

Ioannis Katsioulas

School of Physics and Astronomy University of Birmingham

R2D2

Υποψηφιότητα για τη θέση Πειραματική Φυσική Υψηλών Ενεργειών - Οργανολογία Εθνικό Μετσόβιο Πολυτεχνείο

01/11/2021

i.katsioulas@bham.ac.uk

SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Career Track Record

2009 Ptychion in Physics, Aristotle University of Thessaloniki Thesis: A study of the energy resolution of a Micromegas detector

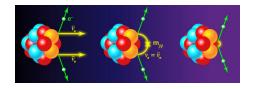
2011 MSc Computational Physics, Aristotle University of Thessaloniki Thesis: *Neutrino detection with a spherical proportional counter*

2016 Ph.D. in Particle Physics, Aristotle University of Thessaloniki Thesis: Study and detection of low energy neutrinos

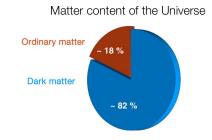
2016 Eurotalents Research Fellow, Université Paris-Saclay, CEA Saclay, France Subject: Search for light WIMPs with a gaseous spherical detector

2019 Marie Skłodowska-Curie Fellow, University of Birmingham, UK. *Project: DarkSphere:* Search for light Dark Matter with a Spherical Proportional Counter

Motivation for my research - Goals


Crossroads in Modern Physics - Unveiling the invisible Universe

What constitutes DM?


Dark Matter Particle (X⁰)

 X^0 mass: m = ? X^0 spin: J = ? X^0 parity: P = ? X^0 lifetime: $\tau = ?$ X^0 scattering cross-section on nucleons: ? X^0 production cross-section in hadron colliders: ? X^0 self-annihilation cross-section: ?

What in the nature of neutrino?

What is mass?

Developing tools for discovery - Novel detector technologies for Rare Event Searches

Extreme radiopurity

Good energy resolution

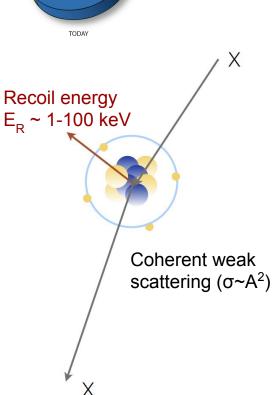
DM searches with novel detectors

Direct Dark matter searches

Store Actions A.6% Dark Matter 23% TODAY

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12


15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

"WIMP miracle" \Rightarrow Relic abundance explained by a massive particle (5 GeV/c² - few TeV/c²) interacting through weak scale interaction with baryonic matter

WIMP miracle era

PHYSICAL REVIEW D

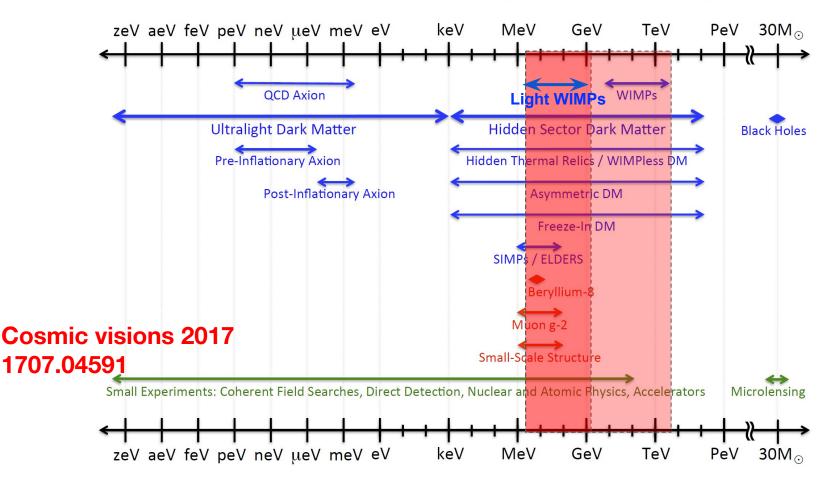
VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

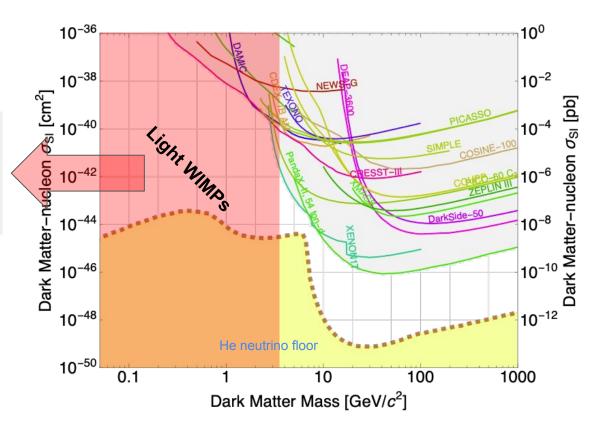
We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

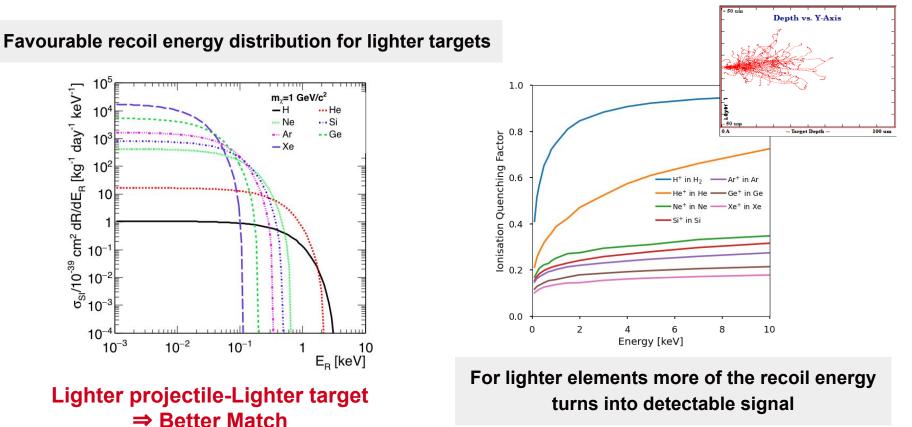

WIMP-less miracle era

PRL 101, 231301 (2008) PHYSICAL REVIEW LETTERS week ending 5 DECEMBER 2008

Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

Jonathan L. Feng and Jason Kumar Department of Physics and Astronomy, University of California, Irvine, California 92697, USA (Received 4 April 2008; published 1 December 2008)


Dark Sector Candidates, Anomalies, and Search Techniques

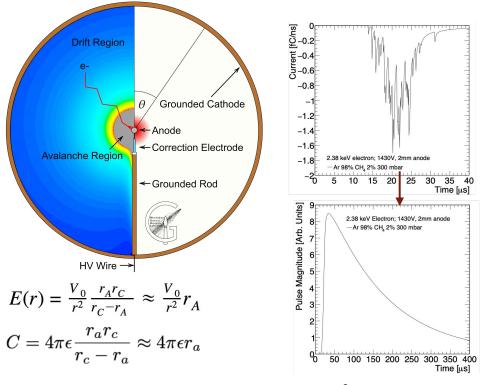

Light Dark Matter (LDM) mass region searches

LDM searches require detectors with:

- Lower thresholds
- Lighter targets

Advantages of light targets for light WIMPs

Light Dark Matter searches with an innovative gaseous detector the Spherical Proportional Counter


NEWS-G collaboration UK, France, Greece, Canada, US

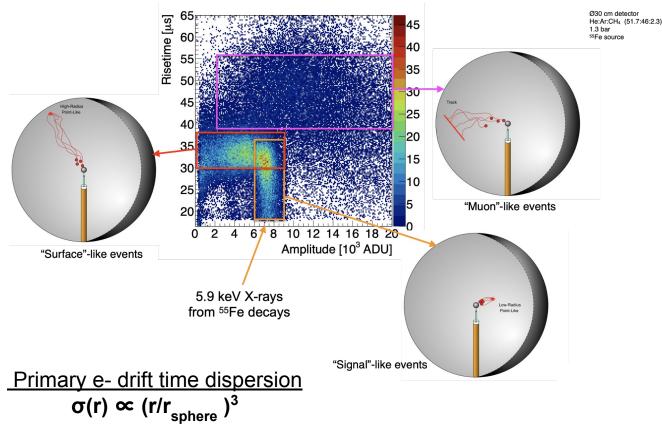
I.Giomataris et al, JINST, 2008, P09007

I.Katsioulas et al, JINST, 13, 2018, no.11, P11006

The Spherical Proportional Counter

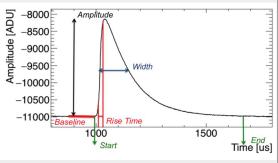
 $r_A =$ anode radius $r_C =$ cathode radius Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions

Basic advantages


- Large volume/ few read-out channels
- Single electron threshold:
 - Low capacitance
 - High gain
- Radio-pure construction
- Background rejection handles
- Flexible operation
 - Swappable gases-targets
 - Variable pressure choice

