Status of the new GEM stations

Dmitri Schaab

19.07.2022

COMPASS GEM-3G (CG3G)

- Size of active area: 30.7 × 30.7 cm²
- Triple GEM
- Strips divided in center to reduce occupancy

On-detector electronics

- voltage divider (PVD): 3 +1 cards
- $6 \times 4 = 24$ APV front-end cards
- 4 supply cards (bus cards)

Status of detector production

	Support plates	Frames	Drift foil	GEM foils	Readout PCB	HV board	Assembly	Calibration	Installation
CG3G01	√	√	√	√	√	SVD	√	√	Prototype
CG3G02	✓	✓	✓	✓	✓	PVD	✓	✓	@GM11 test pos.
CG3G03	✓	✓	✓	✓	✓	PVD	✓	✓	@GM11 test pos.
CG3G04	√	✓	√	√	√	PVD 300µm	✓	✓	
CG3G05	✓	✓	✓	✓	✓	PVD 300µm	✓	✓	

Assembly steps:

- QA: quality assurance
- G1, G2, G3: GEM i framed
- RO: R/O PCB glued
- · D: drift foil glued
- S1, S2, S3: stack i glued
- DET: detector assembled
- GAS: gas pipes + tight
- HV: HV board assembled

Stations in question be replaced for 2022: GM05, GM08, GM04

test positions: @GM11 | between GM09 and GM10

1. Station

R/O electronics / DAQ tests

- initial tests w/ detector dummy (just r/o foil) @clean area
 - fully assembled with electronics
 - → 24 APVs, 4 SupplyCards, 2x(TDC+ADC), 1MUX
 - integrated to standalone DAQ (V. Frolov)
 - connection to all APVs established (V. Frolov)
 - APVs send data on trigger signal
 - signal polarity issue solved on FPGA firmware
 (S. Huber / I. Konorov)
- tests w/ CG3G detectors @clean area
 - communication tested / data rate confirmed
 - power consumption checked after LOAD command
 - > ~5A per detector (3.3V APV supply)

Installation

- preparation @Bonn
 - detector mechanics
 - detector electronics
 - cables: HV / Data
 - APV functionality test
- preparation while @CERN
 - cables/cable trees: LV (ADC/TDC, SupplyCards)
 - thread adaptors M3-M4 for mounting frame
 - detector shielding
 - shielding foil: aluminized PET-foil ("Mylar")
 - ROHACELL (solid foam) frame
- installation
 - @GM11 position
 - due to bigger dimensions of shielding frame
 - GM11 mounting structure does not fit
 - UV detector installed downstream(!)
 - holding structure to be adopted

Low voltage / center segment control

- Low Voltage R&S NGP800
 - one module (4ch) supplying full station …
 - 1 ch: 4 ADC/TDC-cards
 - 2 ch: 2 detectors (8 SupplyCards/48APVs)
 - 1 ch: 2 center segment controls (new)
 - issue with OVP when sense wires connected
 - solved by firmware update (Karl/Christophe)
 - integrated to DCS (Karl/Christophe)
- center seg. switch box / ETH484-modules replaced by ...
 - single Bourndy connector
 - remote control via NGP800 CH2 in DCS

Low voltage / center segment control

- Low Voltage R&S NGP800
 - one module (4ch) supplying full station ...
 - 1 ch: 4 ADC/TDC-cards
 - 2 ch: 2 detectors (8 SupplyCards/48APVs)
 - 1 ch: 2 center segment controls (new)
 - issue with OVP when sense wires connected
 - > solved by firmware update (Karl/Christophe)
 - integrated to DCS (Karl/Christophe)
- center seg. switch box / ETH484-modules replaced by ...
 - single Bourndy connector
 - remote control via NGP800 CH2 in DCS

Test positions

2. Station

Optimization – 2nd station

preparation @CERN → preparation @Bonn

- cables/cable trees: LV (ADC/TDC, SupplyCards)
 - cable trees ordered at local e-workshop
- thread adaptors M3-M4 for mounting frame
 - manufactured by local workshop.
- detector shielding
 - shielding foil: aluminized PET-foil ("Mylar")
 - → designed → laser cut / ext. company
 - ROHACELL (solid foam) frame
 - ➤ in progress local workshop

Electronics – 2nd station

- SupplyCards
 - ready for 2nd station (except 0.15Ohms res.)
- APV boards
 - <u>except</u> for APV chip fully assembled
 - bonding of APVs ongoing
 - amount > 10 ready (~40 missing)
 - bonding priorization for ATLAS
 - hard to get time estimation ~ mid/end August
- voltage divider (PVD)
 - material budget: 300µm PVD boards (1.6mm for 1st)
 - mechanical instabilities noticed (J. Paschek)
 - partial delamination of tracks after soldering
 - electric instabilities at measurements

APV card

300µm PVD delamination

Data acquisition (GM11)

Mapping

electronics mapping

• APV \rightarrow connector pin \rightarrow ADC input ch \rightarrow FPGA firmware ch geographic mapping

geographic location / orientation → APV id →
 ADC port & FPGA firmware ch & MUX port & source ID

