

C. Villalba^a, E. Garutti^a, R. Klanner^a, E. Popova^b, S. Martens^a, J. Schwandt^a

a) University of Hamburg, Hamburg, Germany

SPONSORED BY THE

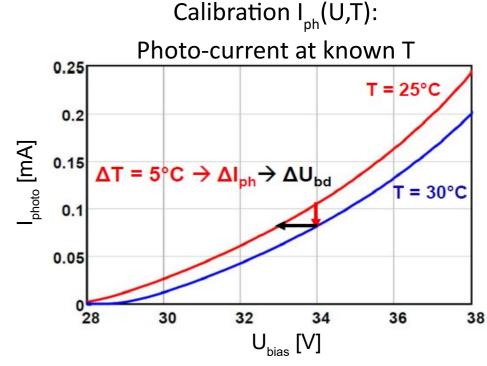
b) National Research Nuclear University MEPhI, Moscow, Russia

Federal Ministry of Education and Research

carmen.villalba@desy.de

Carmen Villalba - SiPM Self-Heating

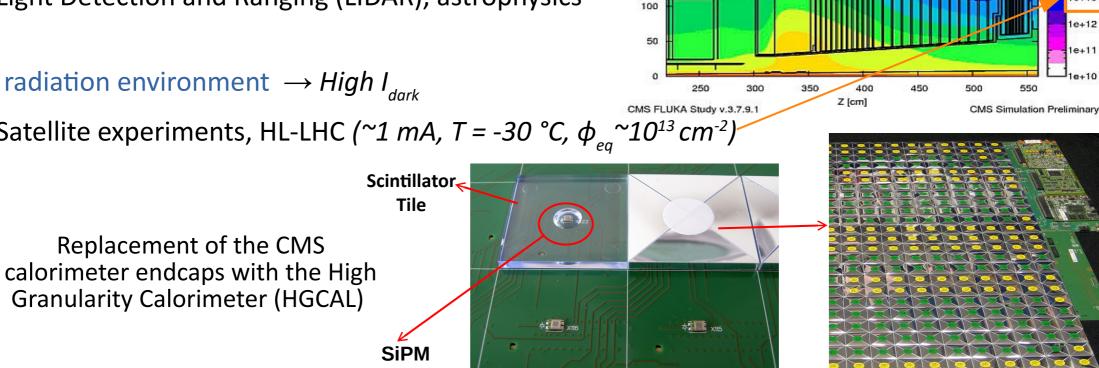
Outline


- Introduction
- Aim of the study
- Method developed
- Setup used
- First results
- Cross-check
- Summary
- Next steps

Introduction

- The most critical effect of radiation damage is the increase in dark current (I_{dark}) which is proportional to the fluence:
 - \geq Increase in I_{dark} leads to a significant power dissipation;
 - If the power dissipated is not properly cooled, it heats the SiPM, whose performance parameters depend on temperature:
- Photo-current $(I_{photo} = I_{SiPM} I_{dark})$ at constant bias voltage,
 - $\rm U_{bias}$, and constant photon rate, decreases with temperature: $I_{\it photo} \propto PDE(T) \cdot Gain(T)$
- Explained, among other effects, by the temperature dependence of breakdown voltage, U_{bd}:

$$Gain \propto \frac{1}{q_0} C_{pix} (U_{bias} - U_{bd}(T))$$



UH

niversität Hamburg

Aim

- Develop a method to determine SiPM temperature increase induced by power dissipated (selfheating) $\Delta T_{siPM}(P)$ with $P = I_{SiPM} \cdot U_{bias}$ CMS p-p collisions at 7 TeV per beam 1 MeV-neutron equivalent fluence in Silicon at 3000 fb⁻¹ 300
- Relevant for applications of SiPMs in:
 - High background light experiments \rightarrow High I_{photo}
 - Light Detection and Ranging (LIDAR), astrophysics
 - High radiation environment \rightarrow High I_{dark}
 - Satellite experiments, HL-LHC (~1 mA, T = -30 °C, ϕ_{eq} ~10¹³ cm⁻²)

