

UNIVERSITÄT BERN

The Bern medical cyclotron as a facility for radiation hardness studies

S. Braccini, P. Casolaro, G. Dellepiane, <u>I. Mateu</u>, P. Scampoli

SiPM Radiation: Quantifying Light for Nuclear, Space and Medical Instruments under Harsh Radiation Conditions

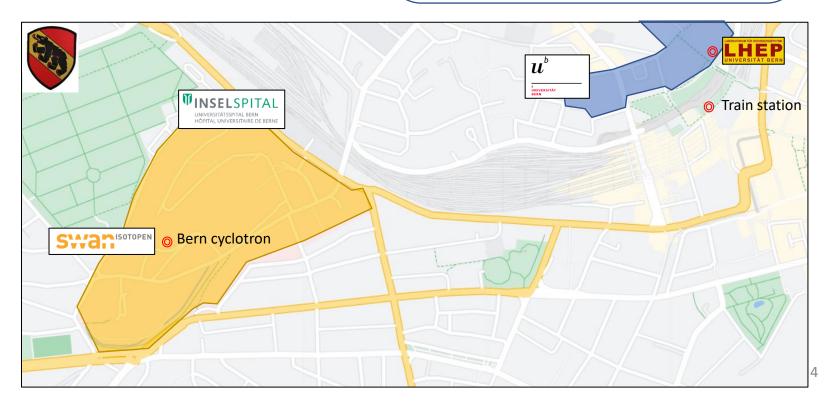
CERN, 25-29 April 2022

Outline

- >The Bern medical cyclotron and its beam transfer line.
- > The Bern cyclotron as an irradiation facility.
- ➢ Production of controlled neutron beams.

The Bern medical cyclotron and its beam transfer line.

A machine for production of radiopharmaceuticals... And for research!


SWAN Isotopen AG

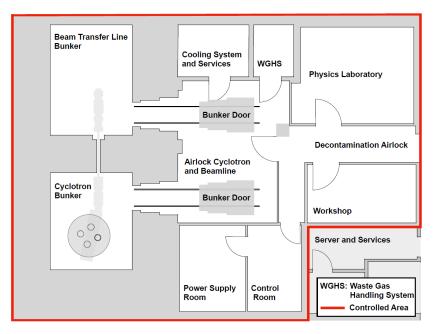
Commercial production of radiophamaceuticals (overnight).

Laboratory for High-Energy Physics (LHEP)

Research and Development (daytime):

- Medical applications.
- Beam monitoring.
- Radiation hardness studies.
- Collaborations with CERN, ESA, PSI, TRIUMF...

The facility

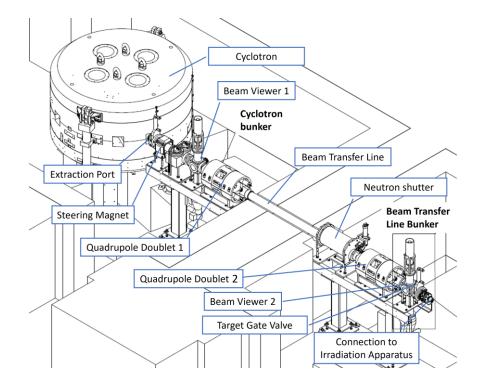

2 bunker structure with a dedicated Beam Transfer Line (BTL) to transport the beam from the Cyclotron bunker to the adjacent bunker.

- Fully dedicated to research activities.
- Shielding from highly radioactive environment in the cyclotron bunker.

Physics laboratory, within the Radiation Controlled area, hosts data acquisition systems for active irradiations and post-irradiation studies.

Avoiding shipping of radioactive material.

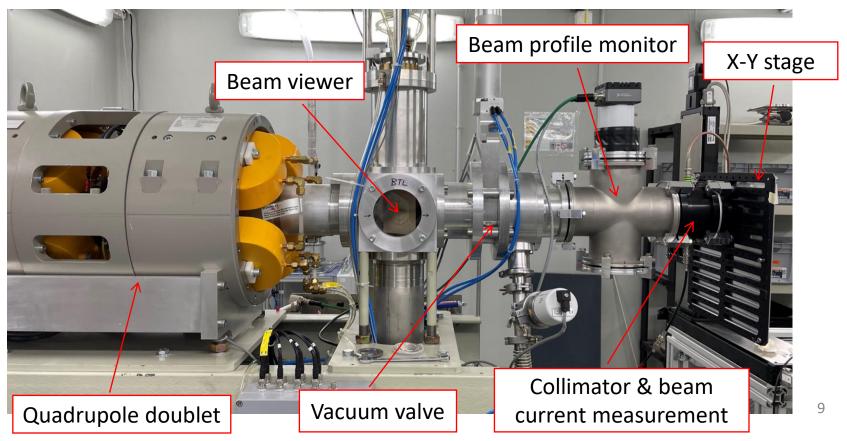
Minimizing annealing on irradiated samples.


The cyclotron

- > Cyclone 18/18 from <u>IBA Radiopharma Solutions</u>.
- \succ Accelerates H⁻ ions to 18 MeV.
- ➢ Proton extraction after electron stripping.
- \geq Beam current up to 150 μ A.
- ➤ 8 extraction ports (1 dedicated to the BTL).

