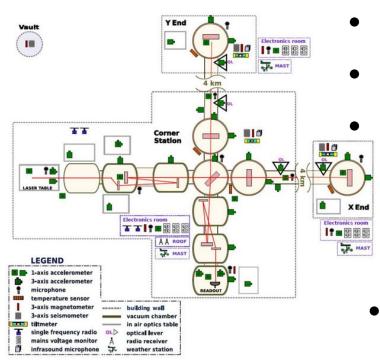
Deep Learning in the Cloud for Gravitational Wave Physics

Alec Gunny^{1,*}, Dylan Rankin¹, Jeffrey Krupa¹, Saleem Muhammed², Tri Nguyen¹, Michael Coughlin², Philip Harris¹, Erik Katsavounidis¹, Steven Timm³, Burt Holzman³

- * Presenter
- 1 Massachusetts Institute of Technology
- 2 University of Minnesota
- 3 Fermi National Accelerator Laboratory

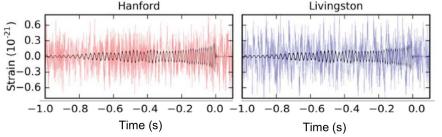
Gravitational Waves and LIGO



LIGO and Virgo Collaborations, CQG 33, 134001 (2016)

- Large scale astrophysical events cause distortions in spacetime known as gravitational waves
- Tiny amplitude of these distortions makes them difficult to detect

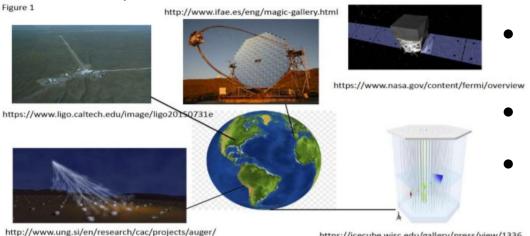
LIGO - pair of enormous interferometers that use destructively interfering lasers to measure perturbations in spacetime



- Measurement of distortion typically given by unitless quantity "strain", related to relative change in displacement of objects caught in the wave
- Inferred from intensity of photons detected as GWs distort laser paths and bring them in-phase

Noise, MMA, and Real-time requirements

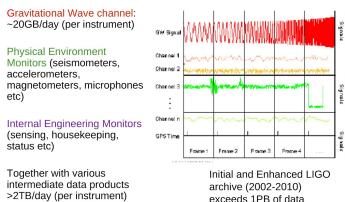
- Environmental noise can degrade the perfect destructive interference of the lasers
- Leads to spurious photon detection, leads to noisy strain measurements
- Makes it difficult to pick out signals with amplitude less than noise, limits detection range
- Auxiliary sensors measure noise for removal



https://icecube.wisc.edu/gallery/press/view/1336

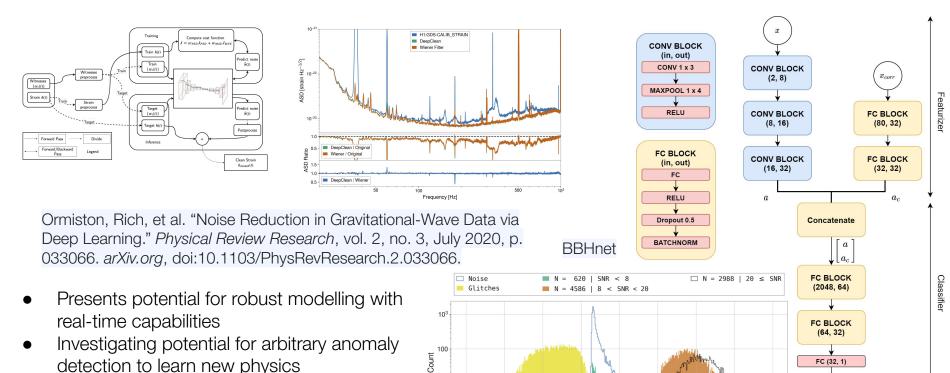
Gravitational-wave Detector Data

Continuous time series (1Hz, 128Hz ... 16kHz)



Multi-messenger astrophysics offers promising insights by comparing different cosmic messengers from same phenomena LIGO + VIRGO critical for detecting and locating events to alert other observers Noise subtraction and downstream algorithms need to work in real-time to capture as much data as possible during O4 data collection

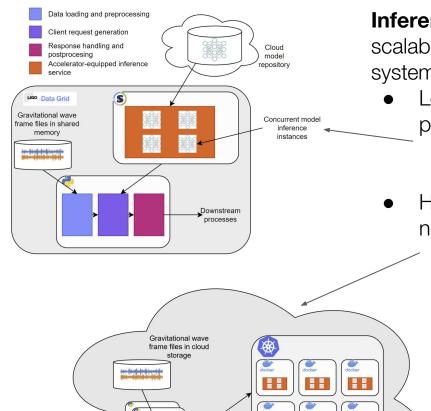
Deep Learning in Gravitational Wave Astronomy



