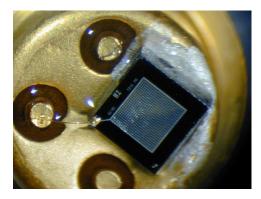
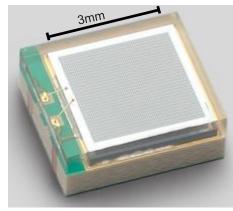
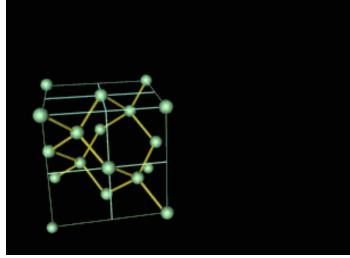
An Overview of SiPMs


Prof. Federico Suarez SiPM radiation workshop

Geneva, April 25th

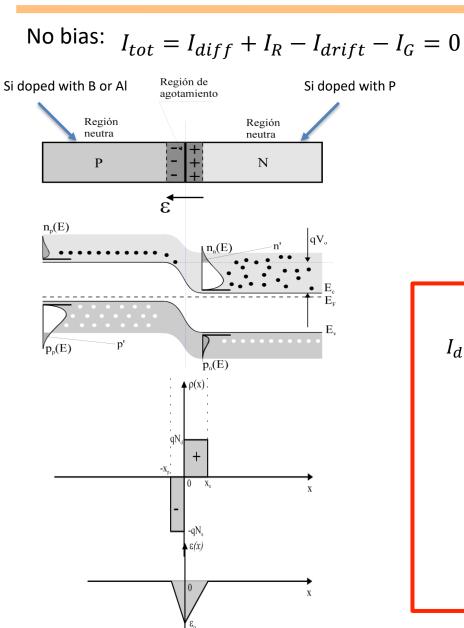


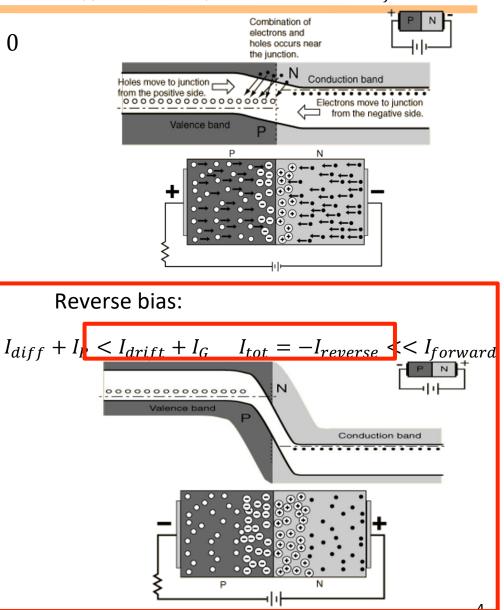
SiPM: Silicon Photomultiplier


- Also known as MPPC (Multi-Pixel Photon Counter)
- Key component for particle detection
 - Sensible component of instruments
- Converts light into electrical signals
- Must be very well studied
 - To design the detector in first place
 - To design the detector calibration procedure
 - To produce quality data
 - To understand the detector behavior

One of the first SiPM produced by FBK research center (formerly IRST) located in Trento, Italy. Src: wikipedia

