Status GEM Detectors
Dmitri Schaab / Bernhard Ketzer

COMPASS/AMBER Technical Board
08.02.2022
COMPASS GEM-3G (CG3G)

• Size of active area: 30.7 × 30.7 cm²
• Strips divided in center to reduce occupancy
• Triple GEM, foils sectorized on top (13 sectors)
• No spacer grids
• Gas in/out on drift plate, internal distribution

• Stabilized voltage divider: 3 +1 cards
• 6 × 4 front-end cards, 4 supply cards (bus cards)
Status of detector parts (drift foils + GEMs + R/O-foils)

- CERN Batch 1: shipped 20.10.2020
 - 6 GEM foils (2μm Cu) ⇒ 1 bad (high current), 5 good
 - 3 drift foils (2μm Cu) ⇒ 3 good
 - 2+1 R/O foils ⇒ 3 good
- CERN Batch 2:
 - 10 GEM foils (2μm Cu), shipped 30.8.2021 ⇒ 1 bad (high current), 7 good, 2 not yet tested
 - 2 drift foils (2μm Cu), shipped 30.8.2021 ⇒ 2 good
 - 2+1 R/O foils, shipped 27.10.2021 ⇒ 2 good, 1 bad (known)
- CERN Batch 3: ordered ⇒ to be finished by end of February
 - 7 GEM foils (minor design improvements)
 - 1 drift foil
 - 1 R/O foil

- **GEMs:** 12 good + 2 unknown + 7 ordered ⇒ ≥6 detectors
- **Drift:** 5 good + 1 ordered ⇒ 6 detectors
- **R/O:** 5 good + 1 ordered ⇒ 6 detectors
Status of Production

- **Honeycomb plates** (Piekenbrink)
 - Batch 1a: 2 drift plates, 2 R/O plates (potted, bent) ⇒ re-treated, flattened
 - Batch 1b: 2 R/O plates (GFK frame) ⇒ good
 - Batch 2: 2 R/O plates, 2 drift plates, ⇒ good
 - Batch 3: ordered 2 sets of R/O and drift plates

- **GEM frames** (local workshop):
 - full frame sets for 3 detectors available (drift, transfer, induction)
 - 10 parts for 2.5 transfer frames available
 - spare material for segmented frames available
 - ordered material for 10 drift frames + 20 transfer/induction frames

 ➢ **Currently**: Material for 5 detectors total (incl. backup material)
 ➢ **Mid March** (supply bottlenecks): Material for ≥8 detectors total

- **QA improved**: intersegment test automated (J. Paschek)
- **Production database** set up for COMPASS (taken over from ALICE / P. Glässel)
Database for Production

- Stock keeping integrated
- QA steps/files included
- Trackable construction chain
Status of Stabilized Voltage Divider (SVD)

- Single channel stabilized voltage divider (test):
 - 3 PCBs in use, one as Passive Voltage Divider (PVD)
 - Calibration done ⇒ voltage measurement working
 - Next Step: Test with detector ⇒ measure gain stability (B. Roth/Bachelor)
 - 5 more PCBs ordered ⇒ to be assembled

- Detector scale stabilized voltage divider
 - updated version with minor fixes ready to be ordered, once needed
 - HV cable between SVD boards ⇒ flex PCB (prototypes available)

- Passive voltage divider (PVD)
 - New PCBs in use, a few spare PCBs available

- Measurements / simulations with SVD/PVD ongoing
 - results expected by end of February (C. Honisch, B. Roth)

- See also: Talk on SVD by C. Honisch - RD51-Meeting 07.02.2022
Status of detector production

<table>
<thead>
<tr>
<th></th>
<th>Support plates</th>
<th>Frames</th>
<th>Drift foil</th>
<th>GEM foils</th>
<th>Readout PCB</th>
<th>HV board</th>
<th>Assembly</th>
<th>Calibration</th>
<th>Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG3G01</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>SVD</td>
<td>✓</td>
<td>✓</td>
<td>Prototype</td>
</tr>
<tr>
<td>CG3G02</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>PVD</td>
<td>GAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG3G03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG3G04</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG3G05</td>
<td>ordered / spare material</td>
<td>✓</td>
<td>ordered / spare material</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembly steps:
- QA: quality assurance
- G1, G2, G3: GEM i framed
- RO: R/O PCB glued
- D: drift foil glued
- S1, S2, S3: stack i glued
- DET: detector assembled
- GAS: gas pipes + tight
- HV: HV board assembled

Stations to be replaced for 2022: GM05, GM08 (GM04?)

Installation: April/May 2022
Front-end and readout electronics

- **Front-end cards (APV):**
 - APVs available for all detectors
 - 56 cards ready and tested (24 per det., 2 at TUM)
 - Components and PCBs for 100 cards available, some delay in assembly

- **Supply cards (bus cards):**
 - 2 produced and being tested (at TUM) / 6 PCBs in production \(\Rightarrow\) PCB + stencil + components available
 - bugfix for new PCBs: capacitor too high \(\Rightarrow\) add cut-outs
 - mating test with connectors to APV FE needs to be done \(\Rightarrow\) then ready to be assembled.

- **ADC cards:**
 - 2 produced, 1 working (at TUM), tested with IFTDC
 - 3rd assembled (solder process optimized) \(\Rightarrow\) to be tested by I. Konorov
 - after successful test: assemble more PCBs / PCBs + components still to be provided
 - components for 10-15 cards available, 2 per det. needed, delay in assembly (Covid)
 - full system test with APV to be performed at CERN (DAQ lab)
 - 9 IFTDC cards produced
 - ADC firmware ported to Artix FPGA (S. Huber) / Slow control implemented in config_server (V. Frolov)
AMBER PRM readout requirements

Starting point: 30x30 cm² with divided strips and active central sector / self-triggering VMM

- Readout of all 4 sides (1 detector)
- 768 channels per side (1 detector)
- 2 detectors per station in 6 stations

Requirements

- number of channels per projection: 2x768 = 1536
- number of projections per station: 4
- number of stations: 6
- number of bits per hit: 38 raw from VMM / 48 with additional time stamp
- in progress: amount of information produced by one projection for nominal PRM beam
 (conditions in streamed mode ⇒ noisy hits + induced by charged particles)