## SiPM Radiation: Quantifying Light for Nuclear, Space and Medical Instruments under Harsh Radiation Conditions



Contribution ID: 14 Type: not specified

## SiPM-based Technologies for Solar and Heliospheric Science

Thursday 28 April 2022 15:00 (25 minutes)

Neutrons and  $\gamma$ -rays are produced throughout the heliosphere and offer a unique window to understanding the fundamental processes of energetic particles. At the Sun, because neutrons and  $\gamma$  rays are produced by the interaction of accelerated ions in solar eruptive events, they can further our understanding of space-weather agents, processes and effects. Neutron measurements from 20-150 MeV complement high- and low-energy solar  $\gamma$ -ray measurements and fill the decade-wide energy gap (30-300 MeV) in the accelerated proton spectrum at the Sun, i.e., a critical missing piece in understanding the production mechanisms of solar energetic particles. For lunar or planetary studies, broadband neutron spectroscopy (covering thermal, epithermal, and fast neutrons) and  $\gamma$ -ray spectroscopy can serve as an effective probe of regolith composition and in situ resource utilization, including the localization of water-ice. Furthermore, fast neutrons are a particularly hazardous form of radiation for astronauts and space assets within orbiting habitats and on lunar/planetary surfaces. We discuss the critical role of SiPM-based technology in enabling the next-generation neutron/ $\gamma$ -ray instruments.

**Authors:** BRUNO, A (Catholic University of America/NASA); DE NOLFO, Georgia; M., Daehn (NASA/GSFC); J., Dumonthier (NASA/GSFC); J., Legere (University of New Hampshire); R., Messner (University of New Hampshire); J.G., Mitchell (George Washington University/NASA); J.M., Ryan (University of New Hampshire); S., Suarez (NASA/GSFC); T., Tatoli (Catholic University of America/ NASA); L., Williams (Kellogg-Brown and Root/GSFC)

Presenter: DE NOLFO, Georgia

Session Classification: Future Applications

Track Classification: Space Applications