Hamamatsu S13360-3025PE

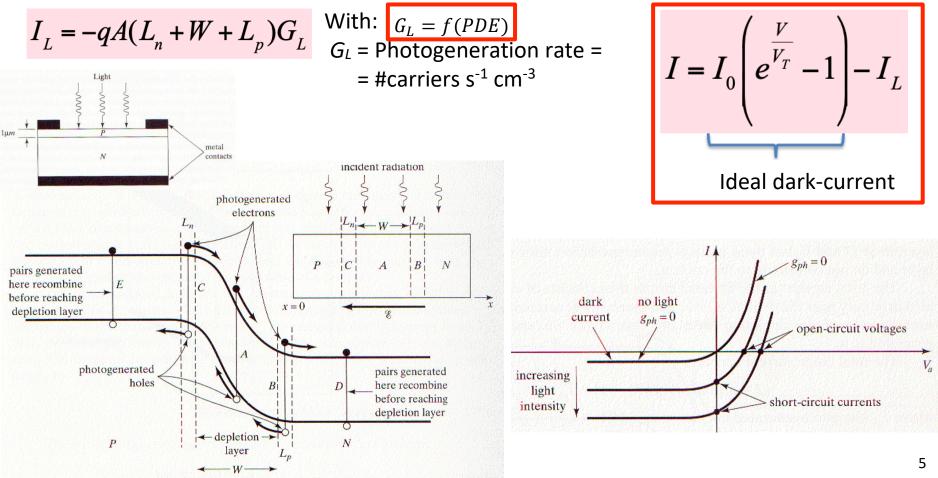



Introduction to Photodiodes

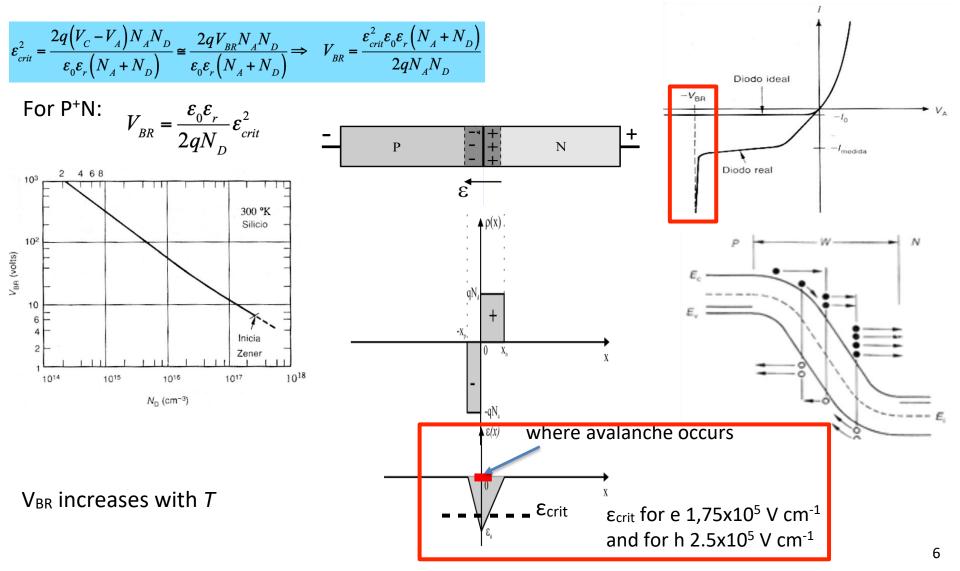
Diode bias

Forward bias:

 $I_{diff} + I_R > I_{drift} + I_G$ $I_{tot} = +I_{forward}$



PhotoDiode:

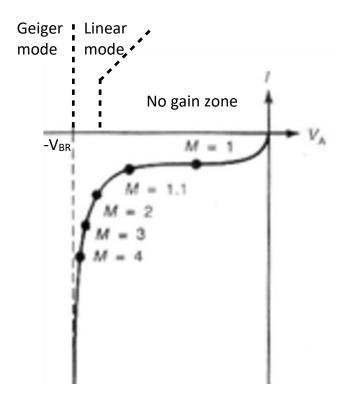

 $I \uparrow \begin{bmatrix} I_{s}(\exp \frac{qV_{a}}{kT} - 1) \\ I_{ph} \\ \downarrow \\ \downarrow \\ V_{a} \\ V_{a} \\ V_{a} \\ \downarrow \\ V_{a} \\$

- Core component of SiPMs
- Photons produce e-h pairs
- When reverse biased carriers contribute to inverse current

APD: Avalanche Photo Diode

Impact ionization produces avalanche in Junction (where maximum E field)

APD: operation modes

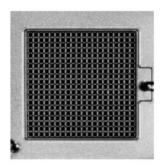


Linear mode: below VBR

- $S_{out} \propto \#_{AbsorbedPhotons} \propto S_{in}$
- Gain < 100
- Small avalanche is self-stopped

