

Physique

et

Imagerie Médicale

Paul Lecoq CERN, Genève

LHC - Installation des aimants supraconducteurs (27km)

L'aimant toroïdal d'Atlas

Montage de l'expérience CMS

July 4, 2012 : The Higgs Boson!!

Scanner TEP/CT

Imagerie anatomo-fonctionnelle non invasive

Patiente traitée pour un cancer du colon révélant à l'examen un cancer du sein additionnel

L'imagerie médicale: une approche pluridisciplinaire

8

La découverte des Rayons-X

Röntgen obtient le 1^{er} prix Nobel de physique en 1901

CAT Scanner Le principe de la tomographie

Prix Nobel de Physiologie et Médecine 1979

Allan MacLeod **Cormack** Physicien Nucléaire Cape Town Harvard University Tufts University

Sir Godfrey N. **Hounsfield** Ingénieur électricien anglais EMI Research

Principe de la Tomographie

Tomographie volumétrique

< 0,4 sec/ rotation Organ in a sec (17 cm/sec) Whole body < 10 sec

IRM, imagerie par résonance magnétique

Felix Bloch Physicien Stanford

Prix Nobel de Physique 1952

Edward M. Purcell Physicien Harvard

Prix Nobel de Physiologie et Médecine 2003

Sir Peter **Mansfield** Physicien Nottingham

Paul C. Lauterbur Chimiste Uni. Illinois

28/10/2022

Imagerie par émission de positron (TEP)

July 4, 2012 : The Higgs Boson!!

The PET World Picture

Need to Image 0.000000511 TeV* Photons

*511 keV

Signal Levels Are Very Low

28/10/2022

Des défis similaires pour l'imagerie TEP et les détecteurs de physique

Un peu d'histoire

RECONSTRUCTION

+IL Oca.

CERN Technology http://cern.ch/TTdb

Invention of the PET/CT

Petite histoire résumée de l'imagerie in-vivo

Differents types d'imagerie pour différents types d'information

- Imagerie anatomique
 - Localiser des masses ou des lésions
 - Optique, CT, ultrasons, IRM
- Imagerie fonctionnelle
 - Quantifier des modification dynamique du métablisme au niveau des organes
 - Ultrasons (Doppler), IRM (Bold), Imagerie nucléaire (PET/SPECT)
- Imagerie cellulaire
 - Etudier les échanges entre cellules entre elles, et avec leur environnement (stroma)
 - Optique, IRM, Imagerie nucléaire (PET/SPECT)
- Imagerie moléculaire
 - Etudier les chemins moléculaires impliqués dans la production de protéines, d'enzymes, différents métabolites (sucres, acides aminés, acides gras, etc...)
 - Imagerie nucléaire (PET/SPECT)

Molecular Imaging in Medicine & Biology

I Molecular Imaging to answer challenge of modern biology

- -Access real time genomics through *in vivo* imaging of molecular process
- -Detect early transformations in a cell, which may lead to pathology (precancerous activity)
- -Early detection, prognosis, treatment selection, response to therapy
- -Identify molecular pathways from gene to disease (genomics, proteomics)
 - »Novel molecular targets »Specific genetic pathways
 - al transduction

»Cell cycle alteration»Angiogenesis»Apoptosis

Requires specific effort on imaging instrumentation Sensitivity, Spatial and Temporal resolution

Requires targeting the cellular activity with specific contrast agents

Molecular processes targeted by radiopharmaceuticals

Imaging Modalities

L'imagerie pour une meilleure prise en charge du patient

Recueillir une information détaillée de chaque individu pour:

- Déterminer les paramètres de la maladie, comme son agressivité, son potentiel métastasique
- Optimiser l'action thérapeutique en fonction du génotype du patient
- Evaluer instantanément l'efficacité du traitement

Implique une nouvelle génération de systèmes d'imagerie

Médecine personnalisée

Approche globale

Médecine personnalisée

L'imagerie: quelle qualité pour voir quoi et dans quelles conditions?