250

200

E 150

UH

Universität Hamburg

1e+18 1e+17

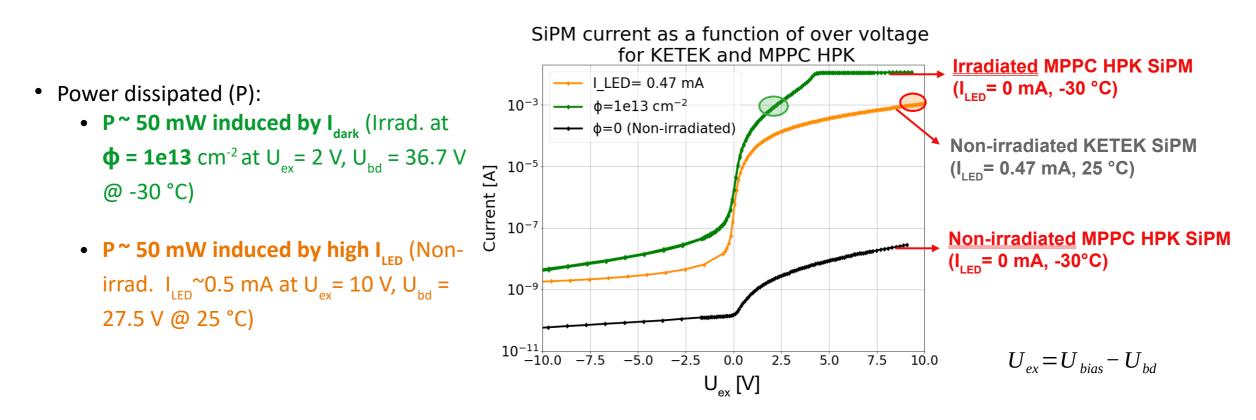
1e+16 ຕຸ່ ⊑

1e+13

e+12

e+11

e+10

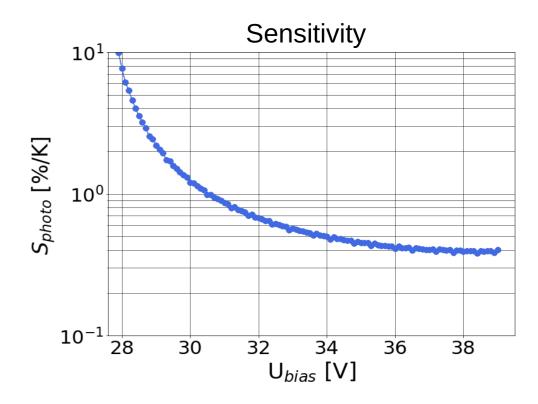

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Aim

UH

- I_{dark} increases with fluence, in particular for this study we want to emulate the power dissipated by I_{dark} in an irradiated SiPM
 - Operate a non-irradiated SiPM, under LED illumination, to produce the same power as expected for an irradiated SiPM

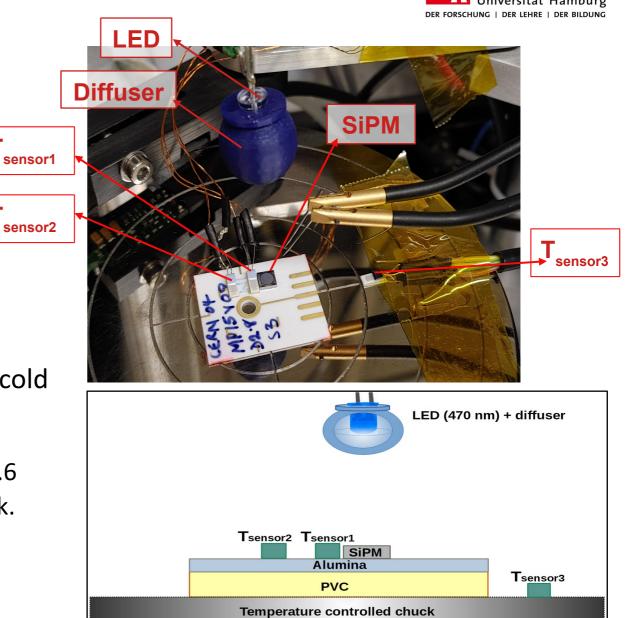
Universität Hamburg

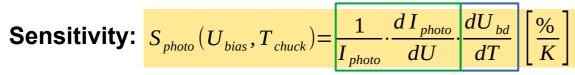

Method

- Express the T dependence of photo-current as: $\frac{dI_{photo}}{dT} = \frac{dI_{photo}}{dU} \cdot \frac{dU_{bd}}{dT}$
- A relative change in photo-current is related to a change in T by the **sensitivity**