Geiger mode: above VBR

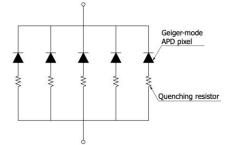
- $S_{outmax} \forall \#_{AbsorbedPhotons} \propto S_{in}$ Overvoltage is set above $\mathbf{V}_{\rm BR}$
- Avalanche both initiated by e and/or h
- Single carrier injected in depletion region triggers self-sustained avalanche
- Carriers may be photo-generated (useful signal) or thermally generated (noise)
- Avalanche has to be stopped by external circuit

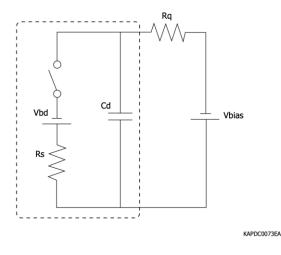

SiPM: Silicone Photomultiplier

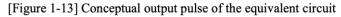
SiPM: Silicone PhotoMultiplier

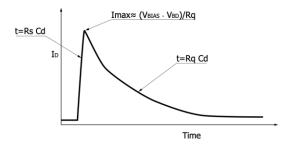
(c) Pixel pitch: 75 µm

• Array of many integrated APDs+Rq in parallel

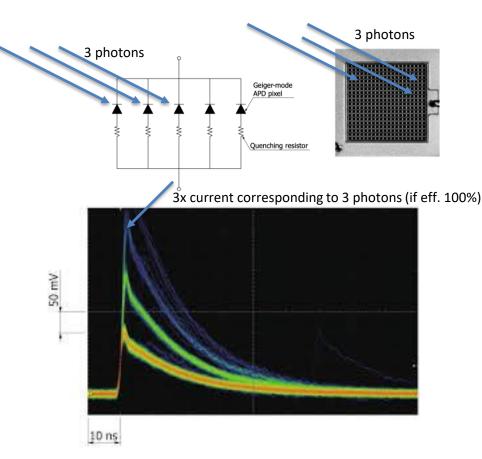

[Figure 1-18] An actual matrix implementation of MPPC microcells

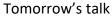

[Figure 1-16] Individual MPPC pixels (microcells) with a metal-composite quenching resistor fabricated around each microcell

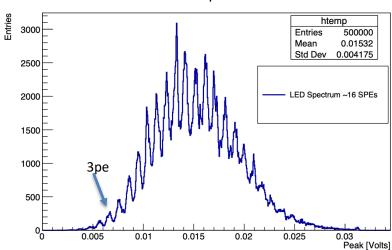

(a) Pixel pitch: 25 μm (b) Pixel pitch: 50 μm


[Figure 1-17] Conceptual illustration of the MPPC as a matrix of GAPD pixels (microcells) connected in parallel

[Figure 1-12] Equivalent circuit of a Geiger-mode APD (GAPD)






SiPM: Output signal

- Q_{out} and I_{peak} proportional to #photons hitting the microcells
 - unless >2ph hit same cell
 - light-pulse is a train of light sub-pulses spread in time

LED Spectrum ~16 SPEs

Parameters and non-ideal effects

Selection guide

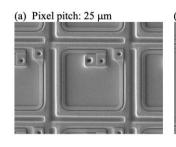
S13360

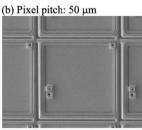
S13360

S13360 S13360 S13360

S13360

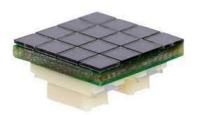
S13360 S13360 S13360

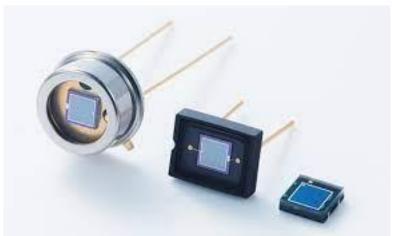

S13360 S13360 S13360 S13360

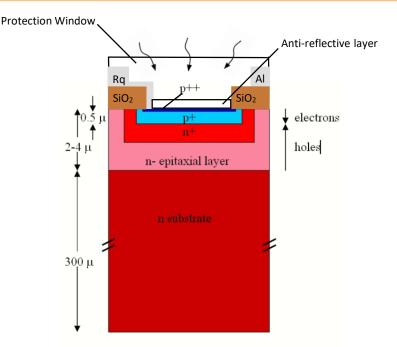

S13360

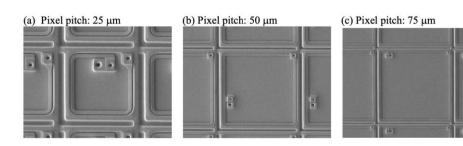
Physical shape S13360 S13360 S13360

- Single SiPM
 - Pixel pitch / cell size
 - # of cells
 - Package type
- Array of SiPMs
- Custom designs