In the picture: I.Giomataris, G.Charpak Testing the prototype

11


Pulse shape discrimination

Basic Parameters

•Baseline

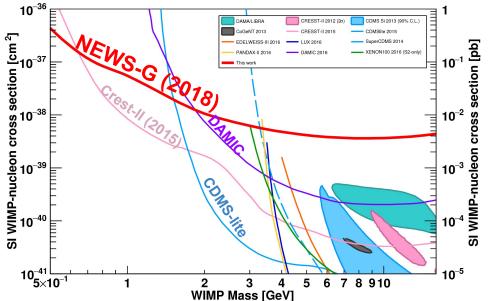
- Noise
- •Amplitude (Pulse Height)
- •Rise time
- •<u>Width</u>
- Integral
- •Number of peaks


Advanced Parameters

Deconvoluted amplitudeNumber of electronsetc

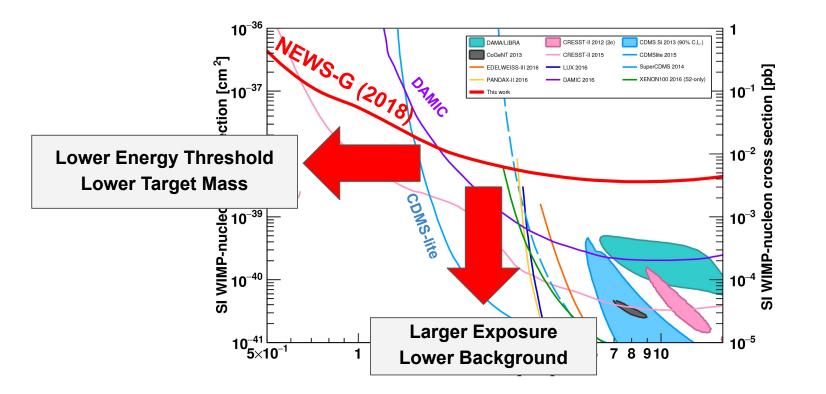
NEWS-G at Modane SEDINE detector


Vessel Ø 60cm copper

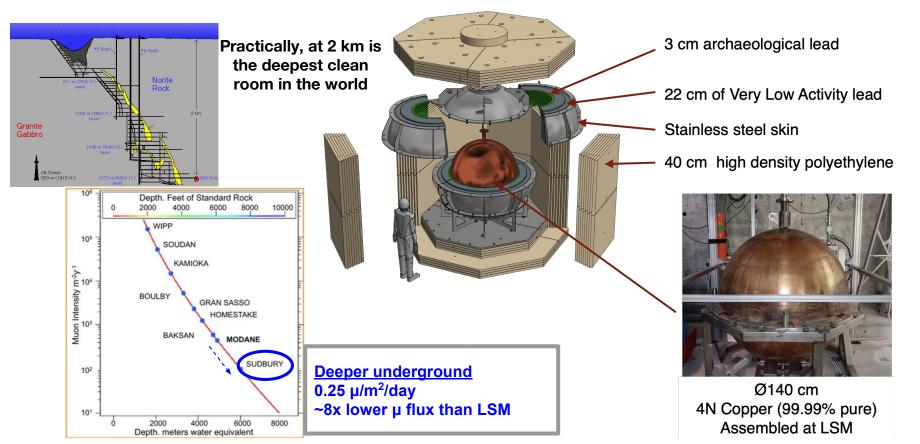

Gas Mixture: Ne+0.7%CH₄ at 3.1 bar (280 g) **Exposure:** 9.6 kg*days (34.1 live-days x 0.28 kg)

First results of NEWS-G with SEDINE (2018)

NEWS-G collaboration, Astropart. Phys. 97, 54 (2018) doi: 10.1016/j.astropartphys.2017.10.009

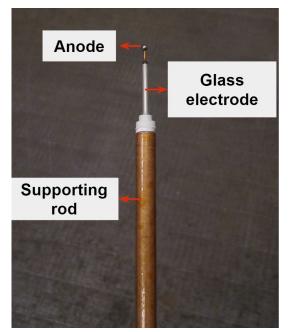


Contents lists available at ScienceDirect Astroparticle Physics journal homepage: www.elsevier.com/locate/astropartphys First results from the NEWS-G direct dark matter search experiment CrossMark at the LSM Q. Arnaud^{a,*}, D. Asner^b, J.-P. Bard^c, A. Brossard^{a,c}, B. Cai^a, M. Chapellier^a, M. Clark^a, E.C. Corcoran^d, T. Dandl^e, A. Dastgheibi-Fard^f, K. Dering^a, P. Di Stefano^a, D. Durnford^a, G. Gerbier^a, I. Giomataris^c, P. Gorel^g, M. Gros^c, O. Guillaudin^h, E.W. Hoppe^b, A. Kamaha^a, I. Katsioulas^c, D.G. Kelly^d, R.D. Martin^a, J. McDonald^a, J.-F. Muraz^h, J.-P. Mols^c, X.-F. Navick^c, T. Papaevangelou^c, F. Piquemal^f, S. Roth^{a,1}, D. Santos^h, I. Savvidisⁱ, A. Ulrich^e, F. Vazquez de Sola Fernandez^a, M. Zampaolo ent of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada ^b Pacific Northwest National Laboratory, Richland, Washington, 99354, USA IRFU CEA Université Paris-Saclay, F-91191 Gif-sur-Yvette, Franco d Chemistry & Chemical Engineering Department, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada ^e Physik Department E12, Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany 1LSM, CNRS/IN2P3, Université Grenoble-Alpes, Modane, France 8 SNOLAB, Lively, Ontario, P3Y 1N2, Canada h LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki, Greece Exclusion at 90% confidence level (C.L.) of cross-sections above 4.4 • 10⁻³⁷ cm² for a 500 MeV/c² WIMP


Astroparticle Physics 97 (2018) 54-62

Limit set on spin independent WIMP coupling with standard assumptions on WIMP velocities, escape velocity and with quenching factor of Neon nuclear recoils in Neon calculated from SRIM

NEWS-G moving forward



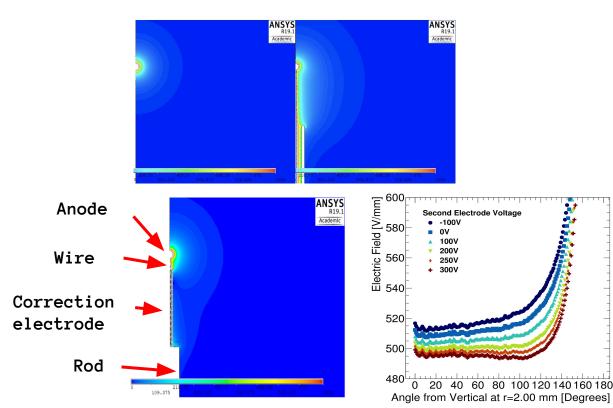
The NEWS-G detector at SNOGLOBE

Breakthroughs in SPC instrumentation

Resistive sensors

<u>I. Katsioulas et al, JINST, 13, 11, P11006, 2018</u> <u>10.1088/1748-0221/13/11/P11006</u>

Multi-anode sensors


Reducing Backgrounds

<u>Giganon, A. et al, 2017. "A Multiball Read-out for the</u> <u>Spherical Proportional Counter.", *JINST*</u>

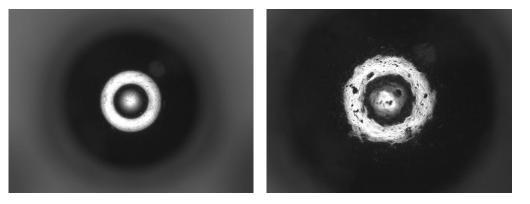
Improving energy resolution and stability

Electric field homogeneity

- Ideally, electric field:
 - Purely radial
 - Strength 1/r²
- Reality more complex, as support structure needed for sensor
 - ο **Ε=Ε(r,θ)**
 - Non-uniform detector
 - Response
- Improved field uniformity by adding correction electrode

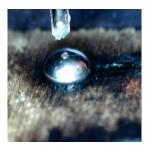
Different kind of sensors

Materials used: Copper, Brass, Steel, Iron, PE, PEEK, Teflon, Kapton, Plexiglass, Si, Araldite, Cyanoacrylate, Graffite, Bakelite, Resistive Polymers ... and different kind of mixtures of them !



Anode quality and Construction techniques

Controlling diameter and surface smoothness or roughness

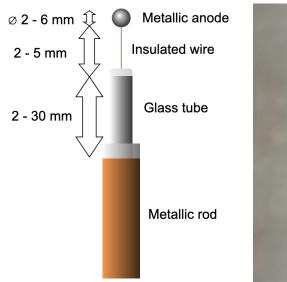

2 mm Inox ball 3 mm steel ball

In theory they are of the same grade !