NN Output

 $\hat{y} = \text{SIGMOID}(a_{out})$

Strong, efficient performance non-trivial to achieve

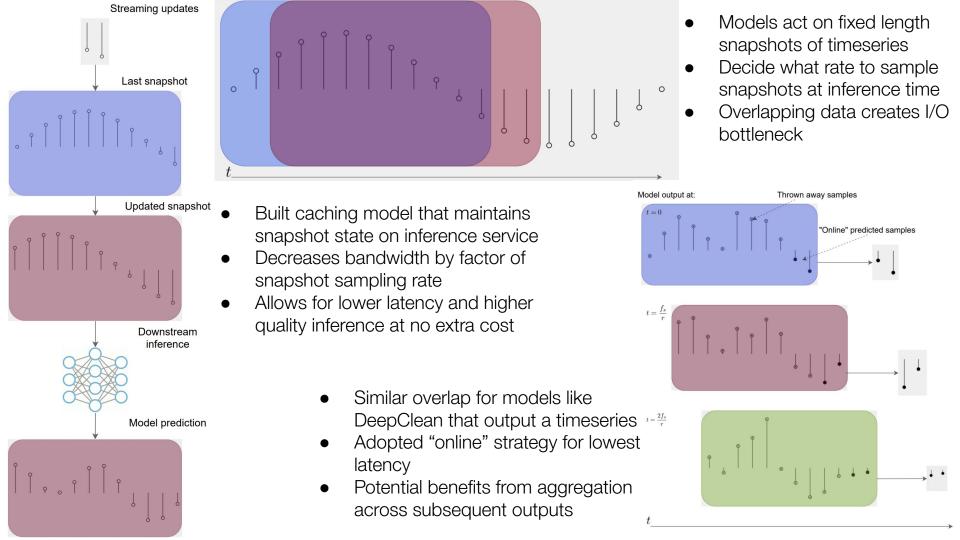


Downstream

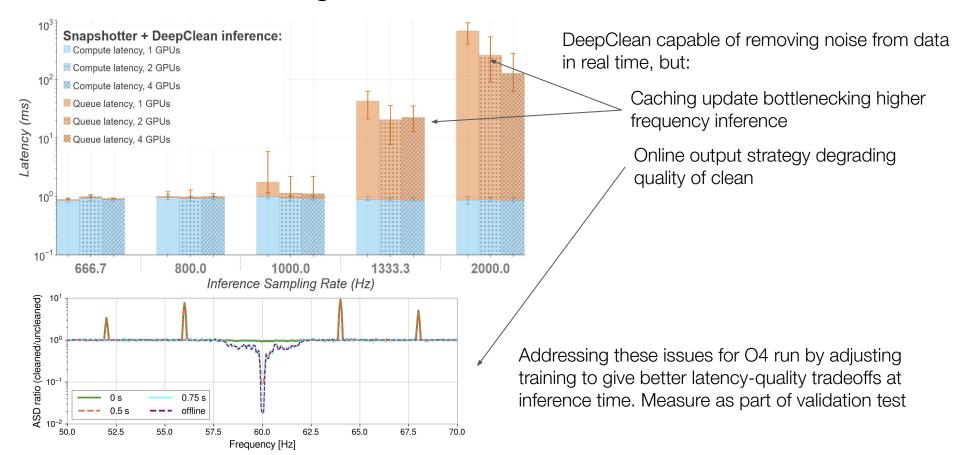
Cloud model repository

Inference-as-a-Service model enables and simplifies scalable, high-performance DL inference on heterogeneous systems in a variety of deployment scenarios

- Low-latency, "online" deployment for data preprocessing and MMA triggering
 - Deploy on local resources to minimize data loading and client-server I/O
 - High throughput, "offline" deployment for validating new models and searching for new physics
 - Deploy in cloud to take advantage of strong scaling and elastic availability of resources
 - Faster results -> faster iteration -> better ideas