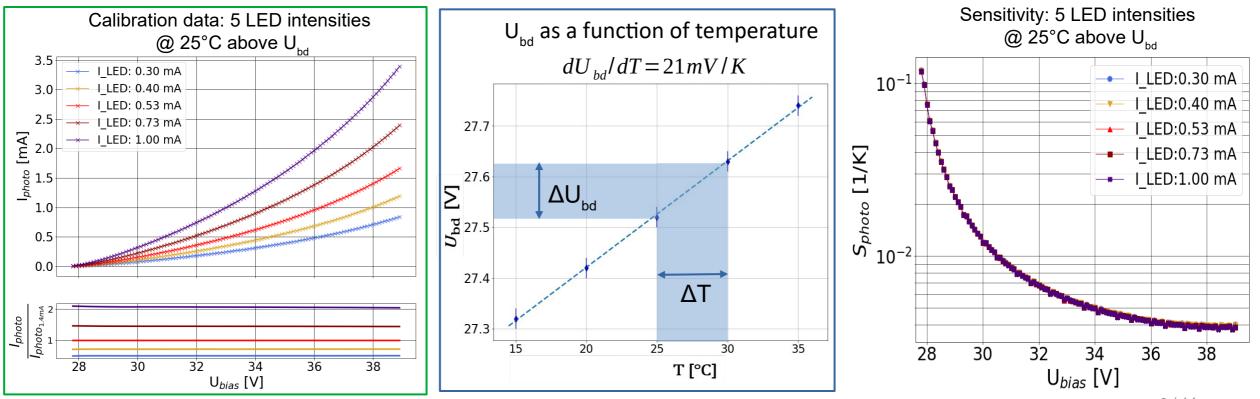
 $\frac{\Delta I_{photo}}{I_{photo}} = S_{photo} \cdot \Delta T$

Sensitivity:
$$S_{photo}(U_{bias}, T_{chuck}) = \frac{1}{I_{photo}} \cdot \frac{dI_{photo}}{dU} \cdot \frac{dU_{bd}}{dT} \left[\frac{\%}{K}\right]$$


- Typical sensitivity: (0.4 − 1) %/K
- Precision data required: LED-stability, I-measurement, U-setting.
- Extract $\rm T_{_{SIPM}}$ from $\rm I_{_{SIPM}}$ in a cycle at constant $\rm U_{_{bias}}$ and changing light intensity.
- Lucchini et al propose a method with constant illumination, and T_{SIPM} is derived from the changes in I_{SIPM} when the U is switched on, or thermal conditions change by switching on a fan. [doi:10.1016/j.nima.2020.164300]


Setup

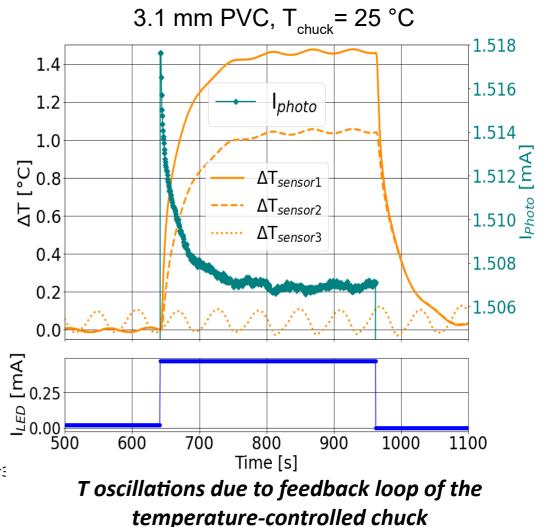
- SiPM KETEK non-irradiated (MP15V09 D2.8)
 - d_{si}= 700 μm
 - U_{bd} = 27.5 V @25°C, C_{pix}= 18 fF, τ = 14 ns
 - Pixel size = 15 μ m, 27000 pixels
- SiPM glued on alumina (Al₂O₃) substrate:
 - d_{Al2O3}= 600 μm
- Cooling system: temperature-controlled chuck
- PVC (1.2 and 3.1 mm) between the alumina and cold chuck to emulate degraded thermal contact.
- Three T sensors (PT-100): at 3.1 mm (T_{sensor1}) and 7.6 mm (T_{sensor2}) from the SiPM center, T_{sensor3} on the chuck.
- Illumination: LED (470 nm)


Sensitivity calibration

Universität Hamburg Der Forschung | Der Lehre | Der Bildung

 Calibration data is measured at known and stable T_{chuck}, avoiding saturation due to occupancy (~1%):