L'imagerie médicale du futur

- Voir des lesions plus petites
- Examens plus rapides
- Correction de mouvements
 - Respiration
 - Battements cardiaques
 - Bolus digestif
- Etudes dynamiques
- Quantification
- Multimodalité
- Réduire la dose aux patients

- Résolution spatiale
- Résolution temporelle
- Rapport Signal/Bruit
- Sensibilité

Etudes de plus en plus spécifiques sur modèles animaux

- L'imagerie petit animal se fait généralement sous anesthésie
- L'anesthesie modifie les fonctions cervicales et biaise les études neurophysiologiques
- RATCAP, developé à BNL est un TEP miniaturisé et portable pour animal éveillé
- 12 blocs de 4x8 cristaux de LSO 2x2x5mm³ lus par des matrices de 4x8 APD et 0.18µm CMOS ASIC

•C. Woody et al. Several papers in conference records of NSS/MIC2004, Rome

Organ-specific imaging devices: brain

CERN . French Physics Teachers

Fig. 8

ClearPEM-Sonic a collaborative project between physicians and physicists

Objective: Detect 3mm tumors and define their cancerous status

Des technologies d'avant-garde: ClearPEM

Des technologies d'avant-garde: Ultrasons

- Focus ultrasound beam in tissue
- Propagate focal point a t supersonic speed in breast
- Measure the deformation of the shock wave by a tumor

Benefit of dedicated breast PET imaging

PET/MRI complementarity

4 lesions identified on MR image

Only one suspicious lesion identified on PET image

Subsequent biopsy and histology of all four lesions confirmed that only the lesion seen on PET image was cancerous

Courtesy: Dr. José Ferrer, ERESA, Hospital General Universitario de Valencia, Spain

Increasing effective PET sensitivity

- PET is the imaging modality with the highest sensitivity, at the picomolar level
- New medical challenges require a significant sensitivity increase
 - Tracking small number of cells
 - Stem cells biodistribution and differentiation studies
 - Immune cells tracking for immonutheraty
 - Precise pharmacodynamic studies
 - Dose reduction and opening PET scans to new categories of patients (pregnant women, children, fœtus)

Increasing effective PET sensitivity

Improve detector efficiency

Adapted from S. Cherry, UC Davis

Improve solid angle coverage

Increase solid angle coverage

The EXPLORER project

~40-fold increase for total-body imaging

The Future of EXPLORER

Improve Timing Resolution

Sensitivity gain via Timing Resolution

- Improve timing resolution
 - Gain proportional to $1/\Delta t$

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 1, NO. 6, NOVEMBER 2017

Pushing the Limits in Time-of-Flight PET Imaging P. Lecoq[®], Fellow, IEEE

 TOFPET with 10ps timing resolution would result in a ~200 fold sensitivity gain /non TOFPET

~20 fold sensitivity gain /Biograph Vision

> 15-fold improvement in SNR

- Reconstruct at higher spatial resolution
- Detect smaller lesions
- Detect low-grade disease
- Better statistics for kinetic modeling

Conventional PET

10ps TOFPET

Image Longer

200-fold greater dynamic range

can image for seven more half lives

- 11**C** Up to 4 hours
- ¹⁸F Up to 20 hours
- ⁸⁹Zr Over 30 days

Image Faster

10ps TOFPET

5 seconds/bed position

- Image in a single breathhold
- Reduce respiratory/cardiac/bolus motion
- Higher resolution
- Total-body kinetic imaging with high temporal resolution

Image Gently (Low Dose)

200-fold reduction in dose

- Whole-body PET at ~0.03 mSv
- Annual natural background is ~2.4 mSv
- Return flight (SFO-FRA) is ~0.11 mSv
- PET can be used with minimal risk new populations

Image More Often

Radiopharmaceutical applications

⁶⁸Ga-PSMA + ¹¹¹In-PSMA for diagnosis and therapy of prostate cancer

⁶⁸Ga-DOTATATE and ¹⁷⁷Lu-DOTATATE for diagnosis and treatment of neuroendocrine tumours

CERN MEDICIS

MEDICIS-PROMED: Innovative treatments based on radioactive ion beam production,

CRYSTAL

CLEAR