"µ-soldering" anodes

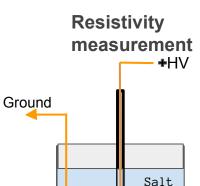

- Better sphericity
- Less anode deformations
- Easy construction

Evolution of the SPC single anode sensor


Evolution target:

- 1. Detector stability
- 2. Homogeneous response
- 3. Low mass
- 4. Low radioactivity
- 5. Precision

RECEIVED: September 17, 2018 ACCEPTED: October 21, 2018 PUBLISHED: November 7, 2018


The resistive glass electrode

Design

Implementation

Schematic

water

Real structure

A sparkless resistive glass correction electrode for the spherical proportional counter

I. Katsioulas, ^a. I. Giomataris, ^a P. Knights, ^a.b M. Gros, ^a X.F. Navick, ^a K. Nikolopoulos ^b and I. Savvidis ^

^a IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France ^bSchool of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom ^cDepartment of Nuclear and Elementary Particle Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, Greece

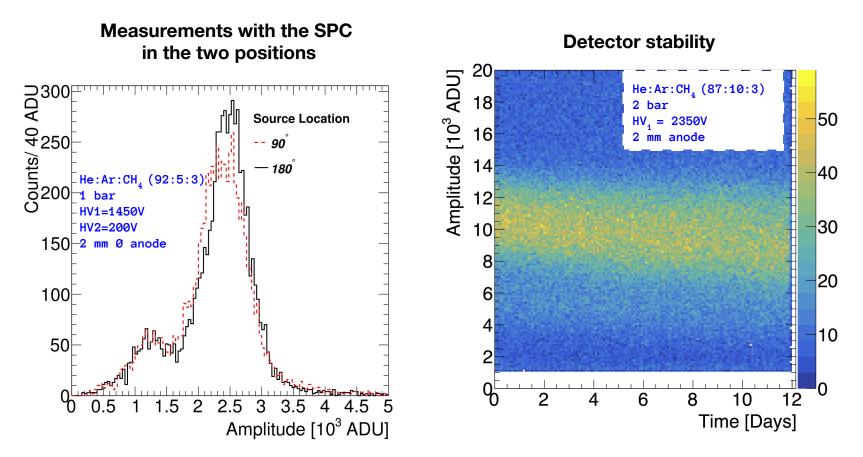
E-mail: ioannis.katsioulas@cea.fr

Provides

inst

- Spark quenching
- Charge evacuation

Advantages

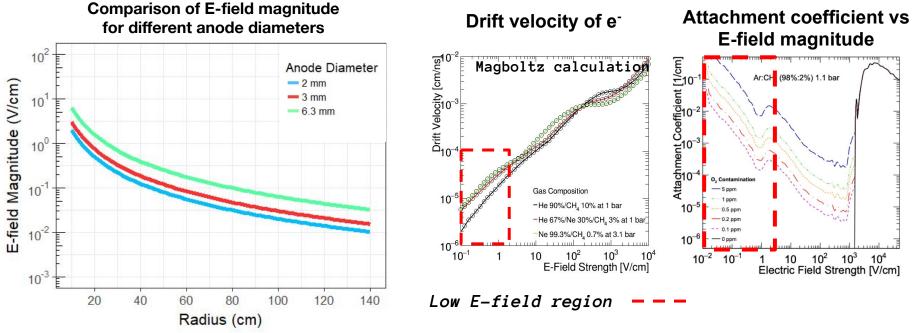

- Simple
- Symmetric
- Robust
- Low material budget

Material properties

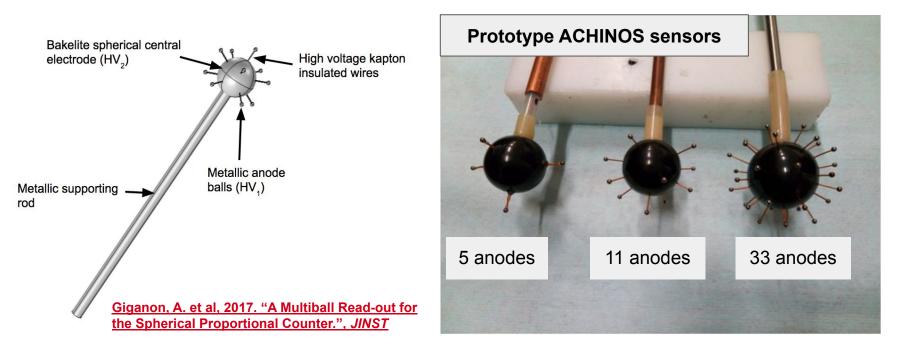
- Soda-lime glass
- $\rho = 5.05 \times 10^{10} \,\Omega$ · cm
- d = 2.1-2.25 g/cm3
- A = 14.48 mBq/g

<u>Katsioulas et al, JINST, 13, 11, P11006, 2018</u> <u>10.1088/1748-0221/13/11/P11006</u>

Performance of the glass sensor

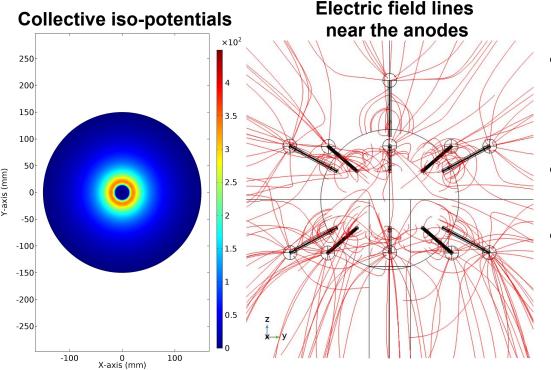


Increasing target mass


Electric field strength in large volume SPCs

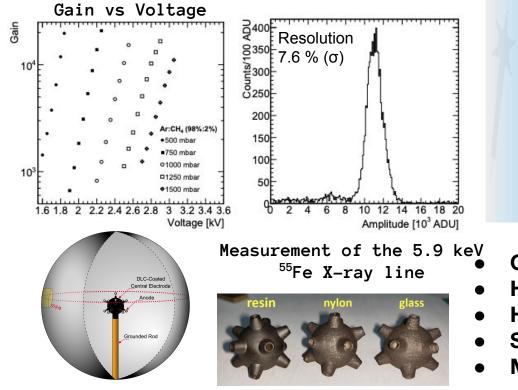
Scaling-up

 $v_{drift}(E/P), G(E/P) \sim E pprox r_A rac{V}{r^2}$



The multi-anode sensor - ACHINOS

Instead of one ⇒ Use multiple anodes set to the same potential !!!


Electric field configuration with an ACHINOS

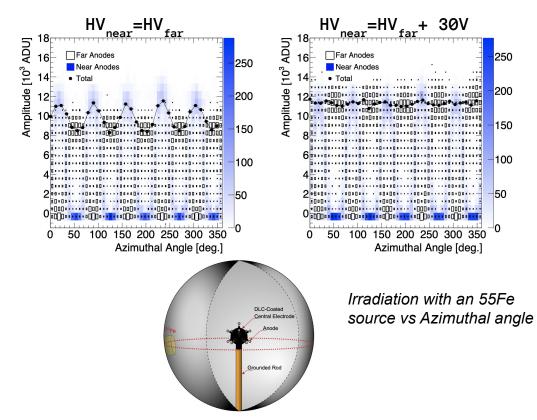
- Decouples electron drift and multiplication
 - Small anode size \rightarrow high gain
 - More anodes → Efficient charge collection
- Allows for increased target mass
 - Larger volume
 - Higher pressure
- Individual readout TPC-like capabilities to the SPC

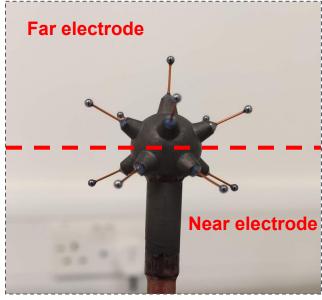
Performance of ACHINOS with resistive coating

I. Giomataris et al 2020 JINST 15 P11023

3D design

3D printed modules with DLC coating

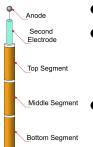


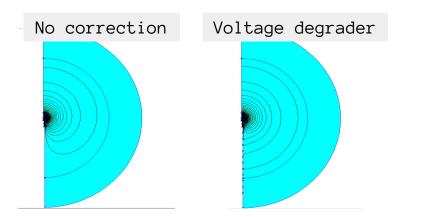

- High pressure operation (> 2 bar)
- High gain
- Stability
- Multi-anode readout

USTC (China)

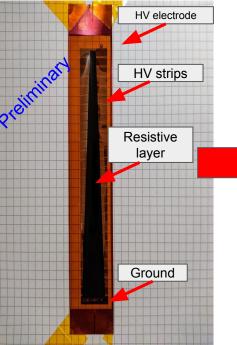
Performance of ACHINOS with resistive coating

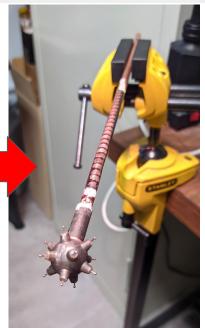
Simulations



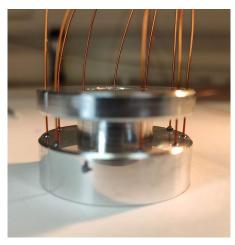

2 channel readout

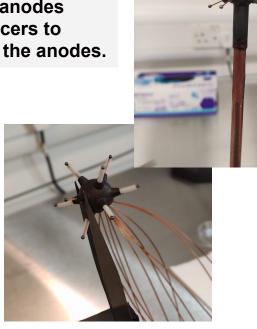
I. Giomataris et al 2020 JINST 15 P11023


E-field correction - Voltage degrader


- Grounded rod distorts electric field
- Voltage gradient along rod, as in ideal geometry, would restore ideal field.
- Voltage applied to each segment is the average ideal voltage over the segment.

Resistive strip degrader


ACHINOS with Degrader



Tools developed for ACHINOS construction

Assembly tools developed:

- Simultaneously bonding several wires and anodes
- Custom-made spacers to position and align the anodes.