The Beam Transfer Line.

- ▶ 6.5 m long beamline.
- ➤ 1 dipole doublet for horizontal/vertical steering.
- 2 quadrupole doublets for focusing.
- > Neutron shutter to stop neutron flux during radiopharmaceutical production.
- 2 beam viewers provide a destructive beam current measurement.



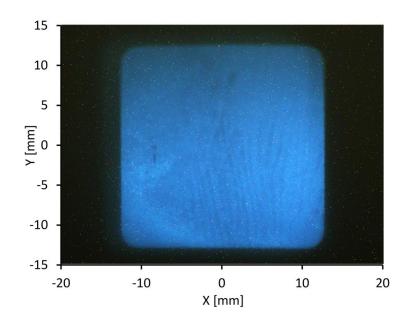
The cyclotron as an irradiation facility.

Irradiation setup

- $> 2^{nd}$ quadrupole doublet switched off to obtain a quasi-uniform beam profile.
- ➤ Irradiations typically performed in air.
 - ➢ 300 um Al extraction window − Extracted energy: 16.7 ± 0.5 MeV
- > Different collimators available (from $1x1 \text{ cm}^2 \text{ to } 3x3 \text{ cm}^2$).
- > Adjustable proton flux $(10^9 10^{12} \text{ p/cm}^2/\text{s})$.

Beam profile monitoring - UniBEaM

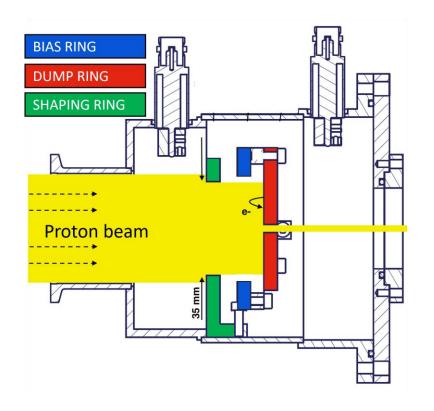
- Based on scintillating cerium-doped silica fibers scanning the beam to obtain the horizontal and vertical beam profile projections.
- Developed at LHEP and commercialized by <u>D-PACE</u> under license from University of Bern.

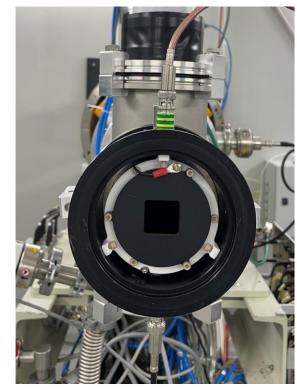

er Serial Number	X Scan	Y Scan	X&Y Scan	Fixed Position
Test	9-		~	
Start Distance Post Scan Wait Amplifier Gain	85-		()	
15 mm	8-		11	
Ind Distance Measure Retracting Data	7-			
15 mm OFF/ON	65-		1 \	
Continuous Scan OFF/ON	(S) 6-			
and and	(1100 55- 5- 5- 5- 45- 4- 4- 15-			
	20 3-			`
X Integral Vmm				
115000 V	E 35-		1	
	2 3-			1
	25-			1
nts	2-			
Ican	1-			
	0.5-			\

Scintillating fibres Motor control Fibre readout

Beam profile monitoring - π^2

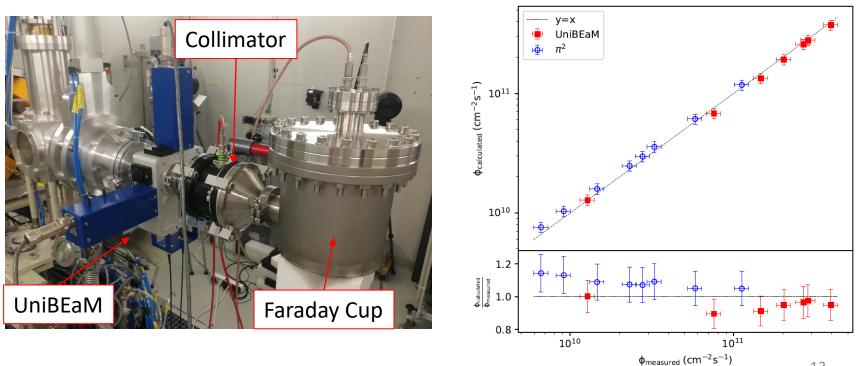
- ➤ 15 µm thick Al foil coated with P47 scintillating compound, placed at 45° with respect to the beam.
- > Beam image recorded with commercial camera.
- Recorded image is processed to correct for perspective effects.

