
Philip Harris, Jeffrey Krupa, Zhijian Liu, Patrick McCormack, Dylan Rankin, Simon Rothman (MIT)

Maria Acosta Flechas, Tejin Cai, Yongbin Feng, Ken Herner, Burt Holzman, Kevin Pedro, Steven
Timm, Nhan Tran, Michael Wang, Tingjun Yang (FNAL)

Miaoyuan Liu, Stefan Piperov (Purdue)

Javier Duarte (UCSD)

Chun-Yu Lin (NCHC)

Shih-Chieh Hsu, Elham Khoda, Alex Schuy (UW)

Services for Optimized Network
Inference on Co-processors
A3D3 kick-off meeting, November 9

• Tens of millions of channels
read @ 40 MHz

• Two tiers of trigger keep only
the most interesting collisions
(~1 in 40,000)

• These events are fully
reconstructed and written to
disk

• LHC experiments have
collected ~exabytes of
data, processed over ~600k
global CPU cores

CMS detector

2

Physics challenge

3

• The future presents significant challenges and opportunities

• Large effort underway to re-vamp algorithms at all levels

1. physics gains: what can we learn from more data?

2. computing: how can we best leverage co-processors?

• Computing at LHC experiments will outpace growth in CPUs

1. more segmented detectors with more channels

2. more collisions, higher trigger rate

3. high-latency algorithms

Computing challenge

4

Co-processors

5

• GPUs and other co-processors will play a roll in solving this

• We focus on as-a-service deployment

• Our work is to develop algorithms for HEP applications and
figure out how to scale them to production level

• A number of promising results have already been released

Stay tuned for more!

Neutrino experiments
HEP FPGAs (H2RC ’20)HEP GPUs

HEP FPGAs ResNet-50

https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
https://arxiv.org/abs/2010.08556
https://iopscience.iop.org/article/10.1088/2632-2153/abec21
https://link.springer.com/article/10.1007/s41781-019-0027-2

40 MHz 1 kHz

Radiation

Hard ASICs

100s Tb/s 10 Gb/s

Data flow

6

10 µs

Local FPGA  
boards

<500 ms

 

30k local CPU 
cores

~10 s

 

100k+ world-wide 
CPU cores

Level 1 Trigger High Level Trigger Offline reconstruction Analysis

40 MHz 1 kHz

Radiation

Hard ASICs

100s Tb/s

10 µs

Local FPGA  
boards

<500 ms

 

30k local CPU 
cores

~10 s

 

100k+ world-wide 
CPU cores

10 Gb/s

This work focuses on introducing algos
with heterogeneity in data taking+reco

Level 1 Trigger High Level Trigger Offline reconstruction

Data flow

7

Analysis

DL (+GPUs) is
often done on a

user-specific
basis

Talking to GPUs

CPU
Node

CPU
Node

FACILE
Server

ResNet
Server

Tracking

Server

FPGA

FPGA

GPU

GPU

GPU

CPU
Node

CPU
Node

CPU
Node

CPU
Node

GPU

GPU

… directly
… as a service

Communicating with coprocessors as a service:

1. Integrates coprocessors within existing experimental software frameworks

2. Removes burden of coprocessor/algorithm-specific code

3. Heterogeneous friendly

• Can flexibly configure coprocessor type, number of coprocessors per server, …

• Many coprocessors to choose from

4. Leverages highly optimized inference tools developed by industry

Considerations: added network load, load balancer, sufficient algorithm speedup

CPU
Node

CPU
Node

GPU

GPU

eg 32k cores → 1k servers, 1k GPUs

GPUs=?

8

• Integrates as-a-service requests into
experimental workflows

• Formats event data for algorithm input

• Makes non-blocking, asynchronous requests

• Thread is free to do additional processing

• Works with any coprocessor

• Integrated into CMS software

• Containerizes ML frameworks

Services for Optimized Network Inference on Coprocessors
SONIC

9

Use NVIDIA triton inference server for
GPU + Customized GCP Kubernetes

Wrote our own FPGA

gRPC inference server

Client 
(eg. CMS node)

Coprocessor 
(eg. FPGA, GPU, …)Server

(eg. Cloud machine)

PCIe

gRPC

gRPC

• For fast inference we focus on remote procedure call (gRPC) protocol

• Triton inference server for inference on NVIDIA GPUs

• Developed custom FPGAs-as-a-Service Toolkit (FaaST) for FPGA

1. Client formats inputs and
sends call to server

3. Coprocessor runs
the inference and
returns the result

2. Server receives request
and schedules inference
on coprocessors

Tools

10

SONIC
Services for Optimized Network Inference on Coprocessors

HCAL algorithm

11

• FACILE: Fast Calorimeter Learning

• Performant (especially at low energy)

• 2 ms GPU latency

• Nominal algorithm takes 60 ms (10% of online budget)