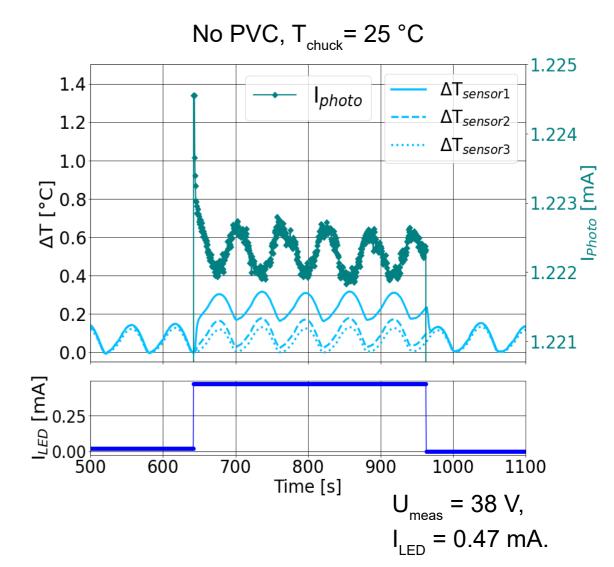
- Calibration data at several LED currents leads to the same sensitivity curve.
- Measure in the T range of relevance


Results for degraded thermal contact (3.1 mm PVC)

• $U_{\text{bias}} = 38 \text{ V}, I_{\text{LED}} = 0.47 \text{ mA}, P = 58 \text{ mW}$:

$$\Delta T_{SiPM} = \frac{\Delta I_{photo}}{S_{photo} \cdot I_{photo}}$$

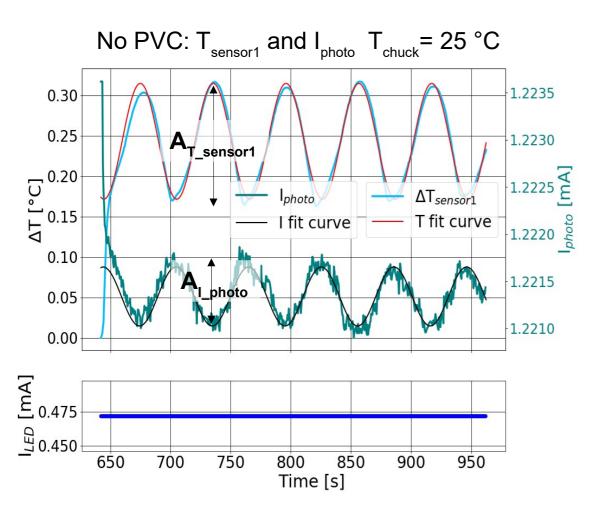
- From sensitivity calibration for $U_{bias} = 38 \text{ V} \rightarrow S_{photo} = 0.39 \%$
- Observed: $\frac{\Delta I_{photo}}{I_{photo}} = 0.73 \%$
- Calculated: $\Delta T_{SIPM} = 1.87$ K, reached in ~ 60 s, $\Delta U_{bd} = 39$ mV
- As expected from heat flow: $\Delta T_{sensor1} > \Delta T_{sensor2} >> \Delta T_{sensor3}$



\rightarrow Phase shift of 180° between T_{sensors} and

I_{photo} demonstrates good thermal contact between chuck and SiPM multiplication region.

- $\Delta T_{\text{SIPM}} \simeq 0.5$ K, for P = 47 mW reached in $\simeq 2$ s. $\Delta U_{\text{bd}} = 12$ mV
- T oscillations due to feedback loop of the temperature-controlled chuck:
 - T_{sensors} with the same amplitude and phase
 - T_{siPM} anti-correlated with I_{photo} an increase in T_{siPM} causes a decrease of I_{photo}