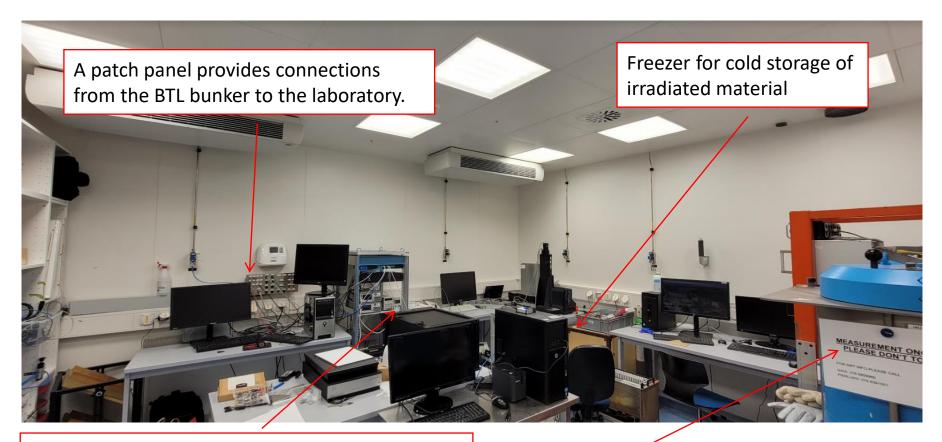




11

Beam current measurement

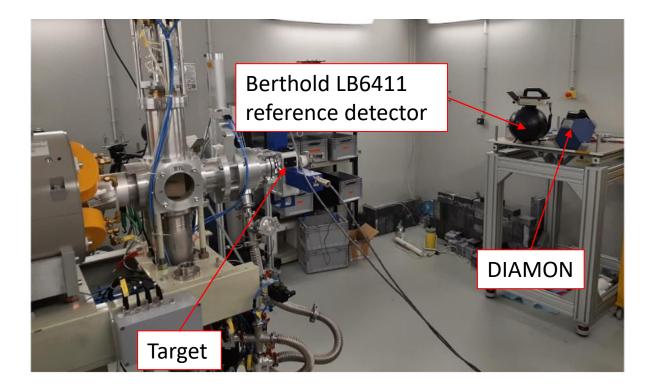

- Collimator used as beam current monitor`.
- Current dumped on the collimator, combined with beam profile, used to infer extracted proton flux.
- > Biasing electrode to prevent secondary electron emission.


Irradiation setup validation

- Faraday Cup downstream of irradiation setup to validate the proton flux measured using the beam profile monitor and the collimator.
- Agreement within 10% for a proton flux ranging from 5x10⁹ p/cm²/s to 4x10¹¹ p/cm²/s.
- ➤ Validated using both the Pi-2 and the UniBEaM.

The Physics laboratory

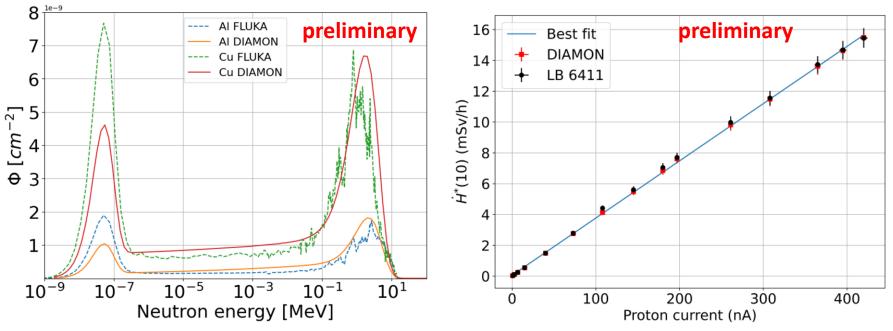
Dedicated laboratory to host Data Acquisition equipment during active irradiations or post-irradiation studies.


Wide range of electronics available (oscilloscopes, electrometers, power supplies, etc)

HPGe gamma spectrometer

Production of controlled neutron beams.

Project overview


- R&D project aiming at generating a controlled neutron beam using converter targets at the end of the BTL.
- Ongoing work on the characterization of the neutron spectrum using different target materials.
- DIAMON neutron spectrometer used for this study.

Status

Validated DIAMON detector

- Neutron spectra are consistent with FLUKA simulations.
- Dose rate measurements are comparable to well-established reference detector (Berthold LB 6411).
- Neutron flux of the order of ~10⁻⁹ n/cm²/primary can be achieved. Potentially higher with further development.
 - Reduction of distance from target to detector.

Conclusions

- Bern medical cyclotron available as a 18 MeV proton irradiation facility for radiation hardness studies.
- > Well established irradiation setup, able to deliver a well controlled proton flux in the $10^9 10^{12}$ p/cm²/s range.
- > Laboratory for post-irradiation characterization available on-site.
- > Ongoing R&D to also produce controlled neutron beams in the facility.
- For more details about the irradiation facility, see our <u>publication in</u> <u>JINST</u> (in print).
- Collaborations are welcome! If interested in performing an irradiation, please contact <u>saverio.braccini@lhep.unibe.ch</u> or <u>isidro.mateu@lhep.unibe.ch</u>.

Thank you for your attention!

Published work on past irradiation campaigns.

- ➢ <u>High-Voltage CMOS sensors for the ATLAS HL-LHC upgrade</u>.
- Qualification of materials for the data transmission system of the ATLAS ITk pixel upgrade.
- Testing of resistors for ESA's JUICE mission.
- Radiation effects on optical windows for GEM-based detectors.