Kamioka (Japan)-Birmingham

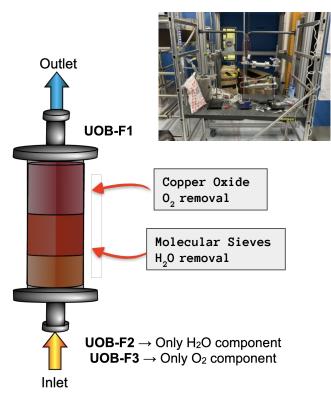
- New collaboration for the development of an ACHINOS-like sensor for LXe TPC
- **Goal:** XMASS background reduction through the S2-signal (electroluminescence)
- Funded by:
 - ICRR-University of Tokyo, Inter-University Research Program (Co-I), 5M ¥
 - Royal Society International Exchanges (Co-I), 12 k£

Reducing Backgrounds

Custom made purifications systems

Birmingham-Liverpool-Zaragoza collaboration Dark Matter - Neutrinos - Axions

- Commercial O₂/H₂O purifiers efficient
- Problem: ²²²Ŕn emanation


⇒Major BG in Rare Event Searches

Aims:

- Few and known components
- Assay emanation of each component individually

Rn emanation results

Low-background MicroMegas-based TPC at Carfranc

Timestamp HECuts

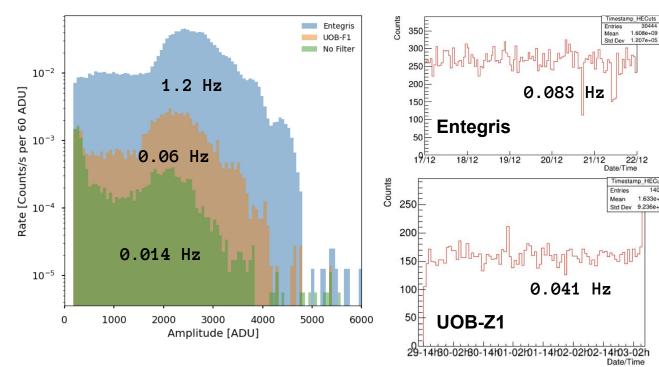
22/12

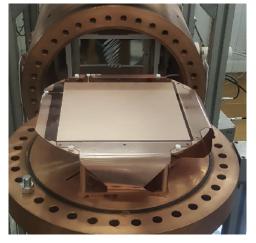
Timestamp HECuts Entries

Std Dev 9.236e+04

Mean

Date/Time

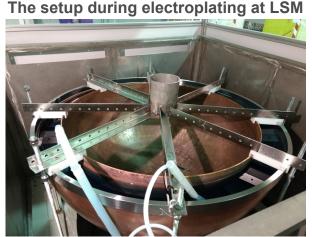

14095

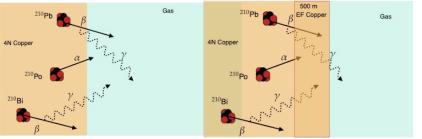

30444

1.608e+09

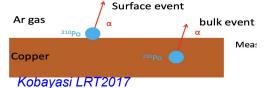
SPC at UOB

Circulation with TREX at LSC



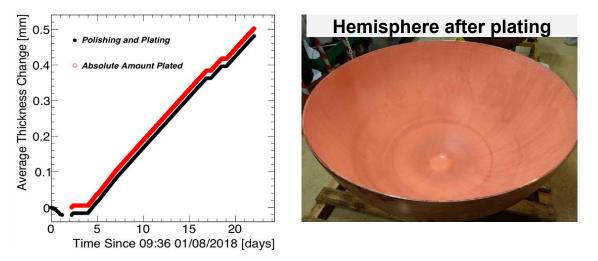


UOB-Z1 under test


Reducing Background - Electroforming Copper

Contaminants : U and Th decay chain traces

- Measured for NEWS-G ~10 $\mu Bq/kg$
- ²¹⁰Pb out of equilibrium 28.5 mBq/kg



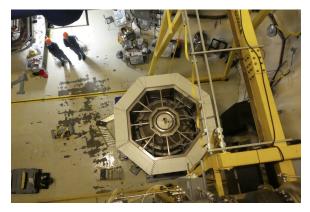
- Background: Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β-decays in Cu
- Layer of ultra-pure Cu on the inner surface of the detector.

Suppresses ²¹⁰Pb and ²¹⁰Bi backgrounds by factor 2.6 (<1keV)

• Using PNNL expertise and strong UoB contribution a 500 um electroplated copper was deposited on the inner surface at LSM.

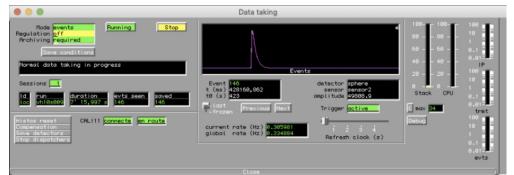
Result after plating

- Good surface quality achieved
- Hemispheres electron-beam welded together
- Copper was deposited at a rate:
 ~36 µm/day → ~ 1mm/month


Result is promising for possibly a whole detector electroformed underground

First large-scale underground radio-pure electroformation Relevant for all next generation rare event experiments! (e.g. LEGEND, DARWIN, ARGO)

SNOGLOBE: NEWS-G at SNOLAB


Currently under commissioning: Electronics, Calibration, Detector response

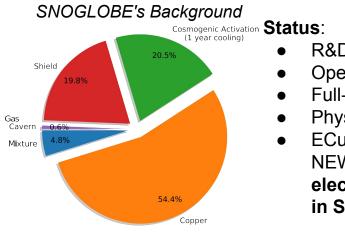
First operation in SNOLAB, 10th Aug. 2021

Strategy overview

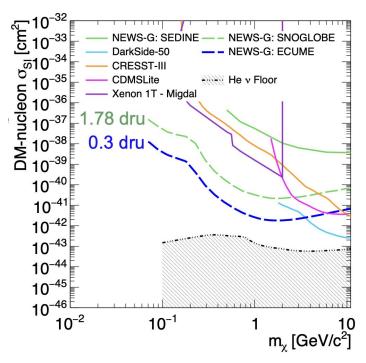
- Exposure: 20 kg.d exposure Ne/CH4 94/7
 - ~22 days at 1 bar, ~ 30 days taking into account 25%-30% possible dead time
- Laser operation for calibration and gas properties study
- Fiducialisation/Event discrimination through rise time - Electron counting
- Maximum percentage of CH4

Next Steps

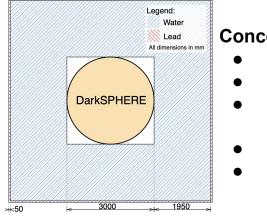
- Operation with Ne:CH4 2% and 7%
- Isobutane use instead of CH₄
- Addition of non-flammable quenchers as N₂
- Use CF_4 , ³He in the gas mixture
- ¹⁹F odd-neutron Spin-dependent-DM searches



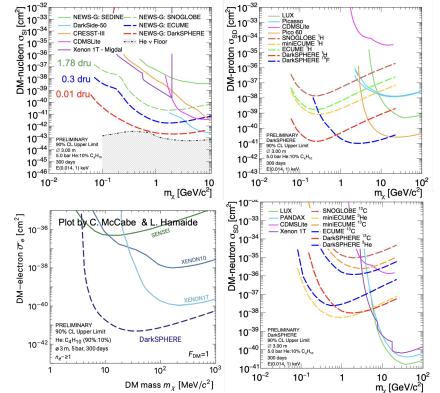
Understanding single e- event rate


ECuME

- Fully underground-electroformed Ø140 cm sphere
 - Electroformed in SNOLAB Suppress Cu contamination
 - No machining or welding grow sphere directly
- Builds on achievements of NEWS-G electroplating
- Using shielding of SNOGLOBE in SNOLAB

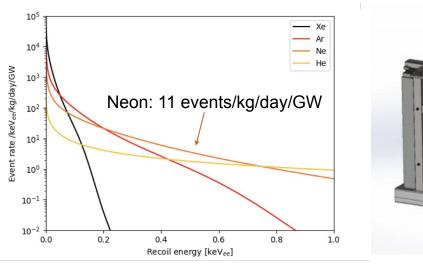


- R&D for Ø30 cm scale prototype
- Operation beginning soon
- Full-scale in 2022
- Physic exploitation will follow
- ECuME is initially dedicated to NEWS-G, but after it will be an electroplating facility available in SNOLAB


Reaching the neutrino floor with NEWS-G: DarkSphere

Development led by Birmingham, with NEWS-G and UK-DM contributions (Boulby, KCL, UCL, UoL)

Conceptual parameters:

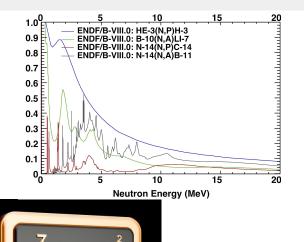

- Installation at Boubly
- 3 m Ø SPC
- Fully electroformed underground
- Pressure up to 5 bar
- Target mass O(100kg)
- **Discovery potential** in SI, SD nucleon-DM interactions, and in DM-electron interactions
- **Multi-physics platform**: 0vββ searches, neutrino physics, supernova detection, ...

