Status of the new GEM stations

Dmitri Schaab
19.07.2022

COMPASS GEM-3G (CG3G)

- Size of active area: $30.7 \times 30.7 \mathrm{~cm}^{2}$
- Triple GEM
- Strips divided in center to reduce occupancy

On-detector electronics

- voltage divider (PVD): $3+1$ cards
- $6 \times 4=24$ APV front-end cards
- 4 supply cards (bus cards)

Status of detector production

	Support plates	Frames	Drift foil	GEM foils	Readout PCB	HV board	Assembly	Calibration	Installation
CG3G01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	SVD	\checkmark	\checkmark	Prototype
CG3G02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	PVD	\checkmark	\checkmark	@GM11 test pos.
CG3G03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	PVD	\checkmark	\checkmark	@GM11 test pos.
CG3G04	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	PVD $300 \mu m$	\checkmark	\checkmark	
CG3G05	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	PVD $300 \mu m$	\checkmark	\checkmark	

Assembly steps:

- QA: quality assurance
- G1, G2, G3: GEM i framed
- RO: R/O PCB glued
- D: drift foil glued
- S1, S2, S3: stack i glued
- DET: detector assembled
- GAS: gas pipes + tight
- HV: HV board assembled

Stations in question be replaced for 2022: GM05, GM08, GM04
test positions: @GM11 | between GM09 and GM10

1. Station

R/O electronics / DAQ tests

- initial tests w/ detector dummy (just r/o foil) @clean area
- fully assembled with electronics
$\rightarrow 24$ APVs, 4 SupplyCards, $2 x$ (TDC+ADC), 1MUX
- integrated to standalone DAQ (V. Frolov)
- connection to all APVs established (V. Frolov)
- APVs send data on trigger signal
- signal polarity issue solved on FPGA firmware
(S. Huber / I. Konorov)
- tests w/ CG3G detectors @clean area
- communication tested / data rate confirmed
- power consumption checked after LOAD command
$>\sim 5 \mathrm{~A}$ per detector (3.3V APV supply)

~ちA per detector (3.3V APV supply)

Installation

- preparation @Bonn
- detector mechanics
- detector electronics
- cables: HV / Data
- APV functionality test
- preparation while @CERN
- cables/cable trees: LV (ADC/TDC, SupplyCards)
- thread adaptors M3-M4 for mounting frame

- detector shielding
- shielding foil: aluminized PET-foil ("Mylar")
- ROHACELL (solid foam) frame
- installation
- @GM11 position
- due to bigger dimensions of shielding frame
- GM11 mounting structure does not fit
- UV detector installed downstream(!)
- holding structure to be adopted

Low voltage / center segment control

- Low Voltage R\&S NGP800
- one module (4ch) - supplying full station ...
- 1 ch: 4 ADC/TDC-cards
- $2 \mathrm{ch}: 2$ detectors (8 SupplyCards/48APVs)
- 1 ch: 2 center segment controls (new)
- issue with OVP when sense wires connected

$>$ solved by firmware update (Karl/Christophe)
- integrated to DCS (Karl/Christophe)
- center seg. switch box / ETH484-modules replaced by ...
- single Bourndy connector
- remote control via NGP800 CH2 - in DCS

Low voltage / center segment control

- Low Voltage R\&S NGP800
- one module (4ch) - supplying full station ...
- 1 ch: 4 ADC/TDC-cards

- 2 ch: 2 detectors (8 SupplyCards/48APVs)
- 1 ch: 2 center segment controls (new)
- issue with OVP when sense wires connected
> solved by firmware update (Karl/Christophe)
- integrated to DCS (Karl/Christophe)
- center seg. switch box / ETH484-modules replaced by
- single Bourndy connector
- remote control via NGP800 CH2 - in DCS

Test positions

2. Station

Optimization $-2^{\text {nd }}$ station

preparation @CERN \rightarrow preparation @Bonn

- cables/cable trees: LV (ADC/TDC, SupplyCards)
> cable trees ordered at local e-workshop
- thread adaptors M3-M4 for mounting frame
> manufactured by local workshop
- detector shielding
- shielding foil: aluminized PET-foil ("Mylar")

