|\operatorname{Aut } G|}$$
$$= \sum_{\substack{\text{graphs } G \\ L_{G} = n}} \frac{1}{|\operatorname{Aut } G|} \int_{\mathcal{T}_{G}} \mu_{G}^{\operatorname{tr}} \left(\frac{\Psi_{G}^{\operatorname{tr}}}{\Psi_{G}}\right)^{2-\omega_{G}} \left(\frac{\Phi_{G}^{\operatorname{tr}}}{\Phi_{G}}\right)^{\omega_{G}}$$

Integral over version of Outer space/tropical moduli space

Figure 3: Outer space \mathcal{O}_2 which is a specific graph orbispace

Vogtmann 2018

Conclusions
• Feynman integrals are surprisingly easy to evaluate numerically

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration
- Works also for other integrands:

e.g. associahedron type integrands evaluate in polynomial time

- Feynman integrals are surprisingly easy to evaluate numerically
- More control over tropical geometry \Rightarrow faster integration
- Works also for other integrands:
 - e.g. associahedron type integrands evaluate in polynomial time

Much left to explore:

- Generalize generalized permutahedra
- \Rightarrow IR singularities/Minkowski space
 - Tropical amplitudes
 - Relation to tropical moduli spaces/Outer space?
 - Gauge theory?
 - ...

Generalized permutahedron property follows from factorizations:

For some $\gamma \subset \Gamma$, let $x'_e = \lambda_\gamma x_e$ if $e \in \gamma$ and else $x'_e = x_e$:

$$\Psi'_{\Gamma} = \lambda_{\gamma}^{h_1(\gamma)} \Psi_{\gamma} \Psi_{\Gamma/\gamma} + \mathcal{O}(\lambda_{\gamma}^{h_1(\gamma)+1}) \text{ as } \lambda_{\gamma} \to 0$$

 $\Phi'_{\Gamma} = \lambda_{\gamma}^{h_1(\gamma)} \Psi_{\gamma} \Phi_{\Gamma/\gamma} + \mathcal{O}(\lambda_{\gamma}^{h_1(\gamma)+1}) \text{ as } \lambda_{\gamma} \to 0$

Degenerate case Brown 2015: If $\Phi_{\Gamma/\gamma} = 0$, then

$$\Phi'_{\Gamma} = \lambda_{\gamma}^{h_1(\gamma)+1} \Phi_{\gamma} \Psi_{\Gamma/\gamma} + \mathcal{O}(\lambda_{\gamma}^{h_1(\gamma)+2}) \text{ as } \lambda_{\gamma} \to 0$$

(only with Euclidean momenta)

Open question

Generalized permutahedra are *universal* with respect to their Hopf monoid structure Aguiar, Ardila 2017.

How general are Feynman integrals within this class of polytopes?

A gen. permutahedron has a *facet presentation* (Postnikov 2008):

$$\mathcal{G}_z = \left\{ oldsymbol{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n]
ight\},$$

A gen. permutahedron has a facet presentation (Postnikov 2008):

$$\mathcal{G}_z = \left\{ oldsymbol{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n]
ight\},$$

Complete geometric data is encoded in the boolean function

$$z: \mathbf{2}^{[n]} \to \mathbb{R}$$

A gen. permutahedron has a facet presentation (Postnikov 2008):

$$\mathcal{G}_z = \left\{ oldsymbol{v} \in \mathbb{R}^n : \sum_{i \in [n]} v_i = z([n]) \text{ and } \sum_{i \in I} v_i \geq z(I) \text{ for all } I \subset [n]
ight\},$$

Complete geometric data is encoded in the boolean function

$$z: \mathbf{2}^{[n]} \to \mathbb{R}$$

 \Rightarrow good control over (tropical) geometry.

There is a surjective map from S_n to the vertices of \mathcal{G}_z :

There is a surjective map from S_n to the vertices of \mathcal{G}_z : Given $\sigma \in S_n$, then $\boldsymbol{w}^{(\sigma,z)} \in \operatorname{Vert}_{\mathcal{G}_z}$ with

$$w^{(\sigma,z)}_{\sigma(k)}=z(A^{\sigma}_k)-z(A^{\sigma}_{k-1})$$
 for all $k\in[n],$

where $A_k^{\sigma} = \{\sigma(1), ..., \sigma(k)\} \subset [n] = \{1, ..., n\}.$

Computing the gen. permutahedral geometry (MB 2020)

For a boolean function $r : \mathbf{2}^{[n]} \to \mathbb{R}$ with $r(\emptyset) = 1$ and r(A) > 0for all non-empty $A \subsetneq [n]$, we define the boolean function $J_r : \mathbf{2}^{[n]} \to \mathbb{R}_{>0}$ recursively as

$$J_r(A) = \sum_{e \in A} \frac{J_r(A \setminus e)}{r(A \setminus e)}$$
 for all non-empty $A \subset [n]$ where $J_r(\emptyset) = 1$.

Tropicalized integral is a special case (MB 2020)

If $r(A) = z_A(A) - z_B(A)$ for all non-empty $A \subsetneq [n]$ and $r(\emptyset) = 1$, then $I^{tr} = J_r([n])$.

Feynman integrand evaluation

$$\frac{1}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

$$\Psi_G(\mathbf{x}) = \sum_T \prod_{e \notin T} x_e$$
$$\Phi_G(\mathbf{x}) = \sum_F \mathbf{p}(F)^2 \prod_{e \notin F} x_e$$

Feynman integrand evaluation

$$\frac{1}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

$$\Psi_{G}(\mathbf{x}) = \sum_{T} \prod_{e \notin T} x_{e} \qquad = \left(\prod_{e} x_{e}\right) \det(\widetilde{L})$$
$$\Phi_{G}(\mathbf{x}) = \sum_{F} \mathbf{p}(F)^{2} \prod_{e \notin F} x_{e} \qquad = \Psi_{G} \left(\operatorname{Tr}(P^{T}\widetilde{L}^{-1}P)\right)$$

where $P_{\nu,\mu} = p_{\mu}^{(\nu)}$ and \widetilde{L} is the graph Laplacian.

Feynman integrand evaluation

$$\frac{1}{\Psi_G(\boldsymbol{x})^{D/2}} \left(\frac{\Psi_G(\boldsymbol{x})}{\Phi_G(\boldsymbol{x})}\right)^{\omega_G}$$

$$\Psi_{G}(\mathbf{x}) = \sum_{T} \prod_{e \notin T} x_{e} \qquad = \left(\prod_{e} x_{e}\right) \det(\widetilde{L})$$
$$\Phi_{G}(\mathbf{x}) = \sum_{F} \mathbf{p}(F)^{2} \prod_{e \notin F} x_{e} \qquad = \Psi_{G} \left(\operatorname{Tr}(P^{T}\widetilde{L}^{-1}P)\right)$$

where $P_{\nu,\mu} = p_{\mu}^{(\nu)}$ and \widetilde{L} is the graph Laplacian.

Very fast algorithms for such graph Laplacian computations exist (see **Spielman-Teng 2004**).