41

NEWS-G3: Neutrino coherent scattering searches (CEvNS)

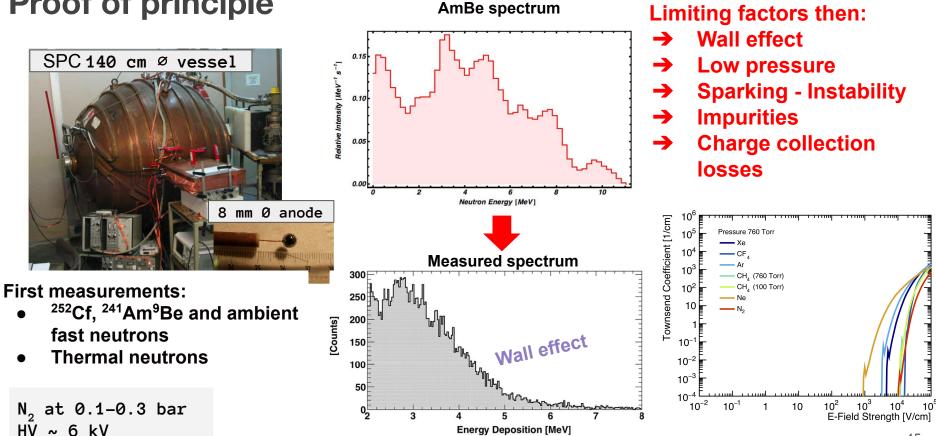
- CEvNS opens a window to investigation non-standard neutrino interactions
 - First observations by COHERENT in Nal (2017) and Ar (2020)
 - Unique complementarity with DM searches as sensitivity reaches the neutrino floor
- NEWS-G3: A low-threshold low-background sea-level facility
 - Environmental and cosmogenic background studies towards reactor CEvNS studies
 - Shielding: Layers of pure copper, polyethylene, and lead, with active muon veto
- Commissioning in 2022

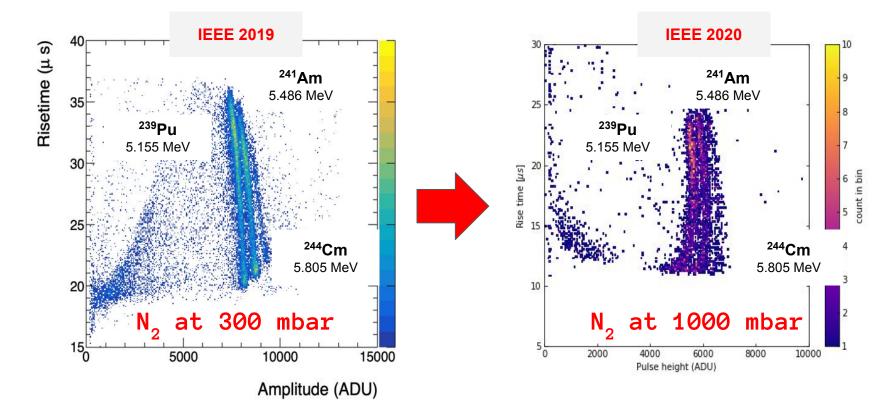
- Participated in the Letter of Interest submitted to SNOWMASS
- Participation of the CEvNS community white paper


Fast neutron detection with an SPC

A N₂-filled spherical detector A novel detector for neutron detection

- Large volume (0.1 m³ 1 m³)
- Inert gas safe not toxic
- High stopping power
- Operation without moderation
- Measurement of neutron
 energy
- Operation in sensitive environments
- Low γ-ray efficiency
- Cost efficient
- Possible alternative to ³He

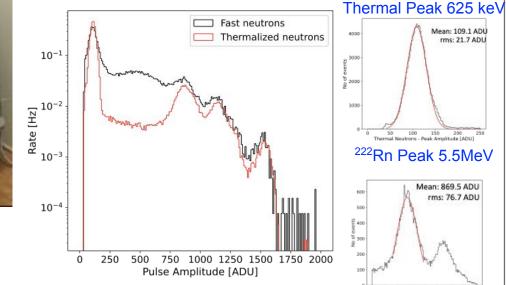

Nitrogen as target: ¹⁴N + n \rightarrow ¹⁴C + p + 625 keV, σ_{th} = 1.83 b ¹⁴N + n \rightarrow ¹¹B + α - 159 keV, thres=1.7 MeV


Nitrogen

14.007

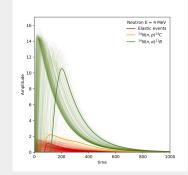
Neutron detection with SPC Proof of principle

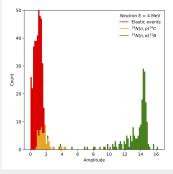
Latest results with N₂-filled SPCs



Measurements at UoB's graphite stack

 241 Am⁹Be neutron source A = 2.6 x 10⁶ Bq


- Calibration measurements
- Thermal and fast neutrons at **1 bar** (4.2 kV)
- Thermal and fast neutrons at **1.5 bar** (4.5 kV)
- Thermal neutrons at **2 bar** (5 kV)


860 700 800 900 1000 1100 1200 1300 140 Radon Chain Decay - Peak Amplitude (ADU)

Using the UoB simulation framework

Simulated pulses

Simulated amplitude distribution

Future plans and activities

Next steps:

- 1. Simulation of the detector response
- 2. Validation of simulations using measurements of calibration sources and monoenergetic neutrons beams
- 3. Unfolding of incident neutron spectra
- 4. Software toolkit for automation neutron spectra estimation

Aluminium S30

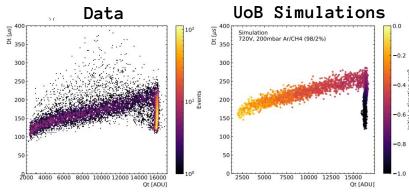
Installation of the SPC in Boulby in 2019

- R&D in controlled environment:
 - Rate effects
 - Space charge effects
- Fast neutron spectra measurements
- Method is applicable to all other underground laboratories

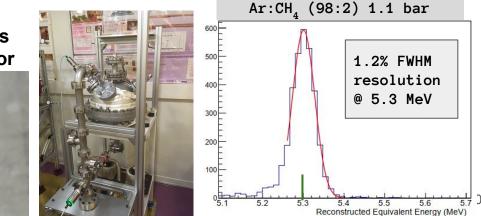
Aimed applications:

-Medical e.g. neutron flux in hadron therapy environments - Industry and security e.g. Oil search industry

R2D2: 0v2β decay searches with a gaseous spherical TPC

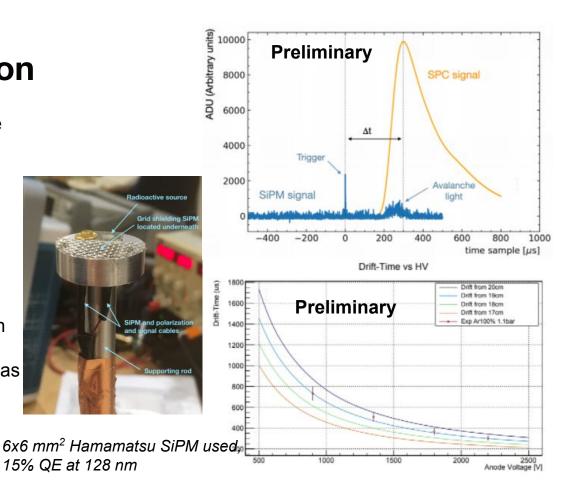

$\Rightarrow 0v\beta\beta$ decay is the most sensitive way to demonstrate the Majorana nature of neutrino!

R2D2 collaboration

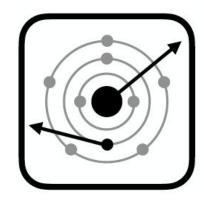

R2D2 R&D Goal: Demonstrate the use of a high pressure ¹³⁶Xe spherical TPC being use for $0\nu\beta\beta$ searches with "zero" background and tonne scale

- UoB has close collaboration with the University of Bordeaux to exchange knowledge on
 - Sensor development
 - Electronics
 - Simulations
- Funded by CRNS France, International Emerging Action (Co-I), eAchinos, 2020-2022, (€20,000)

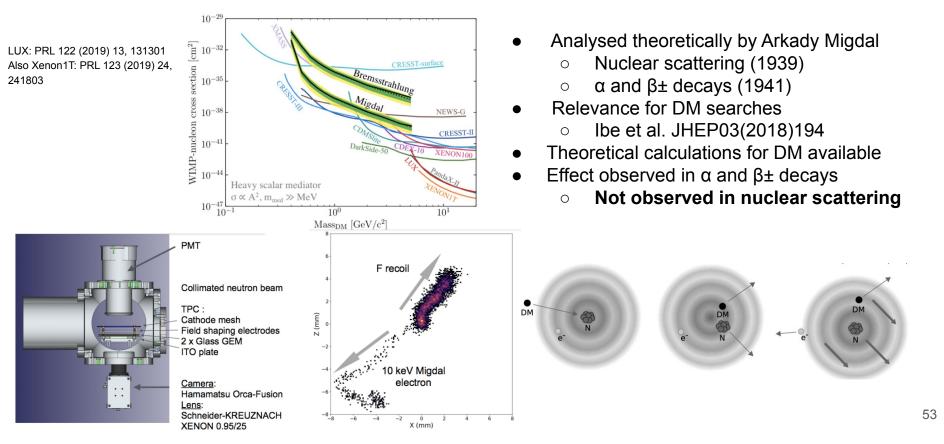
Glass sensor



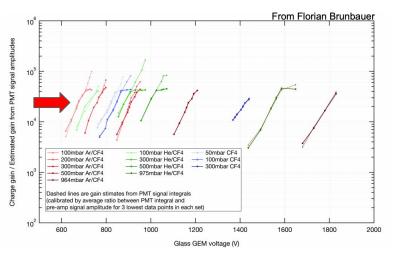
SPC at Bordeaux



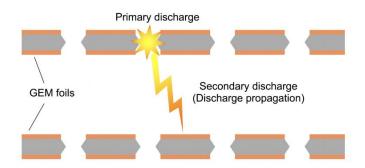
Reading out scintillation


- **SPC operated in pure argon** to observe the scintillation light and use it as trigger
- Two signals observed with the SiPM:
 - Primary scintillation light (S1) used as trigger
 - Electroluminescence during avalanche (S2)
- The time between S1 and S2 is the electron drift time
 - Garfield++ simulation validated with this info
 - Excellent agreement found for alphas emitted at ~19 cm from the anode