Universität Hamburg

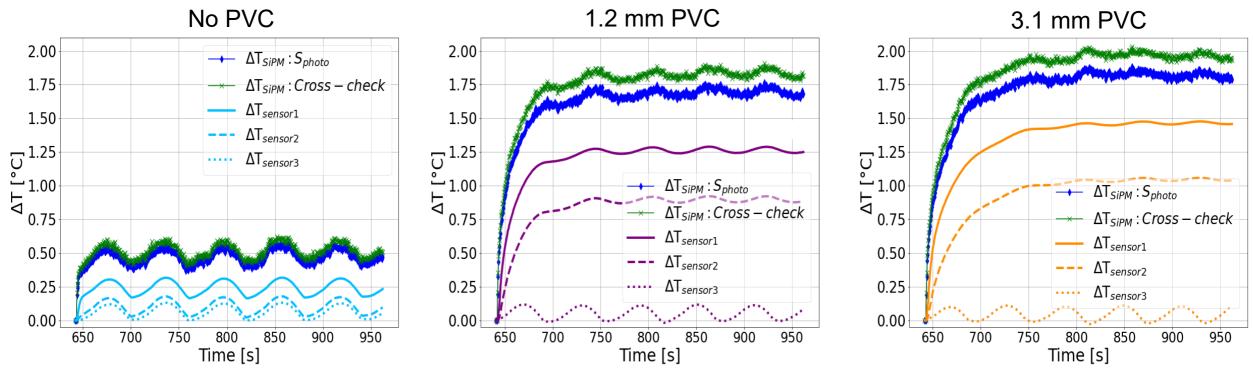
Cross-check

• T-oscillations to check ΔT_{SiPM} determination:

- No PVC and $I_{photo} = 1.22 \text{ mA}$:
 - Fitting data to obtain amplitude of both T and I_{photo}

$$\alpha = \frac{A_{T_{sensor1}}}{A_{I_{photo}}} = 0.23 \left[\frac{K}{\mu A}\right]$$

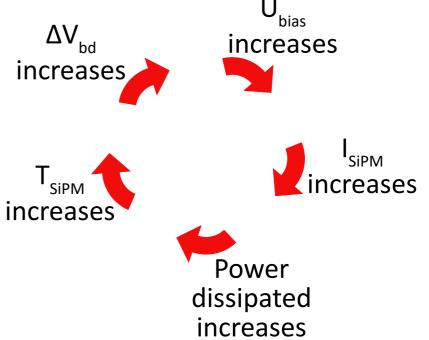
 Current normalized to the maximum value of the data without PVC


$$\Delta T_{SiPM} = \alpha \cdot \Delta I_{photo}$$

For good thermal contact, P = 47 mW

$$\rightarrow \Delta T_{SIPM} = 0.62 \text{ K}$$

Summary of preliminary results


• Sensitivity method and cross-check agree: same $\Delta T_{_{SIPM}}$ from the measured current within 10%

	U _{bias} = 38 V T _{chuck} = 25 °C	P [mW]	∆U _{ьd} [mV]	ΔΤ_{SIPM} [K]	Cross-check ΔT _{SIPM} [K]	Rel. difference
~SiPM on top of cooling system -	no PVC	46.55	12	0.56	0.62	10.3%
~ SiPM mounted on PCB	PVC (1.2 mm)	50.81	37	1.74	1.91	9.5%
	PVC (3.1 mm)	57.68	39	1.87	2.03	8.6%
SiPM Radiation Workshop. CERN, 27.04.2022	Carmen v	IIIalba - SIPIVI Self-	неатпд			12/14

Implications:

- If the shift of 40 mV is not compensated, operating ~ U_{ex} = 2 V \rightarrow reduction of gain by 2 % + reduction of PDE by 2 %
- Reduction of signal about 4 %
- Increasing U_{bias} is a possible solution **but**:

It is a loop! Cannot be fully compensated.

UΗ

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER

Next Steps:

- Extend the method to determine T_{SIPM} using I_{dark} during the cool down phase after switching off the LED
- Study the self-heating as function of dissipated power
- Investigate the self-heating of irradiated SiPMs
- Compare the measurements to predictions from thermal simulations

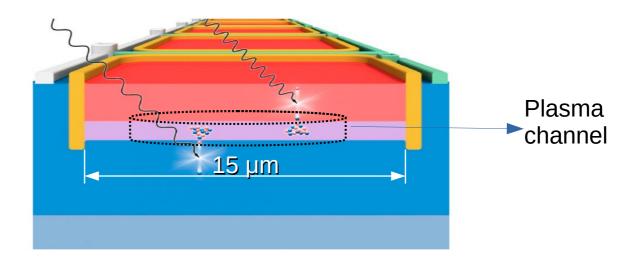
Next Steps:

- Extend the method to determine T_{SIPM} using I_{dark} during the cool down phase after switching off the LED
- Study the self-heating as function of dissipated power
- Investigate the self-heating of irradiated SiPMs
- Compare the measurements to predictions from thermal simulations

