Search for cLFV mediated by a new light particle at PSI

Andrea Gurgone for the MCMULE team

LF(U)V Workshop Zürich, 4 - 6 July 2022

McMule

Looking for the needle muon in the haystack

- The search for charged Lepton Flavour Violation (cLFV) in muon decays is a sensitive tool to test the Standard Model (SM) at the intensity frontier.
- The Paul Scherrer Institute features the most intense continuous muon beam in the world: 5 ⋅ 10⁸ μ⁺/s → 10¹⁰ μ⁺/s (future goal).
 → Ideal setting for studying rare muon decays beyond the SM.
- **MEG II** experiment: $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of $6 \cdot 10^{-14}$ at 90% CL. \rightarrow MEG upper limit: BR < 4.2 $\cdot 10^{-13}$ at 90% CL.
- Mu3e experiment: $\mu^+ \rightarrow e^+e^+e^-$ with a sensitivity of 10^{-15} at 90% CL. \rightarrow SINDRUM upper limit: BR < $1.0 \cdot 10^{-12}$ at 90% CL.
- Can these two experiments search for other cLFV processes? Yes!
- Both are competitive in searching for muon decays involving a light axion-like particle (ALP) arising from the spontaneous symmetry breaking (SSB) of a global model-dependent U(1) symmetry (e.g. axion, majoron, familon etc).

$$\hookrightarrow \ \mu \to e X \gamma, \ \mu \to e (X \to \gamma \gamma), \ \mu \to e X, \ \mu \to e (X \to e e)$$

MEG II

Mu3e

1/12

Search for $\mu \rightarrow e X$ with MEG II and Mu3e

- This talk: focus on $\mu^+ \rightarrow e^+ X$ (simple but elusive!) \hookrightarrow TWIST limit: BR < 5.8 · 10⁻⁵ for m_X < 10 MeV.
- The signature is a monochromatic e⁺ close to the energy endpoint of the μ⁺ → e⁺ν_eν
 _μ background:

$$E_e^{max} = rac{m_\mu}{2} \left[1 + \left(rac{m_e}{m_\mu}
ight)^2
ight] pprox$$
 52.83 MeV

- The higher-order QED corrections for $E_e \rightarrow E_e^{max}$ are enhanced by the emission of **soft photons**.
- The background theory error is large at the endpoint.
 → It covers the signal for low BRs for any experiment.
- The background theory error is a peak at the endpoint.

 → It resembles a false signal, leading to possible biases.
- This search requires extremely accurate theoretical predictions, both for $\mu \rightarrow e X$ and $\mu \rightarrow e \nu \bar{\nu}$.

We need a Mule to do the hard work

- The new generation of precision experiments with leptons needs extremely accurate predictions for the SM processes, usually at the next-to-next-leading order (NNLO).
 → Required a unified framework including all the relevant processes in one "box".
- Here it comes... $MCMULE \longrightarrow$ Monte Carlo for MUons and other LEptons
- A framework for the numerical computation of fully-differential QED corrections for decay and scattering processes involving leptons, mainly at low energies.
- For an implemented process the output is the distribution dⁿσ/dx₁...dx_n for any set of IR-safe observables x₁...x_n that can be constrained with any cut.
 → Can reproduce detector acceptances, analysis cuts, trigger preselections etc.
- Collinear singularities regularised by keeping finite the fermion masses (e.g. $m_e \neq 0$).
- Soft singularities subtracted by using the **FKS**^{ℓ} scheme (YFS + ξ_c parameter).
- Numerical integration of phase space based on the VEGAS adaptive algorithm.
- Open source code and user library available here: https://gitlab.com/mule-tools

