

[Approaches to Analyze Behavior] Sparse Semi-Supervised Action Recognition with Active Learning

Presenter: Jingyuan Li {jingyli6@uw.edu}, Faculty Advisor: Eli Shlizerman {shlizee@uw.edu} NeuroAl Shlizerman Lab Electrical and Computer Engineering Department

Background and Motivation

Action Recognition

Image Source: https://www.vectorstock.com/royalty-free-vector/girl-runcycle-animation-sequence-loop-animation-vector-26206917

Application of Action Recognition

Robotic Surveillances

Wildlife Monitoring

Action Evaluation

Image Source: Left: Boston Dynamics Middle: https://www.conservationnw.org/our-work/wildlife/wildlife-monitoring/ Right: <u>https://pythonawesome.com/multi-person-real-time-action-recognition-based-on-human-skeleton/</u>

Skeleton Based Action Recognition

Skeleton Data Sources

Motion Tracking with Marker J.L. Jimenez Bascones et al., 2019

Human motion video with skeleton Zhe Cao et al., 2017

Animal motion video with skeleton Alexander Mathis et al., 2018

Advantageous for skeleton based action recognition:

- Reducing interference from the background
- Learning dynamics movement

Earlier Methods on Prepared Dataset

- Supervised Learning:
 - -> Achieving high performance with a large labeled dataset.
- Semi-Supervised Learning:

-> Achieving reasonable performance with partially randomly labeled data.

What is Active Learning (AL)

"Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs"

Methods

1. 'Cold Start' in AL

- 2. Semi-Supervised Training for Action Recognition
- 3. Selection with Partially Labeled Dataset

Methods

Cold Start' in AL Semi-Supervised Training for Action Recognition Selection with Partially Labeled Dataset

'Cold Start' in Initial Selection

• None of the samples is labeled at initial selection.

'Cold Start' in Initial Selection

- None of the samples is labeled at initial selection.
- Quality of initial selection affects future selection.
 - Bad initialization can lead to wrong class boundary.

'Cold Start' in Initial Selection

Solve the 'Cold Start' Problem

• Embeddings from unsupervised regeneration shown to form meaningful embedding space

Kun Su, Xiulong Liu, Eli Shlizerman 2020., PREDICT & CLUSTER: Unsupervised Skeleton Based Action Recognition

Solve the 'Cold Start' Problem

• Clustering samples in the embedding space

Jingyuan Li, Eli Shlizerman 2020., Iterate & Cluster: Iterative Semi-Supervised Action Recognition

Embedding Clusters

Solve the 'Cold Start' Problem

- Clustering samples in the embedding space
- Selecting samples closest to cluster centers

Embedding Clusters

Methods

1. 'Cold Start' in AL

- 2. Semi-Supervised Training for Action Recognition
- 3. Selection with Partially Labeled Dataset

Semi-Supervised Learning with Partially Labeled Samples

Training with loss: $L_{re} + L_{cla}$

Two Representations

Methods

'Cold Start' in AL Semi-Supervised Training for Action Recognition

3. Selection with Partially Labeled Dataset (Distance & Uncertainty)

Selecting According to Distance

• Step 1: Form clusters in embedding space.

Selecting According to Distance

- Step 1: Form clusters in embedding space.
- Step 2: Measure the distance of unlabeled samples to the labeled samples within the same cluster with predicted class probability.

Selecting According to Distance

- Step 1: Form clusters in embedding space.
- Step 2: Measure the distance of unlabeled samples to the labeled samples within the same cluster with predicted class probability.
- Step 3: For each cluster, select a subset of samples with the largest distance.

Selecting According to Uncertainty

- Step 1: Form clusters in embedding space.
- Step 2: Measure the distance of unlabeled samples to the labeled samples within the same cluster with predicted class probability.
- Step 3: For each cluster, select a subset of samples with largest distance.
- Step 4: Among the subset of samples, choose samples with the largest entropy.

Selection According to Distance & Uncertainty

- Step 1: Form clusters in embedding space.
- Step 2: Measure distance of unlabeled samples to the labeled samples within the same cluster with predicted class probability.
- Step 3: For each cluster, select a subset of samples with largest distance.
- Step 4: Among the subset of samples, choose samples with the largest entropy.

