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Introduction 

 

 Photo-current                at constant bias voltage, 

Ubias , and constant photon rate, decreases with temperature:

 Explained, among other effects, by the temperature 

dependence of breakdown voltage, Ubd:

I photo∝ PDE (T )⋅Gain (T )

Gain∝ 1
q0
Cpix (U bias−Ubd (T ))

• The most critical effect of radiation damage is the increase in dark current (Idark) which is proportional 
to the fluence:

➢ Increase in Idark leads to a significant power dissipation;
➢ If the power dissipated is not properly cooled, it heats the SiPM, whose performance 

parameters depend on temperature:

( I photo= I SiPM−I dark )

Calibration Iph(U,T):
Photo-current at known T
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• Develop a method to determine SiPM temperature increase induced by power dissipated (self-
heating)  ΔTSiPM(P)  with

• Relevant for applications of SiPMs in:
 High background light experiments → High Iphoto

● Light Detection and Ranging (LIDAR), astrophysics

 High radiation environment  → High Idark 

● Satellite experiments, HL-LHC (~1 mA, T = -30 °C, ϕeq~1013 cm-2)

P=I SiPM⋅U bias

Aim
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Aim
• Idark increases with fluence, in particular for this study we want to emulate the power dissipated 

by Idark in an irradiated SiPM
 Operate a non-irradiated SiPM, under LED illumination, to produce the same power as 

expected for an irradiated SiPM 

 Power dissipated (P):
 P ~ 50 mW induced by Idark (Irrad. at 

ϕ = 1e13 cm-2 at Uex= 2 V, Ubd = 36.7 V 
@ -30 °C)

 P ~ 50 mW induced by high ILED (Non-
irrad.  ILED~0.5 mA at Uex= 10 V, Ubd = 
27.5 V @ 25 °C) 

Irradiated MPPC HPK SiPM  
(I

LED
= 0 mA, -30 °C)

Non-irradiated KETEK SiPM 
(I

LED
= 0.47 mA, 25 °C)

Non-irradiated MPPC HPK SiPM 
(I

LED
= 0 mA, -30°C)

U ex=U bias−Ubd
U

ex
 [V]
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Method
• Express the T dependence of photo-current as: 

• A relative change in photo-current is related to a change in T by the sensitivity

● Typical sensitivity: (0.4 – 1) %/K 

• Precision data required: 
LED-stability, I-measurement, U-setting.

Carmen Villalba  - SiPM Self-Heating

d I photo
dT

=
d I photo
dU

⋅
dU bd

dT

Δ I photo
I photo

=S photo⋅ΔT Sensitivity: 
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S photo (U bias , T chuck )=
1
I photo

⋅
d I photo
dU

⋅
dU bd

dT [%K ]
Sensitivity

● Extract TSiPM from ISiPM in a cycle at constant Ubias and 
changing light intensity.

● Lucchini et al propose a method with constant 
illumination, and TSiPM is derived from the changes in 
ISiPM when the U is switched on, or thermal conditions 
change by switching on a fan. 
[doi:10.1016/j.nima.2020.164300]
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Setup 
• SiPM KETEK non-irradiated (MP15V09 D2.8)

 dSi= 700 μm
 Ubd= 27.5 V @25°C, Cpix= 18 fF, τ = 14 ns

 Pixel size = 15 μm, 27000 pixels

• SiPM glued on alumina (Al2O3) substrate:
 dAl2O3= 600 μm

• Cooling system: temperature-controlled chuck 

• PVC (1.2 and 3.1 mm) between the alumina and cold 
chuck to emulate degraded thermal contact.

• Three T sensors (PT-100): at 3.1 mm (Tsensor1)  and 7.6 
mm (Tsensor2) from the SiPM center, Tsensor3 on the chuck.

• Illumination: LED (470 nm)
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SiPM

LED

T
sensor1

Diffuser

T
sensor2

T
sensor3
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 Sensitivity calibration  
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• Calibration data is measured at 
known and stable Tchuck , avoiding 
saturation due to occupancy (~1%):

Calibration data: 5 LED intensities 
@ 25°C above U

bd

Sensitivity: 

ΔT

ΔU
bd

 

 

dU bd /dT=21mV /K

Ubd as a function of temperature

• Calibration data at several LED currents leads to the same 
sensitivity curve.

• Measure in the T range of relevance

S photo (U bias , T chuck )=
1
I photo

⋅
d I photo
dU

⋅
dU bd

dT [%K ]
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Sensitivity: 5 LED intensities 
@ 25°C above U

bd
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  Ubias = 38 V, ILED = 0.47 mA, P = 58 mW:

• From sensitivity calibration for Ubias= 38 V → 

• Observed:

• Calculated: ΔTSiPM = 1.87 K, reached in ~ 60 s, ΔUbd= 39 mV

● As expected from heat flow:
ΔTsensor1 > ΔTsensor2 >> ΔTsensor3

• Due to the increased thermal resistance → change of the 
amplitude and phase of ΔTsensor1 and ΔTsensor2 relative to ΔTsensor3

Δ I photo
I photo

= 0.73 %

3.1 mm PVC, T
chuck

= 25 °C

T oscillations due to feedback loop of the 
temperature-controlled chuck

T
1

T
2

ΔT SiPM=
Δ I photo

S photo . I photo

Results for degraded thermal contact (3.1 mm PVC) 

Sphoto= 0.39 %
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Results for good thermal contact (no PVC)   
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• ΔTSiPM ~ 0.5 K, for P = 47 mW reached in ~ 2 s. 
ΔUbd= 12 mV

• T oscillations due to feedback loop of the 
temperature-controlled chuck:
 Tsensors with the same amplitude and phase 

 TSiPM anti-correlated with Iphoto , an increase in 
TSiPM causes a decrease of Iphoto

→ Phase shift of 180° between Tsensors and 
Iphoto demonstrates good thermal contact 
between chuck and SiPM multiplication 
region.