Backup slides

Heat in the multiplication region (single Geiger discharge)

Data for MP15V09 D2.8:


- C_{pix} = 18 fF
- V_{bias} = 38 V
- V_{bd} = 27.5 V
- r_{dis} = 5 μm
- d = 2 µm
- # Pixels = 27367
- \implies Heat of 1 discharge $\Delta T = 24 \text{ mK}$

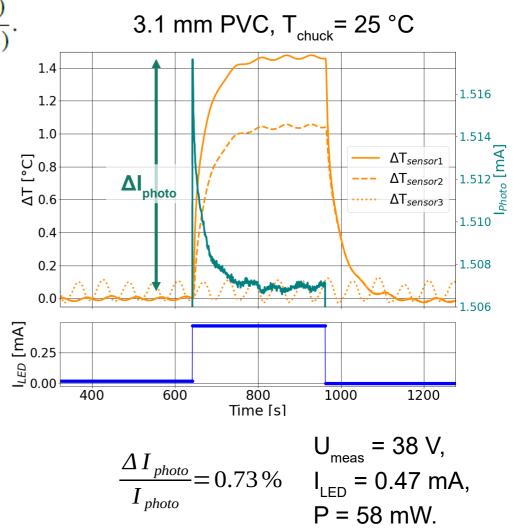
 \Rightarrow Heat for 0.3% of the pixels $\Delta T \sim 2 \text{ K}$

- Geiger discharge through a plasma channel;
- Temperature change:

$$\Delta T_{dis} = W_d / (c_{Si} \cdot M_{Si}) \equiv \frac{1}{2} \frac{C_d \cdot (V_{bias}^2 - V_{off}^2)}{r_{dis}^2 \cdot \pi \cdot d \cdot \rho_{Si} \cdot c_{Si}},$$

Thermal parameters: Different sources give quite different values

Implementation of Analysis method for constant U

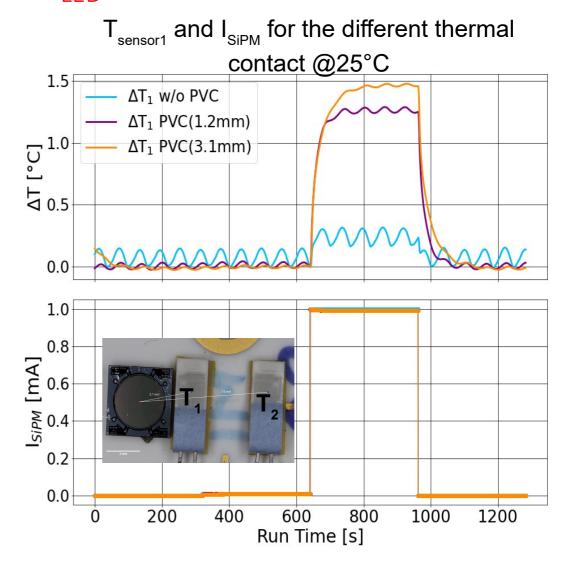

1) The I_{SIPM} is normalised to I_{cal} (U_{cal}, T_{chuck}): $I_{cal}^{norm} = \frac{I_{cal}(U_{cal}, T_{chuck})}{I_{cal}(U_{bias}, T_{chuck})}$.

2) A cubic spline fit is used to obtain U : $U_{spl}(I_{cal}^{norm})$

3)The measured $I_{SiPM(t)}$ is normalised: $I_{SiPM}^{norm}(t) = I_{SiPM}(t)/I_{SiPM}(t+)$, where t+ is the time of the 1st measurement after switching I_{LED}

4) The change in current is converted into a voltage change using $\Delta U(t) = U_{bias} - U_{spl} (I_{SiPM}^{norm}(t))$

5) And the increase in temperature is determined using: $\Delta T_{SiPM} = \frac{\Delta U(t)}{dU_{bd}/dT}$, $dU_{bd}/dT = 21mV/K$



meas

Measurements for self-heating (I_{LFD}-steps)