Online data cleaning results



Offline cloud-based results

Large scale processing of data from O2 and O3 runs

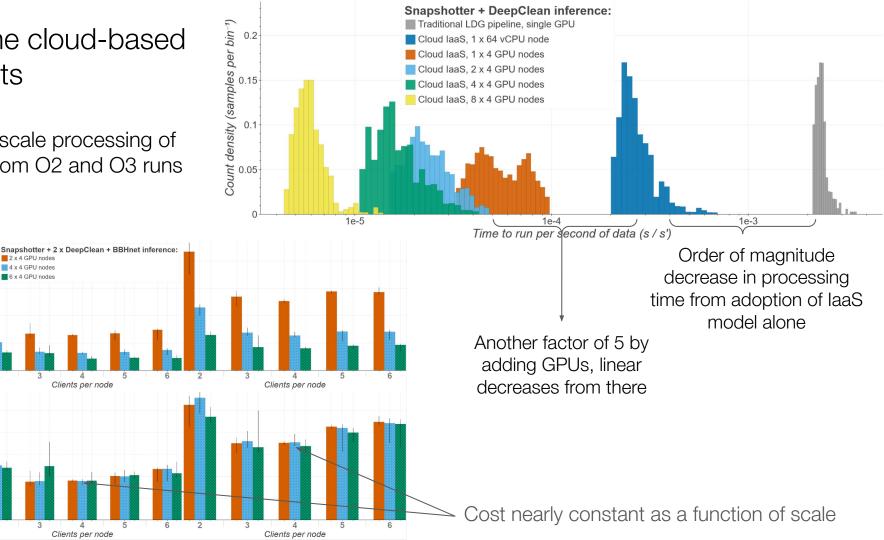
Clients per node

Clients per node

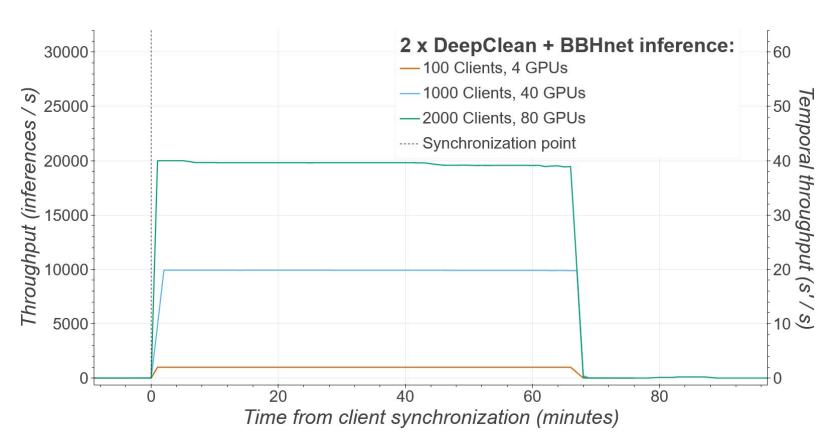
Time to run per second of data (s / s')

Cost ber second of data (Cost nuit / s') (Cost nuit / s') (Cost nuit / s') 2.0e-4

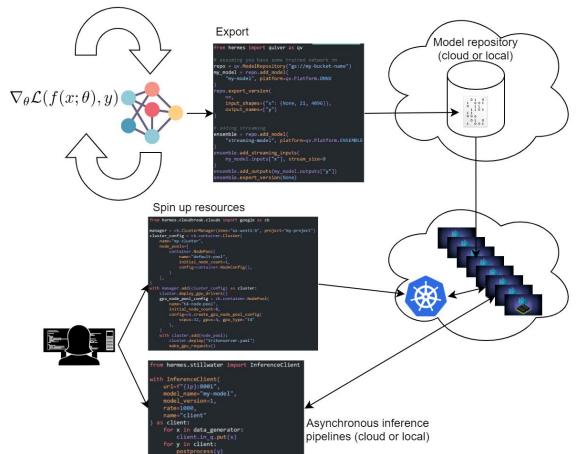
5.0e-4



HEPCloud - Scaling up even more



HERMES: Heterogeneous-Enabled Real-time Messenger Execution as-a-Service



Open sourcing end-to-end tools for building portable, robust inference-as-a-service pipelines

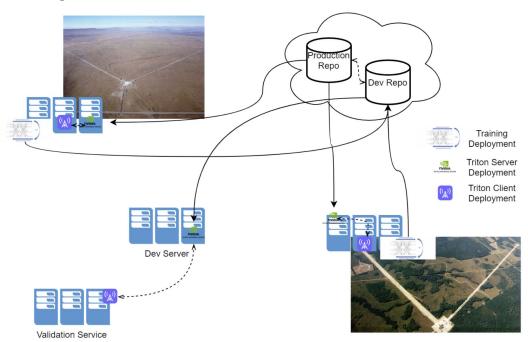
- Agnostic to deployment scenario
- Extensible
- Work-in-progress, welcoming development help!

Next steps

Short term:

- Researching and validating fixes to issues with online DeepClean deployment on large amounts of data
- Using BBHnet and anomaly detection methods to search for new events in O2 and O3 data

Longer term:



Production deployment of online DeepClean pipeline for O4 data collection

 Automated training and validation pipelines deployed on cloud

Thank you!