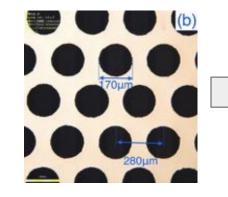
MIGDAL experiment Unambiguous Migdal effect observation and measurement



Migdal effect: Light DM with heavy targets


The challenge in MIGDAL

- 1. Appearance of heavy ions can release a large number of electrons with high ionisation density
- 2. The dense cloud can be funneled through one or few GEM holes
- $G \cdot n_0 \gtrsim 10^8$ (Raether limit) is reached, causing a 3. breakdown.

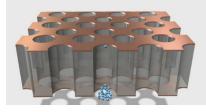


Study case:

- E_{dep} = 144.4 keV by 5 MeV C⁺ in CF₄ n₀ = 4370 primary electrons (W=34eV)
- $G \cdot n_0 = \sim 2 \cdot 10^8 \rightarrow 34.88 \text{ pC}$

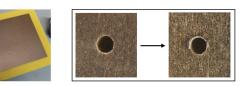
Glass GEM electrode

Destroyed GEM electrode



RD51 common project goal submitted (Co-I) *Comprehensive studies of the glass, ceramic- and kapton-THGEMs in high- and low-pressure TPCs.*

Possible solutions



Alternative Coating THGEMS

(Higher Fusion Point)

- \circ Cu \rightarrow 1085 °C
- \circ Ni \rightarrow 1455 °C
- \circ ITO \rightarrow 1926 °C
- $\circ \quad \textbf{W} \rightarrow \textbf{3422 °C}$

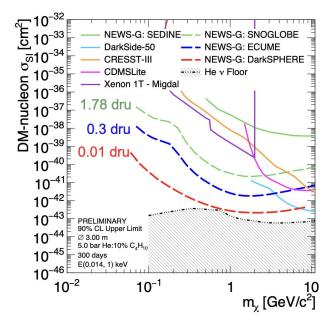
Self quenching mechanism naturally protects against discharges

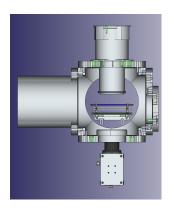
Stripped GEMS Or Combination of

DLC

coated

THGEMs


Resistive/Alternative coating GEMS Lower capacitance of the strips reduces energy released in a spark



Summary

- □ Investigated key questions in Physics!
 - □ Searching unexplored light DM region
- Explored novel methods for light DM and a next generation of experiments
 - Technologies relevant for future projects
 - Industrial applications
- Ideally positioned to lead such developments

Extra slides

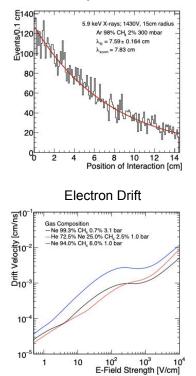

The high pressure Xe spherical TPC for 0vββ

Combine SPC traits such as:

- Simple design
- Low material budget
- Robustness
- High gain
- Large volume
- Pressure variation

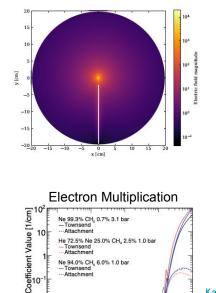
With advantages of gaseous ¹³⁶Xe

- Safe and easy to enrich (136 Xe is ~ 8%)
- Good scintillation properties
- Event containment in high pressure
- Moderate density for BG rejection
 - $\circ \quad \mbox{Tracking of ~MeV e, p, } \alpha$
 - Ionisation vs scintillation yields per species for particle discrimination
- Energy resolution is good up to < 0.55 g/cm³!


10.1016/S0168-9002(97)00784-5

To get:

- Good energy resolution
- Extremely low (zero?) background
- Scalability to large isotope mass
 - 1 tonne ~ Ø 2m at 40 bar
- High detection efficiency


Simulating the detector response

Primary interaction

Electric field

10³

E-Field Strength [V/cm]

10⁴

Townsend Attachment Ne 94.0% CH, 6.0% 1.0 bar -Townsend - Attachment

10

 10^{2}

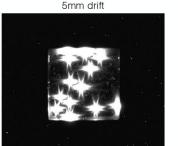
10-2

 10^{-3}

10

Garfield++

Katsioulas, I. et al "Development of a Simulation Framework for Spherical Proportional Counters", arXiv:2002.02718

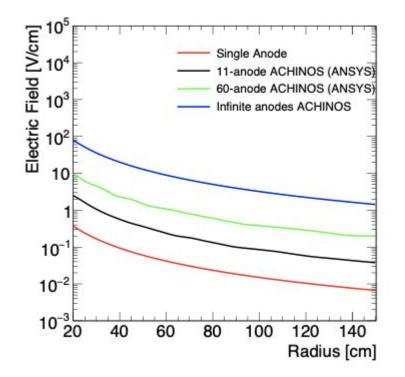

Glass MicroMegas and DLC coated mesh

Structure (MicroMegas) Mesh ITO Pillars ģ. Glass Potential advantages: Higher energy resolution Higher uniformity for imaging (no hole structure) Coated by Yi (USTC) CCD camera

Micro-Mesh Gaseous

https://doi.org/10.1016/j.nima.2019.163320

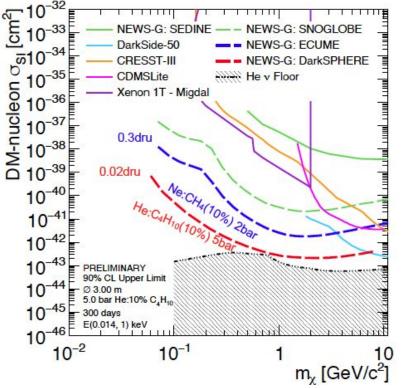
From T.Papaevangelou and F. Brunbauer


10mm drift

- Spark resistant

- Superior spatial resolution compared to triple-GEM-based detector
- Not optimised yet for 50 torr CF4
- Is 10⁴ gain achievable in CF4?

Advantages of the ACHINOS sensor

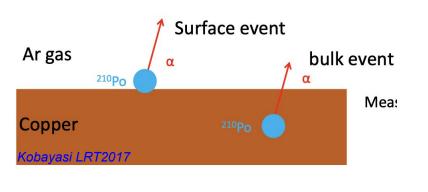


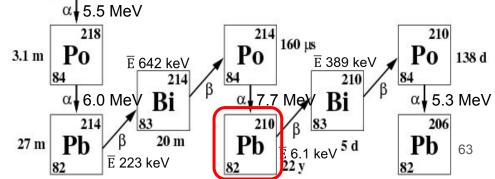
- Decouples electron drift and multiplication
 - Small anode size \rightarrow high gain
 - More anodes → Efficient charge collection
- Allows for increased target mass
 - Larger volume
 - Higher pressure
- Individual readout TPC-like capabilities to the SPC

DarkSPHERE: Exploring light Dark Matter with Spherical Proportional Counters electroformed underground

Conceptual parameters:

- Installation at Boubly
- 3 m Ø SPC
- Fully electroformed underground
- Operation with He/iC₄H₁₂ and possibly Xe
- Pressure up to 5 bar
- Large target mass O(100kg)
- Sensitivity down to the v-floor
- Multiphysics platform

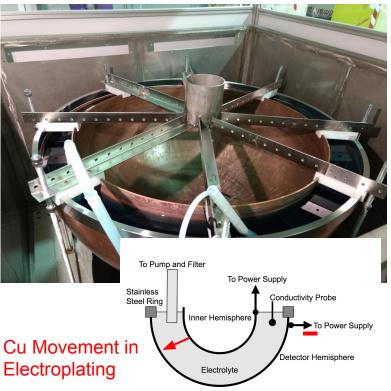

62


Dimensions in mm

Background in NEWS-G copper

- 4N Aurubis Oxygen Free Copper C10100 (99.99% pure)
 - Spun into two hemispheres
- Copper has no long-lived isotopes
- ⁶³Cu(n,α)⁶⁰Co from fast neutrons mostly cosmic muon spallation
- Contaminants : U and Th decay chain traces
 - Measured for NEWS-G ~10 μBq/kg
 - ²¹⁰Pb out of equilibrium 28.5 mBq/kg

222

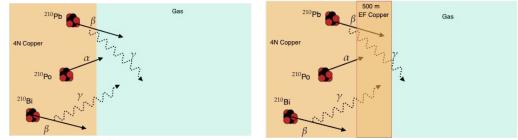

Rn

86

3.82 d

Electroplating Copper

The setup during electroplating at LSM


Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 988, 1 February 2021, 164844