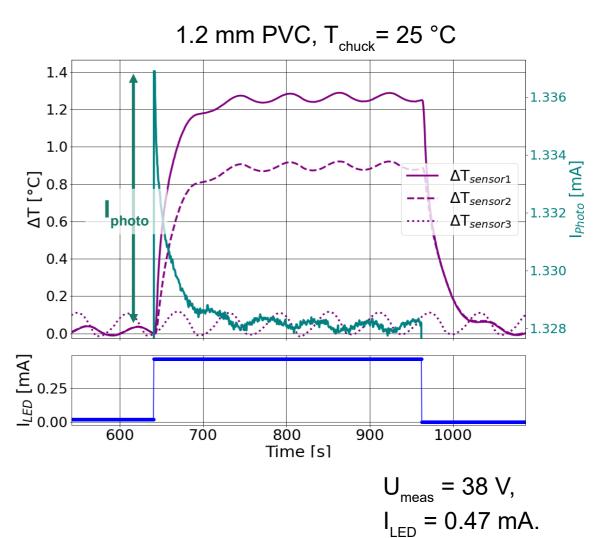
Universität Hamburg der Forschung | der Lehre | der Bildung

- $I_{\mbox{\tiny SIPM}}$ and T sensors recorded with step 0.5 s
- Cycle with fixed applied Voltage:
 - 320 s with LED off (I_{dark} , I_{LED} = 0 mA)
 - 320 s with LED on ($I_{dark} + I_{photo-low}$, $I_{LED} = 0.02$ mA)
 - 320 s with LED on ($I_{dark} + I_{photo-high}$, $I_{LED} = 0.47$ mA)
 - 320 s with LED off (I_{dark} , $I_{LED} = 0$ mA)
- LED intensity tuned to have $I_{\mbox{\tiny SIPM}}\,{\sim}\,1~mA$
- Measurements with efficient thermal contact: without PVC
- To degrade the thermal contact: PVC layers of thickness 1.2mm and 3.1 mm

UН

Ĥ

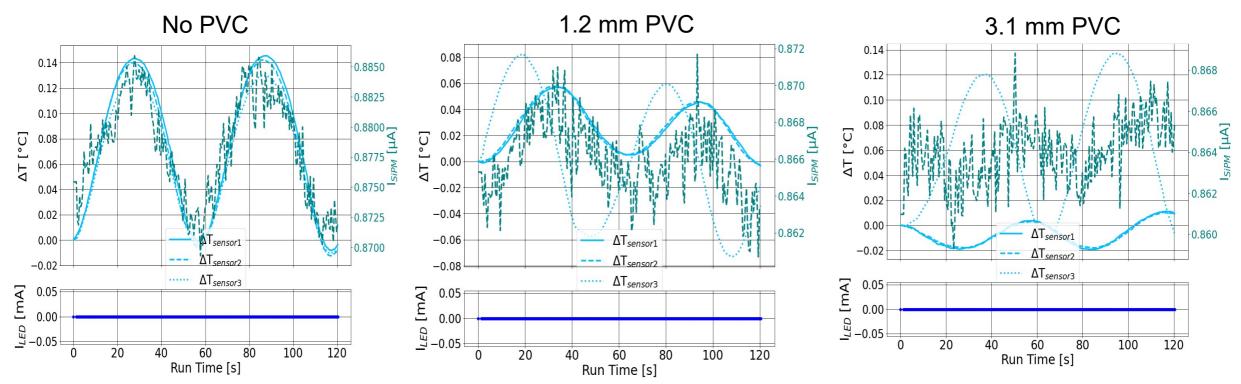
DER FORSCHUNG


Universität Hamburg

Results for degraded thermal contact (1.2 mm PVC)

• $\Delta T_{\text{SIPM}} \sim 2 \text{ K}$, for P = 51 mW, reached in ~ 60 s. $\Delta U_{\text{bd}} = 37 \text{ mV}$

$$\Delta T_{SiPM} = \frac{\Delta I_{photo}}{S_{photo} \cdot I_{photo}}$$


- T oscillations due to feedback loop of the temperature-controlled chuck:
- Due to the increased thermal resistance \rightarrow change on the amplitude and phase of $\Delta T_{sensor1}$ and $\Delta T_{sensor2}$ relative to $\Delta T_{sensor3}$

Dark current (LED = 0 mA)

Universität Hamburg

• U_{bias} = 38 V and T_{chuck} = 25 °C :

• For I_{dark} (current depends on thermal generation, T increase and I_{dark} increase as well):

 \rightarrow With good thermal contact T_{sensors} and I_{dark} are in phase with the same amplitude

 \rightarrow For bad thermal contact, due to thermal diffusion there is a change on the amplitude and phase ready T_{sensor1} and T_{sensor2} (on top of the alumina) compared with the sensor on the cold chuck.