

Axion-like Particles and Lepton Flavour Violation

Marvin Schnubel

MITP, Johannes Gutenberg University Mainz

LF(U)V Workshop, Zurich, 04.-06.07.22

Based on work with M. Bauer, M. Neubert,

S. Renner & A. Thamm

arXiv: <u>1908.00008</u>, <u>2012.12272</u>, <u>2102.13112</u>,

<u>2110.20698</u>

Motivation

 \succ Plenty of (in)direct hints for new physics, e.g. v-oscillation, $R_{D(*),K(*)}$, (g-2)_µ...

Motivation & the ALP Lagrangian

Motivation & the ALP Lagrangian

general ALP Lagrangian: [Georgi, Kaplan, Randall (1986)]

$$\mathcal{L}_{\text{eff}}^{D \le 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial_{\mu} a}{f} \sum_{\ell} \bar{\ell} \left(k_{E} P_{L} + k_{e} P_{R} \right) \gamma^{\mu} \ell + c_{\gamma \gamma} \frac{\alpha_{\text{QED}}}{4\pi} \frac{a}{f} F_{\mu \nu} \tilde{F}^{\mu \nu}$$

G

ALP decay modes

How to probe ALPs?

• Assume no tree-level photon coupling, effective coupling loop-induced:

- Effective branching ratios often depend on experimental cuts (e.g. time of flight, energy...) or the ALP decay length (in subsequent decays)
- Assume one LFV coupling to be dominant
- Focus on μ -sector, similar analysis can be done for tau-sector

Axion-like Particles and Lepton Flavour Violation

Axion-like Particles and Lepton Flavour Violation

Details on Muon Decays

- For $2m_e < m_a < m_\mu$ can have subsequent $\mu \to ea, \ a \to ee$ decay
- $\operatorname{Br}(\mu \to 3e) \approx \operatorname{Br}(\mu \to ea) \times \operatorname{Br}(a \to ee)$
- Many orders of magnitude more sensitive to LFV couplings than e.g. $\mu \to e \gamma$
- Overcomes phase-space suppression of 3-body decay
- If ALP is boosted or decays close to detector, $\mu \to e \gamma \gamma \;\;$ can mimic $\mu \to e \gamma$

Axion-like Particles and Lepton Flavour Violation

Anomalous magnetic Moments

- Currently, there is a tension between experiment and theoretical prediction for the anomalous magnetic moment of the muon $(g-2)_{\mu}$ of $4.2\sigma^{WP}/1.5\sigma^{BMW}$, and the electron $(g-2)_{e}$ of $2.4\sigma^{Cs} / 1.6\sigma^{Rb}$ [Bennet *et al* (2006), Kesharvarzi *et al* (2018), Davier *et al* (2020), BMW (2020)] [Hanneke, Fogwell, Gabrielse (2008) and (2011)]
- a_{μ} and a_{e} receive contribution from both flavor-conserving and -violating couplings [Bauer, Neubert, Thamm (2017), Chang et al (2001), Marciano et al (2016)]
- Explanation of both anomalies with $c_{e\mu}$ coupling or $c_{e(\mu)\tau}$ couplings is ruled out by Muonium oscillations or constraints from $\mu \to e\gamma$ [Endo, Iguro, Kitahara (2020)]
- Can explain both with
 - Non-universal ALP-lepton coupling $c_{ee} \sim -(10 30) \times c_{\mu\mu}$
 - Quite small $c_{\ell\ell}$, explain a_{μ} with $c_{\mu\tau}$ and a_{e} with $c_{e\mu}$

Conclusion & Outlook

- Studied lepton flavor-violationg ALP couplings and their constraints from decay and non-decay experiments
- When the ALP can decay resonantly, sensitivity is greatly increased
- Results from muon sector can be easily transferred to tau sector
- We have shown that searches for LFV transitions provide highly complementary constraints on ALP couplings to photons and leptons, strengthening the case for a broad program of experiments hunting LFV decays.

Conclusion & Outlook

- epton flavor-violationg ALP couplings and their constraints from decay experiments
- When the Park resonancy, s
 Results from muon VOU pas
 that search resonantly, sensitivity is greatly increased
 - easily transferred to tau sector
 - sitions provide highly 0 complementary constraints on AL photons and leptons, attentic strengthening the case for a broad program nts hunting LFV decays.

Backup Slides

Anomalous electric Moments

• Current measurements limit EDMs to $|d_e| < 1.1 \times 10^{-29}$ ecm $|d_\mu| < 1.9 \times 10^{-20}$ ecm

[Bernreuther, Suzuki (1991), Booth (1993), ACME Collaboration (2018)]

- SM predictions are ~10 orders of magnitude weaker than these limits.
 - parameter space for ALPinteractions, occur already at 1-loop

 $\widetilde{c}_{\ell_1\ell_2}$

JGU

Overview over Branching Ratios and Projections JG U

LFV Channel	Current limit	Projection
$\mu ightarrow e \gamma$	$4.2 imes 10^{-13}$ [Meg Coll. (2016)]	$6 imes 10^{-14}$ [MEGII Coll. (2018)]
$\mu \rightarrow 3e$	$1.0 imes 10^{-12}$ [Sindrum Coll. (1988)]	$1 imes 10^{-16}$ [Perrevoort, Mu3e (2018)]
$\mu \to ea, m_a < 13 \mathrm{MeV}$	$5.8 imes 10^{-5}$ [Bayes et al (2014)]	$1 imes 10^{-8}$ [Perrevoort, Mu3e (2018)]
$\mu \to ea, m_a > 13 \mathrm{MeV}$	9.0×10^{-6}	
$\mu ightarrow ea\gamma$	$1.1 imes 10^{-9}$ [Bolton et al (1988)]	
$\mu ightarrow e \gamma \gamma$	$7.2 imes 10^{-11}$ [LAMPF Coll (1986)]	
$\mu N \to eN$	$7.0 imes 10^{-13}$ [Sindrum-II (2006)]	$1 imes 10^{-17}$ [Mu2e (2014)] [COMET (2020)]

Anomalous magnetic Moments

IG