$>$ designed \rightarrow laser cut / ext. company
- ROHACELL (solid foam) frame
$>$ in progress - local workshop

Electronics $-2^{\text {nd }}$ station

- SupplyCards
- ready for $2^{\text {nd }}$ station (except $0.150 h m s$ res.)
- APV boards

- except for APV chip - fully assembled
- bonding of APVs ongoing
- amount >10 ready (~ 40 missing)
- bonding priorization for ATLAS
> hard to get time estimation ~ mid/end August
- voltage divider (PVD)
- material budget: $300 \mu \mathrm{~m}$ PVD boards (1.6 mm for $1^{\text {st }}$)
- mechanical instabilities noticed (J. Paschek)
$>$ partial delamination of tracks after soldering

$>$ electric instabilities at measurements

Data acquisition (GM11)

Mapping

electronics mapping

- APV \rightarrow connector pin \rightarrow ADC input ch \rightarrow FPGA firmware ch
geographic mapping
- geographic location / orientation $\rightarrow \mathrm{APV}$ id \rightarrow ADC port \& FPGA firmware ch \& MUX port \& source ID

Mapping

electronics mapping

- APV \rightarrow connector pin \rightarrow ADC input ch \rightarrow FPGA firmware ch geographic mapping
- geographic location / orientation $\rightarrow \mathrm{APV}$ id \rightarrow ADC port | FPGA firmware ch | MUX port | source ID

DAQ

- First station @GM11 fully equipped
- 2 x (24 APVs, 4 SupplyCards, 2 ADC/TDC-cards)
- 4 fibers connected to MUX (sID 770) - ports 7,8 / 9,10
- data stream on udp://239.255.43.21:45454
- APV mode 0×29 - e.g. readout with 40 MHz

Data decoding

- gemMonitor
- changes due to slightly different data format
(I. Konorov / B. Ketzer)
- mapping implemented to config file (H.Pekeler/D.Schaab)
- faulty data
$>$ sync pulses ("tick marks")
$>$ should not appear when triggered
$>$ should not be seen in decoded data (in gemMonitor)
- suggestion: decoding error on detector hardware level
- task force GM11 \rightarrow next MD (20.07.22)
- tuning of APV chip configuration
- check clock / trigger / offset / phase shift
- also: ramp up HV

gemMonitor GUI

APV25-S1 data format (illustrated)
off-topic

PGEM issues

PGEM - GP03 occupancies

GP03P2__Occupancy

GP03P1 \qquad Occupancy

since ~2018.. 2021

PG03 - TCS phase

- different s-curves on TCS phase
- groups of 4APVs connected to same ADC port
> different latencies / different amplitudes
- possible suggestions
- BusCard
- ADC transition card (replaced last year)
- LV powering (Deutronics - not to be touched)

TCS phase Ratio02, GP03P1, chips: all

PG03 - approaches

> adjust latency (today, M. Hoffmann)
> replace Deutronics by lab power supply
> ADC transition card

- replace by spare (?)
- repair old one
> replace detector

Thanks for

your
attention

Status of detector parts (drift foils + GEMs + R/O-foils)