Copper electroplating for background suppression in the NEWS-G experiment

L Balogh *, C. Beaufort *, A. Brossard *, R. Bunker *, J.-F. Caron *, M. Chapellier *, J.-M. Coquillat *, E.C. Corcora *, S. Crawford *, A. Dastgheibi Fard *, W. Deng *, K. Dering *, D. Dumford *, G. Gerbier *, I. Giomataris *, G. Giroux *, P. Gorel *- h. *, M. Gores *, P. Gross *, O. Sullaudin *, E.W. Hoppe *, I. Katiolashi, F. Kelly *, F. Kuljef *, F. Kulje, K. Nikolopoulos *, P. O'Bien *, R. Owen *, M.-C. Pino *, D. Santos *, G. Sawidis *, I. Sawidis *, I. Sawidis *, T. Neepi *, K. Nikolopoulos *, P. O'Bien *, R. Owen *, M.-C. Pino *, D. Santos *, G. Sawidis *, I. Sawidis *, I. Sawidis *, R. Varaquez de Sola Fernandez *, M. Vidal *, R. Ward *, M. Zampaolo *, NEWS-G Collaboration, S. Alcantar Anguiano *, I.J. Arnquist *, M.L. di Vacri *, K. Harouaka *, K. Kobayashi ***, K.S. Thommason *

- **Background**: Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β -decays in Cu
- Layer of ultra-pure Cu on the inner surface of the detector.
 Suppresses ²¹⁰Pb and ²¹⁰Bi backgrounds by factor 2.6 (<1keV)
- Using **PNNL expertise** and strong UoB contribution a **500 um electroplated copper was deposited on the inner surface** at LSM.

ECUME - Electroformed CUprum Manufacturing Experiment

0.00	Source	Contamination / flux	Unit	Events rate <1 keV [dru]	Events rate in [1;5] keV [dru]	Total rate [mHz
Gas	³ H	13	$\mu Bq/kg$	0.05	0.06	0.005
mixture	222Rn	111	µBq/kg	0.05	0.04	0.2
Copper sphere 500 μm electrolyte	210ph	98.5	mRa/ka	1.04	1.01	0.86
	23811	2	"Ba/ka	0.0117	0.115	0.028
	232 TL	10	uDa/lea	0.0754	0.0600	0.169
	401/	0.1	mDq/lag	0.0157	0.0186	0.0000
Roman lead	210Pb	<25	mBq/kg	<0.14	<0.12	0.057
	238 U	44.5	µBq/kg	0.142	0.094	0.277
	232 Th	9.1	µBq/kg	0.0256	0.0161	0.0577
	40K	<1.3	mBq/kg	<0.28	0.23	0.65
Low activity lead	210Pb	4.6	Bq/kg	0.053	0.055	0.17
	238	79	µBq/kg	0.17	0.132	0.5
	²³² Th	9	µBq/kg	0.0251	0.0201	0.075
	40K	<1.46	mBq/kg	< 0.35	0.26	0.67
Cavern	Gamma	4.87×10^{-8}	$\gamma/cm^2/s$	0.0084	0.0095	0.00464
	Neutron	4000	neutron/m ² /day	0.0044	0.0004	3.54×10^{-11}
	Muon	0.27	muon/m ² /day	0.00062	0.00044	5.04×10^{-8}
1		Total		1.67	1.54	2.4
Total -		ie activation of the cop	an anh an	5.00	5.00	5.4
100 State 1		t of the copper sphere as		28	2.0	3.4
Total + cosmoron	ie octivatio	n of the copper sphere a	and 1 years of cooling	9.1	10	2.0
Total + cosmogen	ie activatio	n of the copper sphere :	and 9 years of cooling	1.0	17	2.0
Total Cosmogen	Contraction of the		9	Rectified and a second s		0.000

Removing contributions from copper, lead shielding becomes dominant background

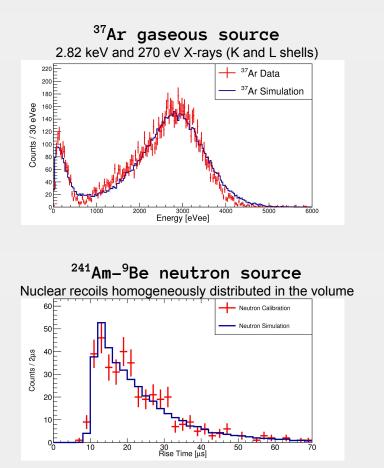
PhD Thesis, Alexis Brossard, 2020

WIMP search run data

Target: Ne+0.7%CH₄ at 3.1 bar \rightarrow 280 gr target mass

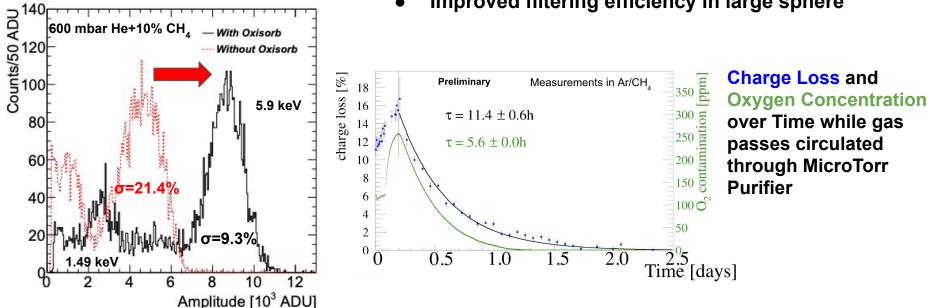
Duration: 42 days in sealed mode

Dead time: 20.1%

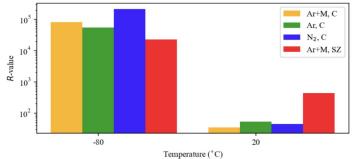

Exposure: 9.6 kg*days (34.1 live-days x 0.28 kg)

Trigger threshold: 35 eVee (~100% efficient at 150 eVee)

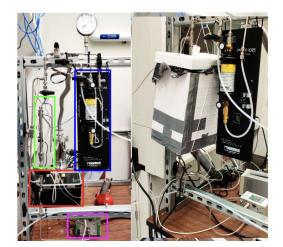
Analysis threshold: 150 eVee (~720 eVnr)


Calibration: ³⁷Ar gaseous source, 8 keV Cu fluorescence, AmBe neutron source

Calibrations

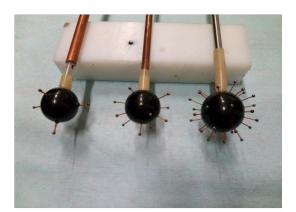

Gas Purification

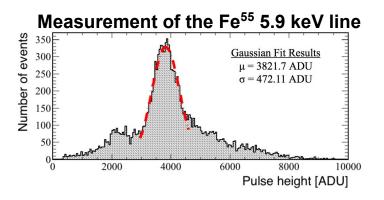
- Contaminants: O₂, H₂O, electronegative gases
- Filtering with: Getter, Oxysorb, Custom filter
- Filtering in a gas recirculation system
 - SAES MicroTorr Purifier (MC700 902-F) Ο
 - Incorporated with Residual Gas Analyser Ο
- Improved filtering efficiency in large sphere

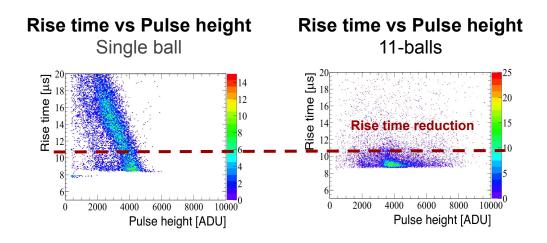

Rn trap development status

- Much more efficient at low temperature.
- Silver zeolite can be a good alternative but more measurements are needed.
- CH4 adsorption still a problem.