McMule

Process	Precision
$\mu ightarrow e u ar{ u}$	NNLO†
$\mu \to {\it e}\nu\bar\nu\gamma$	NLO †
$\mu ightarrow e u ar{ u} e e$	NLO †
$\mu ightarrow$ e X	NLO †
ee ightarrow ee	NNLO
$ee ightarrow uar{ u}$	NNLO
$ee ightarrow\gamma\gamma$	NNLO *
$ee ightarrow\mu\mu$	NNLO *
e p ightarrow e p	NNLO
$\mu {m p} ightarrow \mu {m p}$	NNLO
$\mu {f e} o \mu {f e}$	NNLO *

 $\begin{array}{l} \dagger \ \tau \ {\rm decays} \ {\rm as} \ {\rm well} \\ \star \ {\rm Work} \ {\rm in} \ {\rm progress} \end{array}$

Signal $\mu^+ \rightarrow e^+ X$ at NLO

$$\mathcal{L}_{\mathrm{X}} = rac{1}{\Lambda} \left(\partial_{
ho} \, \mathrm{X} \,
ight) ar{\psi}_{\mu} \left(\gamma^{
ho} \, \mathrm{g}_{\mathrm{V}} + \gamma^{
ho} \gamma^{5} \, \mathrm{g}_{\mathrm{A}}
ight) \psi_{\mathrm{O}}$$

An inclusive polarised muon decay is fully characterised by

$$\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}E_{e}\,\mathrm{d}\cos\theta_{e}}=\frac{G_{F}^{2}\,m_{\mu}^{5}}{192\,\pi^{3}}\left[F\left(E_{e}\right)+P_{\mu}\cos\theta_{e}\,G\left(E_{e}\right)\right]$$

 $\begin{array}{l} \theta_e & \longrightarrow \mbox{ Angle between } e^+ \mbox{ momentum and } \mu^+ \mbox{ polarisation} \\ P_\mu & \longrightarrow \mbox{ } \mu^+ \mbox{ polarisation rate (85\% \mbox{ for MEG II and Mu3e})} \\ F & \longrightarrow \mbox{ Contribution independent on } \mu^+ \mbox{ polarisation} \\ G & \longrightarrow \mbox{ Contribution dependent on } \mu^+ \mbox{ polarisation} \end{array}$

+ QED corrections up to next-to-leading order (NLO) \implies

Background $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ at NNLO+Logs

- LO computed with the (dear old) Fermi theory.
- Leading EW correction: $G_F \rightarrow G_F (1 + 3m_\mu^2 / 5m_W^2)$.
- Full **QED** corrections at NNLO with $m_e \neq 0$.
- Inclusion of collinear logarithms $\log (m_e / m_\mu)$ up to $\mathcal{O}(\alpha^5)$ with next-to-leading logarithm (NLL) accuracy.
- Resummation of soft logarithms $\log (1 2E_e/m_\mu)$ with a NNLL accuracy \rightarrow YFS exponentiation.
- (Hadronic) Vacuum Polarisation effects at $\mathcal{O}(\alpha^2)$.
- The final theory error on positron spectrum is $\sim 10^{-5}.$

NLO

LO

Simplified model for MEG II and Mu3e positron trackers:

$$\mathcal{F}_{e}(E_{e}) = \int dE'_{e} \left[\mathcal{E}_{e}(E'_{e}) \times \mathcal{A}_{e}(E'_{e}) \times \mathcal{S}_{e}(E_{e} - E'_{e}) \right]$$
$$\equiv \left[\mathcal{E}_{e} \times \mathcal{A}_{e} \right] \otimes \mathcal{S}_{e}(E_{e})$$

 \mathcal{F}_e : Expected e^+ energy spectrum \mathcal{E}_e : Theoretical e^+ energy spectrum \mathcal{A}_e : Positron energy **acceptance** function \mathcal{S}_e : Positron energy **resolution** function

MEG II acceptance: $|\cos \theta_e| < 0.35$, $E_e \gtrsim 45$ MeV Mu3e acceptance: $|\cos \theta_e| < 0.8$, $E_e \gtrsim 10$ MeV

$$S_e(E_e; \sigma_e) = \frac{1}{\sigma_e \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{E_e}{\sigma_e}\right)^2\right]$$