- CERN Batch 1: shipped 20.10.2020
-6 GEM foils $(2 \mu \mathrm{~m} \mathrm{Cu}) \Rightarrow 1$ bad (high current), $5 / 6$ good
-3 drift foils $(2 \mu \mathrm{~m} \mathrm{Cu}) \Rightarrow \mathbf{3} / \mathbf{3}$ good
$-2+1$ R/O foils $\Rightarrow 1$ repaired (strip short), $3 / \mathbf{3}$ good
- CERN Batch 2: shipped 30.8.2021
- 10 GEM foils $(2 \mu \mathrm{~m} \mathrm{Cu}), \Rightarrow 1$ (bad \rightarrow recovered by HV cleaning), $\mathbf{1 0 / 1 0}$ good
-2 drift foils $(2 \mu \mathrm{~m} \mathrm{Cu})$, shipped $30.8 .2021 \Rightarrow \mathbf{2 / 2}$ good
$-2+1$ R/O foils, shipped $27.10 .2021 \Rightarrow 1$ bad (known), $\mathbf{2} / \mathbf{3}$ good
- CERN Batch 3: delivered 13.04. (delay > 1 month)
-7 GEM foils (minor design improvements)
- 1 drift foil
- 1 R/O foil
$>$ GEMs: 15 good +7 not tested $\Rightarrow \geq 6$ detectors
\Rightarrow Drift: 6 good $\quad \Rightarrow 6$ detectors
$>$ R/O: $\quad 4$ good +1 repaired +1 not tested $\Rightarrow 6$ detectors

Status of local production (support structures + QA)

- Honeycomb plates (Piekenbrink)
- Batch 1a: 2 drift plates, 2 R/O plates (potted, bent) \Rightarrow re-treated, flattened
- Batch 1b: 2 R/O plates (GFK frame) \Rightarrow good
- Batch 2: 2 R/O plates, 2 drift plates, \Rightarrow good
- Batch 3: 2 sets of R/O and drift plates

```
2 detectors (avail./spare)
```

4 detectors (available)
2 detectors (available)

- GEM frames (local workshop):
- full frame sets for 3 detectors available (drift, transfer, induction)
- 10 parts for 2.5 transfer frames available
- spare material for segmented frames available
- delivered material for 10 drift frames + 20 transfer/induction frames

3 detectors (available)

~ 2 detectors

(backup material)
≥ 6 detectors (available)
> Currently:
$>$ Honeycomb plates for 8 detectors (incl. backup)
> Frames for ≥ 6 detectors total (partly backup material used) / avail. material for ≥ 8 detectors total

- QA improved: intersegment test automated (J. Paschek)
- Production database set up for COMPASS (taken over from ALICE / P. Glässel)

Database for Production

- Stock keeping integrated
- QA steps/files included
- Trackable construction chain Item G3M/G3M01 (batch 1) contains (only next level):

part	type	prefix	n		serialno	batch	date	statu
GEM stack		GMS	0		GMS-01	1	2022-01-28	
R/O plate		RP	0		RP-01		2022-01-28	

define/modify contained parts

Item GMS/GMS-01 (batch 1) contains (only next level):

link color code serial no barcode unnumbered prefix color code: parent part daughter part both
part color code: QA defined

part	type	prefix	num	serialno	batch	date	status	link comment
Drift plate		DP	0	DP-01		2022-01-28		$\underline{\text { X }}$
Drift GEM		GM1	0	GM1-01	1	2022-01-28		
intermediate GEM		GM2	0	GM2-01	1	2022-01-28		
R/O GEM		GM3	0	GM3-01	1	2022-01-28		
define/modify contained parts								

 GEM foil CG3G 0 CG3G-003 $1 \quad$ 2022-01-28 2
define/modify contained parts

(10	QA-E
15	$\begin{array}{c}\text { QA- } \\ A\end{array}$	
20	20	
25	25	

4ㄹ..
\qquad quality

HISKP Compass production database, category Compass

unnumbered stock at institute
batch type prefix ordered sent

AMBER PRM readout requirements

Starting point: $30 \times 30 \mathrm{~cm}^{2}$ with divided strips and active central sector / self-triggering VMM

- Readout of all 4 sides (1 detector)
- 768 channels per side (1 detector)
- 2 detectors per station in 6 stations

Requirements

- number of channels per projection: $2 \times 768=1536$
- number of projections per station: 4
- number of stations: 6
- number of bits per hit: 38 raw from VMM / 48 with additional time stamp
- in progress: amount of information produced by one projection for nominal PRM beam (conditions in streamed mode \Rightarrow noisy hits + induced by charged particles)