Gas	Temp.	A_0 (Bq)	$A_{f,avg}$ (Bq)	R	$f_{Rn} \ ({ m m}^3/{ m min})$
N_2	\mathbf{RT}	17.12	0.38 ± 0.01	45 ± 1	NA
Ar	RT	38.04	0.72 ± 0.02	53 ± 2	$(1.17 \pm 3.8) \times 10^{-6}$
Ar+M	RT	23.90	0.68 ± 0.02	35 ± 1	$(1.08 \pm 3.8) \times 10^{-6}$
N_2	DI	39.00	$(1.8 \pm 1.2) \times 10^{-4}$	$(2.13 \pm 0.87) \times 10^5$	NA
Ar	DI	20.22	$(3.6 \pm 1.2) \times 10^{-4}$	$(5.55 \pm 4.24) \times 10^4$	NA
Ar+M	DI	31.34	$(3.9 \pm 4.3) \times 10^{-4}$	$(8.14 \pm 4.31) \times 10^4$	NA
Ar+M (SZ)	RT	7.56	$(1.7 \pm 0.4) \times 10^{-2}$	$(4.41 \pm 0.90) \times 10^2$	$(2.85 \pm 0.01) \times 10^{-7}$
Ar+M (SZ)	DI	17.69	$(7.8 \pm 6.3) \times 10^{-4}$	$(2.27 \pm 1.02) \times 10^4$	NA

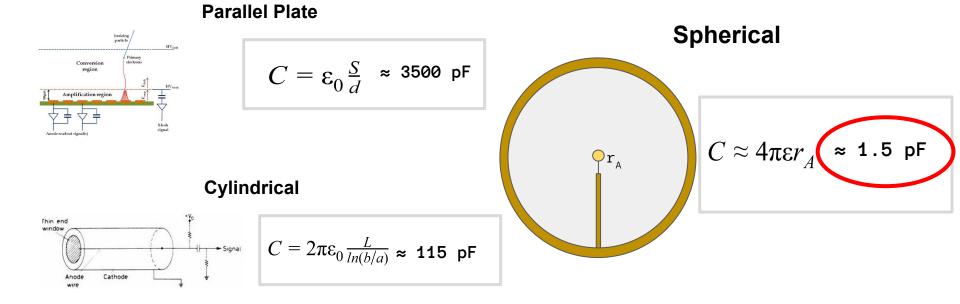

M.C. Piro (link)




- RAD7 Radon trap Radon source Binary Gas
 - Analyzer (BGA)

- Compared Carboxen and Silver Zeolite traps in room and dry ice temperature
- Gas tested: Ar, N2, Ar/CH4
- Rn levels can me reduced efficiently especially in dry ice temperature
- Perioding re-emission and trapping of CH4 and Rn observed
- RAD7 to be replaced by the sphere to increase Rn level measurement sensitivity

Results with the first prototypes



Conditions:

- Gas Mixture: He:Ar:CH_a (80:11:9)
- Pressure: 640 mbar

Advantage of spherical geometry - A

Large volume detector with low threshold

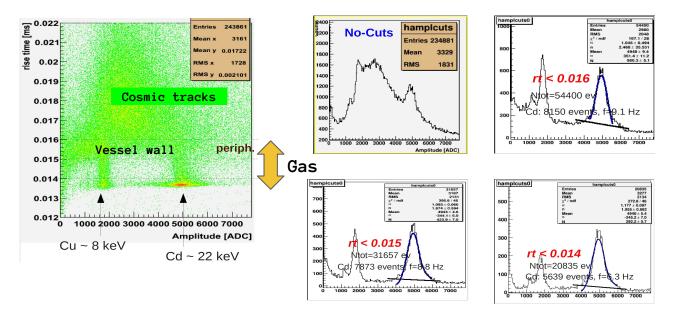
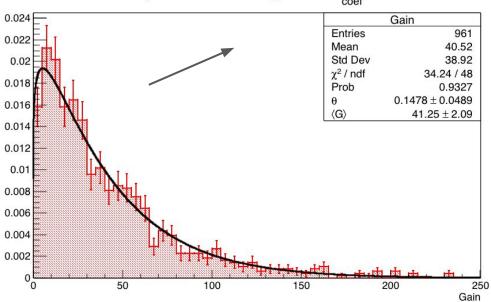

Capacitance ~ Electronic noise ~ Threshold ⁷⁰

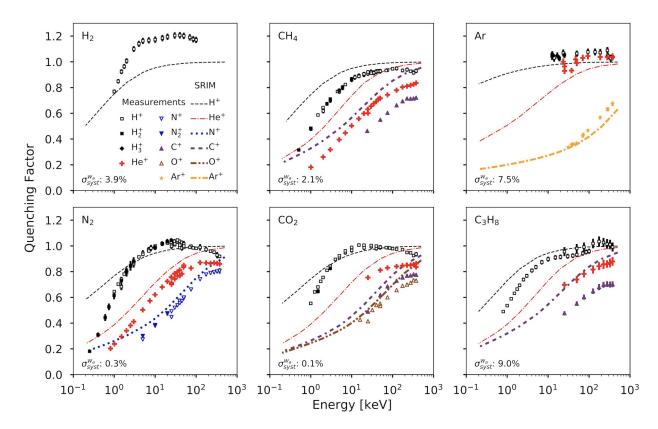
Illustration of particle identification – Background rejection

¹⁰⁹Cd source

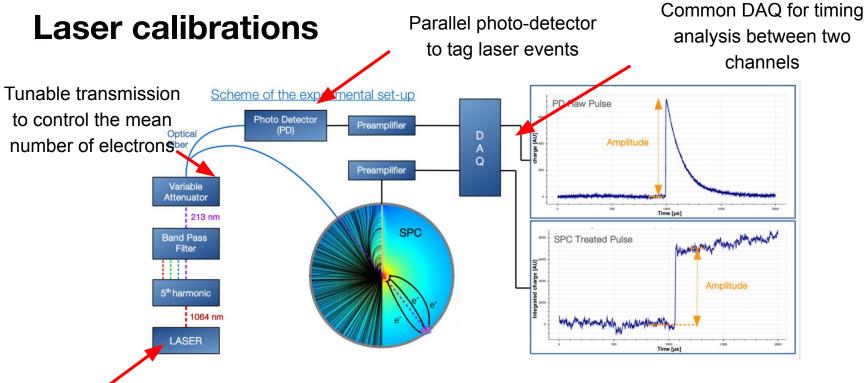
Irradiation through 200 μm Al window


P = 100 mb, Ar-CH4 (2%)

Efficiency of the cut in rt → ~ 70% signal (Cd line) Significant background reduction

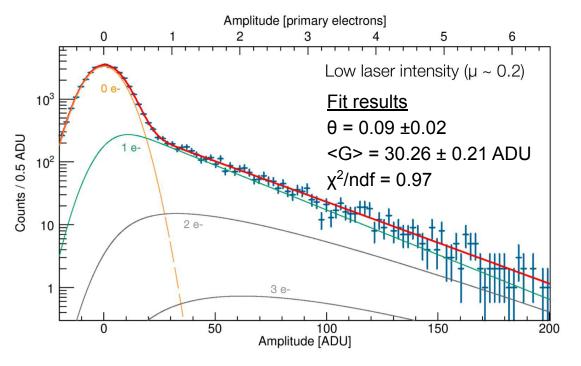

Single e- gain distribution

Conditions: Ne+0.7% CH4 3.1 bar HV=2520 V Anode Φ 6.3 mm

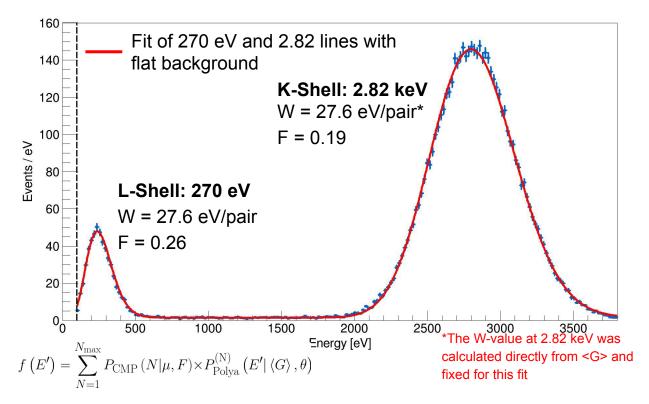


Single e- avalanche gain for P_{coef} =0.1

Ionisation qf vs ion energy vs SRIM


- Agreement with SRIM varies and depends on type, energy range, gas
- Reasonable agreement with N⁺ in N₂⁺, C⁺ and O⁺ in CO₂ over 10 keV.
- Comparable to the results for He+ in N₂, CO₂, Ar, and Ar+ in Ar over 10 keV.
- Below 10 keV SRIM predictions are higher than estimations

A powerful UV laser capable of extracting 100s of electrons 213 nm laser used to extract primary electrons from wall of SPC Photo detector in parallel tags events and monitors laser power Laser intensity can be tuned to extract 1 to 100 photo electrons

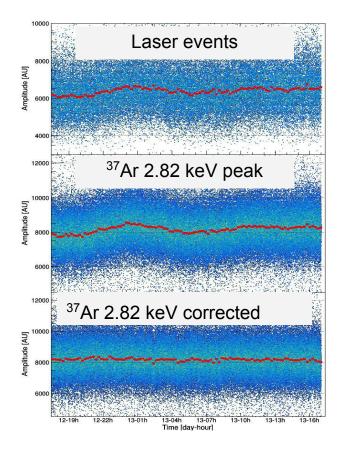

Modeling the Single Electron Response

Q. Arnaud et al. (NEWS-G Collaboration), Phys. Rev. D 99, 102003 (2019)

- N photo-electrons are extracted from the surface of the sphere: Poisson
- Each photo-electron creates S avalanche pairs: Nth convolution of Polya
- Sum the contributions of all N photo-electrons
- The overall response is convolved with a Gaussian to model baseline noise

Ar37 calibrations and gas fundamentals properties measurement

- Ar37 produced by irradiating Ca power with a high flux of fast neutrons
- Together with laser calibrations, can find W (mean lonization energy) with 1% precision for target gas, and set upper limits on F (Fano factor)


Detector response modeled:

 Primary ionisation (COM-Poisson)

D. Durnford et al, Phys. Rev. D 98, 103013 (2018)

• Avalanche (Polya)

Detector monitoring

The laser can be used to monitor the detector response during physics runs

Long-term fluctuations in gain can be caused by temperature changes, O_2 contamination, sensor damage...

Laser monitoring data could even be used to correct for long-term fluctuations Q. Arnaud et al. (NEWS-G Collaboration), Phys. Rev. D 99, 102003 (2019)