FACILE
NOMINAL

12

We deployed up to 2k High Level Trigger jobs in Google Cloud

1. 10% reduction in HLT time with HCAL reconstruction latency

2. No increase in latency until ≥300 HLT instances (GPU)

We are currently planning a much larger test

Mahi (CPU)

HLT scaling test

13

We ran a similar test on FPGAs in the cloud

1. Bare latency very low (~70 μs)

2. Bandwidth into FPGA server (not throughput) limited at 25 Gbps

3. Hardware saturation point is ~5000 CPUs!

HLT scaling test

Mahi (CPU)

14

Envisioned usage

GPUCPU

Our setup

GPU

ServerCPU

Limited to the number

of cores locally

CPU

CPU
GPU supports

many

Setup Max
Throughput

Local GPU

+ 128 cores 100-200 ev/s

Current

as-a-service 600 ev/s

Ideal

as-a-service 1000 ev/s

Patatrack

• Currently there is a GPU based tracking for pixels in CMS

• Plan is to use this non-AI based algo for running in 2022

• We took this existing code and ran it as-a-service

15

Offline scaling test
• Scope of DL offline is increasing

• Fraction of offline computing time

• Size and complexity of algorithms

• We ported the three most significant DL algorithms aaS

P. McCormack

16

Offline scaling test

Deployed 10k CPU cores with servers hosting ~100 T4 GPUs

1. Throughput increases by 12% compared to CPU inference

2. Models are spread in optimal ratio across GPUs

3. Bandwidth into servers up to 12 GiB/s

We plan to scale to a 40k CPU test for production-level test

CPU benchmark

P. McCormack

17

Porting in progress

Particle Flow (MLPF) 2101.08578

• There are efforts underway to port DL algorithms into SONIC

• Easy to use with low code burden

Clustering: Graph NNs for HGCAL

Dynamic reduction
network for EGamma
regression

S. Rothman

• ProtoDUNE is a testbed for the Deep Underground Neutrino Experiment

• 2/3 of the reconstruction latency is from EmMichelTrackId algorithm

• 2D CNN classifies electron as a track, shower, or Michel electron

ProtoDUNE

18

Deploying to GPUs as a service reduces algorithm latency by 17x

1. Hardware efficient (70 CPU served by single GPU)

2. Related to trigger efforts at DUNE

3. Stay tuned for new result

ProtoDUNE

19

Summary+outlook

20

• As we scaled up our studies we’ve gained experience in a number of areas:

• This resulted in a large technical toolkit (SONIC, hls4ml, FaaST, …)

• Operating at very high bandwidths (100+ Gbps), across regions

• Effectively scaling server resources and configurations to meet demand

• Optimizing complex workflows, including on GPUs and FPGAs

• The challenges and opportunities of cloud resources

• Many of these have been lessons shared through collaboration with MMA,
neutrino physics, and neuroscience

• We are working our way up to validate our approach by emulating a full-
scale LHC data centre test

• We will continue to leverage local resources and HPCs

Thank you and stay tuned for upcoming results!

Backup

21

• We integrated FACILE into CMS software

• HCAL reconstruction performed on GPUs+FPGAs as-a-service

• User writes a simple producer in c++ (no CUDA)

• FACILE is simple and has fewer than 100 lines of code

• Works with either GPUs or FPGAs

Integrating into CMSSW

22

https://github.com/fastmachinelearning/cmssw/blob/hcalreco-facile-squash/RecoLocalCalo/HcalRecProducers/src/FacileHcalReconstructor.cc

• For global reconstruction, can we use Cloud resources?

• We explored the outer boundaries by doing a long-distance,

high-throughput test with 2k Tier 2 cores (goal=10 Gb/s from MIT
to Google Cloud in Iowa)

• Also developed fallback server for local operation of models

Hardware

23

High bandwidth test

network limitNo network limit
Limit is GPU throughput

• Throughput scales linearly with number of GPUs

• Throughput is stable 60-70 Gb/s (no special links)

• Far exceeding any realistic use case (offline reco = 10 Gb/s)

• Custom Kubernetes server: 24 GPUs behind a single IP
2007.10359

24

25

Client

Server

Network

Client sends request
over network

The number of connected GPUs/FPGAs is
scaleable; each has an instead of each model

Many model formats
(TensorFlow,

Pytorch,
TensorRT,…)

Models are stored in
local repository

Server receives
request

Server queues and
schedules request

Output monitoring
information

Triton inference server

FACILE details

η φ depthgain TS0 TS1 TS2 TS3 TS4 TS5 TS6 TS7

Etruth

4 dense layers

~5k parameters

LeakyReLU activation

Preprocessing: tower one-hot-encoded

FACILE

26

Architecture

CPU (interactive FNAL) 8-15 ms

GPU (Nvidia V100) ~2 ms

FPGA (Alveo U250) ~0.2 ms

Gain on GPU/FPGA ~25x (GPU)

~50x (FPGA)

Batch size 16000

• Offline reconstruction workflow reaches 12 Gbps

Cloud bandwidth

27