MEG II resolution: $\sigma_e \simeq 100$ keV at $E_e = 52.83$ MeV Mu3e resolution: $\sigma_e \simeq 300$ keV (offline), 2 MeV (online)

(No experiments were harmed in making this analysis)

ALP mass acceptance in MEG II and Mu3e

Signal energy at LO:
$$E_e^X(m_X) = rac{m_\mu^2 + m_e^2 - m_X^2}{2m_\mu}$$

Signal vs. Background in MEG II

Comparison between background and signal for BR ($\mu \rightarrow e X$) = 10⁻³ (large to be visible) in MEG II experiment.

Preliminary sensitivity for MEG II

Sensitivity on $\mu \rightarrow e X$ at 90% CL for MEG II, assuming different numbers of e^+ events and ALP masses and couplings.

Sensitivity on $\mu \rightarrow e X$ at 90% CL for MEG II, assuming different offsets in the positron energy scale \rightarrow signal biases!

Preliminary sensitivity for Mu3e

Sensitivity on $\mu \rightarrow e X$ at 90% CL for Mu3e, assuming different numbers of e^+ events and ALP masses and couplings.

- The search for cLFV ALPs in muon decays such as μ → e X, μ → e X γ, μ → e (X → γ γ), μ → e (X → e e) is an excellent opportunity for MEG II and Mu3e to extend their physics programme beyond their main channels.
- The theoretical challenges for the very elusive μ → e X have been successfully tackled with MCMULE, leading to a new state-of-the-art computation of μ → e ν ν ¯ for polarised muons.
 → P. Banerjee et al., *High-precision muon decay predictions for ALP searches* (in preparation, 2022).
- The new predictions are under implementation in simulation frameworks for more detailed experimental studies.
 - \leftrightarrow A. Gurgone et al., Improved muon decay simulation with McMule and Geant4 (in preparation, 2022).
- MCMULE aims to provide accurate theoretical predictions for high-precision experiments with leptons.
 - $\begin{array}{l} \hookrightarrow \mbox{ Collaboration with MEG II } (\mu \to e\nu\bar{\nu}, \ \mu \to e\nu\bar{\nu}\gamma, \ \mu \to e\nu\bar{\nu}\gamma\gamma), \mbox{ Mu3e } (\mu \to e\nu\bar{\nu}, \ \mu \to e\nu\bar{\nu}ee), \\ \mbox{ MUonE } (\mu e \to \mu e), \mbox{ MUSE } (\mu p \to \mu p), \mbox{ PRad } (ep \to ep, \ ee \to ee), \mbox{ P2 } (ep \to ep), \\ \mbox{ PADME } (ee \to \gamma\gamma), \mbox{ Luminosity at future } \ell\mbox{-colliders } (ee \to ee, \ ee \to \gamma\gamma)... \end{array}$
- The current target is the NNLO accuracy, but the first N³LO calculations are foreseen in the near future, as well as the implementation of a QED parton shower matched to the fixed-order contributions.
- As everyone knows, once a Mule has made up its mind, it is difficult to stop...

McMule

P. Banerjee¹, A. Coutinho², T. Engel^{2,3}, A. Gurgone^{4,5}, F. Hagelstein^{6,2}, S. Kollatzsch⁷, L. Naterop³, A. Proust⁸, M. Rocco², N. Schalch⁹, V. Sharkovska^{2,3}, A. Signer^{2,3}, Y. Ulrich¹⁰

¹ Zhejiang University, ² Paul Scherrer Institut, ³ University of Zurich, ⁴ University of Pavia, ⁵ INFN Pavia, ⁶ University of Mainz, ⁷ TU Dresden, ⁸ ENS Lyon, ⁹ University of Bern, ¹⁰ IPPP Durham

Visit our website: https://mule-tools.gitlab.io

Contact: andrea.gurgone01@ateneopv.it