SupplyCard

Mapping

electronics mapping

• APV \rightarrow connector pin \rightarrow ADC input ch \rightarrow FPGA firmware ch geographic mapping

geographic location / orientation → APV id →
 ADC port | FPGA firmware ch | MUX port | source ID

| Clame + AFV count | = AFV count | con | addr. | (bb100 | 0b00 | 0b101 | 0b1101 | 0b11100 | 0b11101 | 0b11110 | 0b11101 | 0b11110 | 0b11110 | 0b11110 | 0b11110 | 0b111101 | 0b11101 | 0b111101 | 0b

Lane "11"

Projection (X,Y) / position Direction of incr. APV channel#

DAQ

- First station @GM11 fully equipped
 - 2 x (24 APVs, 4 SupplyCards, 2 ADC/TDC-cards)
 - 4 fibers connected to MUX (sID 770) ports 7,8 / 9,10
 - data stream on udp://239.255.43.21:45454
 - APV mode 0x29 e.g. readout with 40MHz

Data decoding

- gemMonitor
 - changes due to slightly different data format
 (I. Konorov / B. Ketzer)
 - mapping implemented to config file (H.Pekeler/D.Schaab)
 - faulty data
 - sync pulses ("tick marks")
 - should not appear when triggered
 - should not be seen in decoded data (in gemMonitor)
- suggestion: decoding error on detector hardware level
- task force GM11 → next MD (20.07.22)
 - tuning of APV chip configuration
 - check clock / trigger / offset / phase shift
 - also: ramp up HV

gemMonitor GUI

tick marks in data

APV25-S1 data format (illustrated)

off-topic

PGEM issues

PGEM – GP03 occupancies

since ~2018..2021

PG03 – TCS phase

- different s-curves on TCS phase
- groups of 4APVs connected to same ADC port
 - different latencies / different amplitudes
- possible suggestions
 - BusCard
 - ADC transition card (replaced last year)
 - LV powering (Deutronics not to be touched)

GP03P1 Occupancy

GP03P2 Occupancy

PG03 – approaches

- adjust latency (today, M. Hoffmann)
- replace Deutronics by lab power supply
- > ADC transition card
 - replace by spare (?)
 - repair old one
- > replace detector

GP03P1 Occupancy

GP03P2 Occupancy

Thanks for your attention

Status of detector parts (drift foils + GEMs + R/O-foils)

- CERN Batch 1: shipped 20.10.2020
 - − 6 GEM foils (2µm Cu) \Rightarrow 1 bad (high current), **5/6 good**
 - 3 drift foils (2μm Cu) ⇒ **3/3 good**
 - 2+1 R/O foils ⇒ 1 repaired (strip short), 3/3 good
- CERN Batch 2: shipped 30.8.2021
 - 10 GEM foils (2μm Cu), ⇒ 1 (bad→recovered by HV cleaning), 10/10 good
 - − 2 drift foils (2 μ m Cu), shipped 30.8.2021 \Rightarrow **2/2 good**
 - 2+1 R/O foils, shipped 27.10.2021 ⇒ 1 bad (known), 2/3 good
- **CERN Batch 3:** delivered 13.04. (delay > 1 month)
 - 7 GEM foils (minor design improvements)
 - 1 drift foil
 - 1 R/O foil
- > GEMs: 15 good + 7 not tested ⇒ ≥6 detectors
- ightharpoonup Drift: 6 good \Rightarrow 6 detectors
- \triangleright R/O: 4 good + 1 repaired + 1 not tested \Rightarrow 6 detectors

Status of local production (support structures + QA)

- Honeycomb plates (Piekenbrink)
 - Batch 1a: 2 drift plates, 2 R/O plates (potted, bent) ⇒ re-treated, flattened
 - Batch 1b: 2 R/O plates (GFK frame) ⇒ good
 - Batch 2: 2 R/O plates, 2 drift plates, ⇒ good
 - Batch 3: 2 sets of R/O and drift plates
- **GEM frames** (local workshop):
 - full frame sets for 3 detectors available (drift, transfer, induction)
 - 10 parts for 2.5 transfer frames available
 - spare material for segmented frames available
 - delivered material for 10 drift frames + 20 transfer/induction frames

> Currently:

- Honeycomb plates for 8 detectors (incl. backup)
- Frames for ≥ 6 detectors total (partly backup material used) / avail. material for ≥8 detectors total
- QA improved: intersegment test automated (J. Paschek)
- Production database set up for COMPASS (taken over from ALICE / P. Glässel)

≥6 detectors (available)

2 detectors (avail./spare)

Database for Production

- Stock keeping integrated
- QA steps/files included

link color code serial no

part color code: OA defined

Compass Drift foil

Compass Drift frame

Compass Drift GEM

Compass Drift plate

link category

prefix color code: parent part daughter part both

part

HISKP Compass production database, category Compass

prefix

CD3G-nn

D-frame

GM1-nn

DP-nn

ordered sent

unnumbered stock at institutes

2

Bonn

numbered stock

inventory finished used

unnumbered

batch type

AMBER PRM readout requirements

Starting point: 30x30 cm² with divided strips and active central sector / self-triggering VMM

- Readout of all 4 sides (1 detector)
- 768 channels per side (1 detector)
- 2 detectors per station in 6 stations

Requirements

- number of channels per projection: 2x768= 1536
- number of projections per station: 4
- number of stations: 6
- number of bits per hit: 38 raw from VMM / 48 with additional time stamp
- in progress: amount of information produced by one projection for nominal PRM beam (conditions in streamed mode ⇒ noisy hits + induced by charged particles)