The Terzina Cherenkov telescope onboard the NUSES space mission

Leonid Burmistrov

(on behalf of the NUSES Collaboration)

Terzina - is a part of the NUSES space mission.

L. Burmistrov

Photon path in the telescope

The telescope

	RoC, m (Radius of Curvature)	Distance to big mirror,mm	Diameter, mm
Big mirror	0.8	0	394
Small mirror	0.36	280	144
Projection Plane	0.3	40	121
Corrector lens	Variable	350	362

L. Burmistrov

Upside-down image

Left to right flip

What can we see from Terzina

LUNA in Geneva

L. Burmistrov

SiPM (FBK) camera plane

SiPM arrays of : 8 x 8 channels

Pixel : 3 x 3 mm²

Pixel pitch : 3.1 mm

Dead area from the ages of a single SiPM array : **0.3 mm** Distance between two arrays : **0.2 mm**

We have $5 \times 2 = 10$ SiPM arrays In total We have $40 \times 16 = 640$ SiPM

Array dim. : 25.3 x 25.3 mm² Array Eff. area : 24 x 24 mm²

Camera plane : what can we see from Terzina (projection on the earth)

Simulation pipeline. Track fast sim.

Shower simulation with EASCherSim (100 PeV proton)

EASCherSim - Simulation of the Cherenkov light emission for extensive airshowers with trajectories below and above the limb as a full Monte Carlo simulation.0

Lets choose a good event (with good enough photon density).

As one can see that even tracks which are chosen to be good ones – produce very little amount of light ... Only some of them can be detected.

One can see the region of interests.

The tracks at a height about 30 km and "looking" into Terzina optical axis.

L. Burmistrov

Terzina - estimation of number of the pixels per event. We chose a "good" 100 PeV proton.

Threshold = 0.9 p.e. (we exclude all 0 p.e.) events.

~ 7 p.e. per "good" proton with energy about 100 PeV These 7 p.e. will be spread over two channels.

Lets have an estimation signal event rate

L. Burmistrov

https://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmic-rays.pdf

Number of events during 3 years mission.

Event rates takes into account only the geometrical orientation of Cherenkov light from UHECR showers. The efficiency of the optical system, of the SIPMs and the NSB is ignored.

Conclusions : one slide on SiPM wf. simulation.

Conclusions : one slide on SiPM rad. dose :-)

Integral Flux (cm⁻² s⁻¹)

......