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What is an FPGA?
• Building blocks:


• Multiplier units (DSPs) [arithmetic] 

• Look Up Tables (LUTs) [logic] 

• Flip-flops (FFs) [registers] 

• Block RAMs (BRAMs) [memory] 

• Algorithms are wired onto the chip


• Run at high frequency - hundreds of MHz, O(ns) runtime


• Programming traditionally done in Verilog/VHDL


• Low-level hardware languages


• Possible to translate C to  
Verilog/VHDL using  
High Level Synthesis  
(HLS) tools
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• hls4ml is a software package for creating implementations of neural 
networks for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/


• arXiv:1804.06913


• Supports common layer architectures and model software, options for 
quantization/pruning


• Output is a fully ready HLS project


• pip installable


• Customizable output


• Tunable precision, latency, resources

3
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hls4ml Workflow
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hls4ml Customization
• Multiple different knobs to adjust design 

for desired performance/latency/resource 
usage


• Pruning


• Quantization


• Reuse

5

3-layer dense network  
for jet tagging


(details in backup)



Pruning
• Are all the pieces a given network 

necessary?


• Many techniques for determining 
“best” way to prune


• hls4ml naturally supports a method of 
successive retraining and weight 
minimization


• Use L1 regularization (penalty term 
in loss function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes 
multiplications by 0
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>70% initial 
weights 
removed



Quantization
• hls4ml uses fixed-point classes for all 

computations


• Precision can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Binary & Ternary neural networks take 
this to very low precision: [2020 Mach. 
Learn.: Sci. Technol]


• Quantization-aware training - QKeras + 
support in hls4ml: [arXiv:2006.10159]
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Reuse
• For lowest latency, 

compute all 
multiplications at 
once


• Reuse = 1 
(fully parallel) 
→ latency = # 
layers)


• Larger reuse 
implies more 
serialization


• Allows trading 
higher latency for 
lower resource 
usage
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Layer 1 Layer 2



Other hls4ml Highlights
• Large CNN support  

[arXiv:2101.05108]


• Good resource scaling


• Boosted Decision Trees:  
[JINST 15 P05026 (2020)]


• GarNet / GravNet:  
[arXiv: 2008.03601]
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Tutorials
• Tutorial series developed to 

introduce users to hls4ml, ML on 
FPGAs


• https://github.com/
fastmachinelearning/hls4ml-
tutorial


• Jupyter notebook-based


• Great way to learn about the 
tools capabilities


• Also a hands-on series (in-person 
/ virtual)
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BACKUP
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Inference on FPGAs
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Inference on FPGAs
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Example Network - Jet Tagging
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CNNs
• Special adjustments 

necessary to implement 
convolutional networks on 
FPGAs


• HLS struggles with very 
long (nested) loops


• hls4ml is now able to 
synthesize large CNNs with 
good resource scaling


• Further optimizations 
possible for lower latencies


• arXiv:2101.05108
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GarNet
• Graph networks have become 

very popular for complex 
geometric problems


• Iterative nature difficult for 
FPGAs


• Modified GarNet architecture 
implemented in hls4ml


• arXiv:2008.0360


• Model developed for HGCal 
cluster ID and energy 
regression


• Able to run in under 1 μs, fit 
within a single VU9P SLR
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