No PVC, T
chuck

= 25 °C

U
meas

 = 38 V, 

I
LED

 = 0.47 mA.
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Cross-check 
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 No PVC and Iphoto = 1.22 mA:

 Fitting data to obtain amplitude of both T and Iphoto 

 Current normalized to the maximum value of the 
data without PVC

 For good thermal contact, P = 47 mW 

→ ΔTSiPM = 0.62 K

 T-oscillations to check ΔT
SiPM

 determination:

ΔT SiPM=α⋅Δ I photo

α=
AT sensor 1
A I photo

= 0.23 [ Kμ A ]
No PVC: T

sensor1
 and I

photo
  T

chuck
= 25 °C 

A
T_sensor1

A
I_photo
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Summary of preliminary results
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No PVC 1.2 mm PVC 3.1 mm PVC

P [mW]
ΔUbd 
[mV]

ΔTSiPM [K] Cross-check
ΔTSiPM [K]

Rel. 
difference

no PVC 46.55 12 0.56 0.62 10.3%

PVC (1.2 mm) 50.81 37 1.74 1.91 9.5%

PVC (3.1 mm) 57.68 39 1.87 2.03 8.6%

• Sensitivity method and cross-check agree: same ΔTSiPM from the measured current within 10% 
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Ubias   = 38 V
Tchuck = 25 °C 

~ SiPM mounted on PCB

~SiPM on top of cooling system
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Implications: 
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● If the shift of 40 mV is not compensated, operating ~ Uex = 2 V → reduction of gain by 2 % + 
reduction of PDE by 2 %

● Reduction of signal about 4 %

● Increasing Ubias is a possible solution but:

   It is a loop! Cannot be fully compensated.

Ubias 
increases

TSiPM 
increases

ISiPM 
increases

Power 
dissipated 
increases

ΔVbd 
increases
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Next Steps:  
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● Extend the method to determine TSiPM using Idark during the cool down phase after switching off the 
LED

● Study the self-heating as function of dissipated power
● Investigate the self-heating of irradiated SiPMs

● Compare the measurements to predictions from thermal simulations
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Next Steps: 
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Many thanks for 
your attention!

● Extend the method to determine TSiPM using Idark during the cool down phase after switching off the 
LED

● Study the self-heating as function of dissipated power
● Investigate the self-heating of irradiated SiPMs

● Compare the measurements to predictions from thermal simulations
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Backup slides
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Data for MP15V09 D2.8:
● Cpix = 18 fF
● Vbias = 38 V
● Vbd = 27.5 V
● rdis = 5 μm
● d = 2 μm
● # Pixels = 27367

   Heat of 1 discharge ΔT = 24 mK   

Heat for 0.3% of the pixels ΔT ~ 2 K 

● Geiger discharge through a plasma channel;
● Temperature change:

15 15 μμmm

Plasma 
channel

Heat in the multiplication region (single Geiger 
discharge) 
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Implementation of Analysis method for constant Umeas   
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1) The ISiPM is normalised to Ical (Ucal , Tchuck):

2) A cubic spline fit is used to obtain U :

3)The measured  ISiPM(t) is normalised:

                             where t+ is the
time of the 1st measurement after switching ILED

4) The change in current is converted into a voltage 
change using

5) And the increase in temperature is determined 
using:

ΔIphoto

3.1 mm PVC, T
chuck

= 25 °C

Δ I photo
I photo

=0.73%

ΔU (t )=U bias−U spl( I SiPMnorm (t ))

ΔT SiPM=
ΔU (t )
dU bd /dT

, dU bd /dT=21mV /K

U
meas

 = 38 V, 

I
LED

 = 0.47 mA, 

P = 58 mW.

U spl (I cal
norm)
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Measurements for self-heating (ILED-steps)
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• ISIPM and T sensors recorded with step 0.5 s 
• Cycle with fixed applied Voltage:

• 320 s with LED off (Idark, ILED= 0 mA)
• 320 s with LED on (Idark + Iphoto-low , ILED= 0.02 mA)
• 320 s with LED on (Idark + Iphoto-high, ILED= 0.47 mA) 
• 320 s with LED off (Idark , ILED= 0 mA)

• LED intensity tuned to have ISIPM  1 mA ∼
• Measurements with efficient thermal 

contact: without PVC 
• To degrade the thermal contact: PVC layers 

of  thickness 1.2mm and 3.1 mm 

T
sensor1

 and I
SiPM

 for the different thermal 

contact @25°C

T
1 T

2
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Results for degraded thermal contact (1.2 mm PVC) 
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•  ΔTSiPM~2 K , for P = 51 mW, reached in ~ 60 s. 
ΔUbd= 37 mV

• T oscillations due to feedback loop of the 
temperature-controlled chuck:

 Due to the increased thermal resistance → 
change on the amplitude and phase of ΔTsensor1 
and ΔTsensor2 relative to ΔTsensor3

I
photo

1.2 mm PVC, T
chuck

= 25 °C

U
meas

 = 38 V, 

I
LED

 = 0.47 mA.

ΔT SiPM=
Δ I photo

Sphoto . I photo
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 Ubias = 38 V and Tchuck = 25 °C :

No PVC 1.2 mm PVC 3.1 mm PVC

 For Idark (current depends on thermal generation, T increase and Idark increase as well): 

→ With good thermal contact Tsensors and Idark are in phase with the same amplitude

→ For bad thermal contact, due to thermal diffusion there is a change on the amplitude and phase ready Tsensor1 and Tsensor2 
(on top of the alumina) compared with the sensor on the cold chuck. 

Dark current (LED = 0 mA)
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