Jingyuan Li, Eli Shlizerman 2020., Iterate & Cluster: Iterative Semi-Supervised Action Recognition

Experiments

Datasets

 Pick up with two hands
 Doffing

UWA3D 30 Classes

NW-UCLA 10 Classes

NTU RGBD 60 Classes

Compare with Semi-supervised and other AL Methods

UWA3D VIEW3					NW-UCLA				NTU RGB+D 60 Cross Subject							
	% Labels	5% 25	10%	20%	50% 250		% Labels # Labels	5% 50	$15\% \\ 150$	30% 300	40% 400		% Labels # Labels	1% 400	2% 800	$5\% \ 2K$
	C	18.3	21.9	32.1	44.3		C RC	44.6 51.5	56.0 63.1	70.9 77.0	72.9 76.7		C MS ² L[14]	21.8 33.1	37.2	49.6 _
SSL	RC IRC	19.5 20.0	30.0 36.4	26.9 37.6	46.3 51.1	SSL	ASSL[26] RIC	52.6 56.2	74.8 70.5	78.0 73.5	78.4 81.0	SSL	RC IRC	33.8 36.7	41.6 42.7	47.8 53.9
AL(our)	SESAR-DIS SESAR-U SESAR-CS	18.5 21.8 26.9	29.2 31.3 37.1	40.9 41.0 41.2	55.6 55.8 55.8	AL(our)	MS ² L[14] SESAR-DIS SESAR-U SESAR-CS	55.3 62.7 63.9	73.3 74.0 71.5	80.3 77.9 77.5	83.3 80.3 82.3	AL(our)	ASSL[26] SESAR-CS SESAR-DIS SESAR-U	- 17.6 34.9 36.1	- 23.1 39.5 42.5	57.3 37.0 53.8 53.9
AL+K(our)	SESAR-KT SESAR-KJS	22.8 28.3	34.6 36.0	51.8 49.5	58.8 59.5	AL+K(our)	SESAR-KJS SESAR-KT	58.1 63.6	76.6 76.8	80.0 77.2	85.0 78.9	AL+K(our)	SESAR-KJS SESAR-KT	38.2 41.8	45.0 46.1	57.8 55.0

Table 1. Performance of different semi-supervised approaches (top), SESAR with STOA AL methods (middle) SESAR with AL+K methods (bottom) on UWA3D dataset.

Table 2. Performance of different semi-supervised approaches (top), SESAR with STOA AL methods (middle) SESAR with AL+K methods (bottom) on NW-UCLA dataset.

Table 3. Performance of different semi-supervised approaches (top), SESAR with STOA AL methods (middle) SESAR with AL+K methods (bottom) on NTU RGB+D 60 dataset.

10% 4*K* 56.7 **65.2** 60.0 61.2 64.3 49.6 60.4 60.4 60.8 62.9 58.2

Learning to Form Clearer Clusters

2D latent embedding (with t-SNE) for UWA-3D dataset across three training iterations.

Label requirement to achieve 80% accuracy on UWA-3D dataset.

Application: GUI DeepLabCluster

Application

Welcome Manage Project Cluster Data Iterative Action Recognition							
DeepLabCluster - Step 1. Create a New Project or Load a Project							
Please choose an option: ● New Project ○ Load Project							
Project Name:							
Keypoints Data:	Load Keypoints Data						
Choose Training Videos List File:	Choose Training Videos List						
Optional Attributes							
□ Select the directory where project will be created Browse							
Help	Reset Edit Config File	Ok					

Application

Welcome Manage Project	Cluster Data Iterative Action Recognition	ion		
DeepLabCluster - Step 2. Fo	orm Data into Clusters (Train Predict&C	luster Net)		
Update Cluster Map Every (Epochs) Save Clus	ter Map Every (Epochs)	Maximum Epochs	
1	: 100		<u>.</u> 10	•
Help	Start Clustering	Stop Clustering	Reset	Go to Action Recognition
20 15 10 5 0 -5 20 Cluster Ma 20 20 20 20 20 20 20 20 20 20	ap Epoch 9			
-10 -10 0	10 20			

Application

Welcome Manage Project Cluster Data Iterative Action Recognitie DeepLabCluster - Step 3. Iterative Action Recognition with Sample	on d Annotation			
Selection Method kmi	v	# Samples per 1	Selection	
Save Selection	Load videos Replay >Nex		Class name drinking eating grooming hanging heading rearing resting walking	Perform Action Recognition Stop Action Recognition Next Selection Reset Help

Thanks!