vpe no.	Pixel pitch (µm)	Effective photosensitive area (mm)	Number of pixels	Package	Fill factor (%)
0-1325CS	25	1.3 × 1.3	2668	Ceramic	47
0-1325PE				Surface mount type	
0-3025CS		3.0 × 3.0	14400	Ceramic	
0-3025PE				Surface mount type	
0-6025CS		6.0 × 6.0	57600	Ceramic	
0-6025PE				Surface mount type	
0-1350CS	-	1.3 × 1.3	667	Ceramic	74
0-1350PE				Surface mount type	
0-3050CS		3.0 × 3.0	3600	Ceramic	
0-3050PE				Surface mount type	
0-6050CS		6.0 × 6.0	14400	Ceramic	
0-6050PE				Surface mount type	
0-1375CS	75	1.3 × 1.3	285	Ceramic	82
0-1375PE				Surface mount type	
0-3075CS		3.0 × 3.0	1600	Ceramic	
0-3075PE				Surface mount type	
0-6075CS		6.0 × 6.0	6400	Ceramic	
0-6075PE				Surface mount type	
0-6075CS		6.0 × 6.0	6400	Ceramic	




	La se se	
1	651	6
	(de)	1 65



Detection efficiency

- QE: Quantum efficiency (photon conversion rate) depends on:
 - λ and angle
 - Material (Si, GaAs, GaN, GaP, etc.)
 - Reflections
- PDE: Photo-detection efficiency depends on:
 - QE
 - CE: Collection Efficiency
 - Fill factor (active area vs. total area)
 - Breakdown trigger probability (position of carriers generation)
 - Structure type (P on N or N on P) and layer thicknesses

Modified from D Renker and E Lorenz 2009 JINST 4 P04004

Parameters

- Gain=Q_{out}/q_e
- Timing
 - Good timing resolution <25ps
 - Normally limited by electronics Frontend
- Dynamic range (defined by nonlinearity)
 - Limited by # of cells (P(>1pe) hitting cell)
- Dispersion of parameters:
 - non-uniformity among SiPMs of same series

Nonlinearity [%] = 100 – Linearity [%]

 $A_{output}(t_2) - A_{output}(t_1)$

Ainput(t)

 $\sigma_{Detector Jitter} \propto \frac{1}{\sqrt{N_{nhoton} \times PDE}}$

Gain

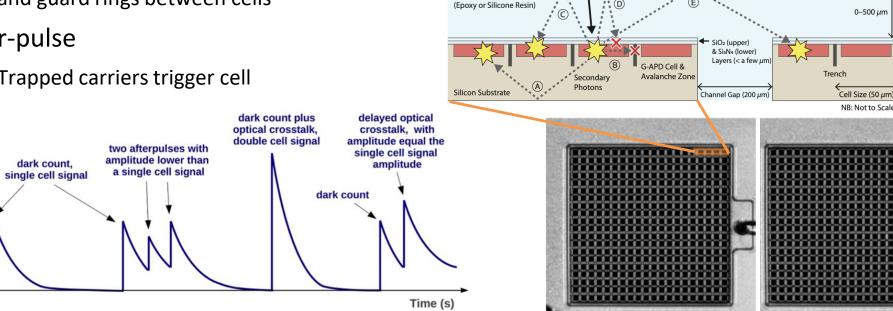
Thermal pulses

PDE

 $S_{output}[e -] = (S_{input}[photons] \cdot QE \cdot CE \cdot M) + S_{dark}[e -]$

Linearity =

 $|t_2 > t_1|$


Parameters cont': Noise

Dark-current

- continuous regime
- DCR (Dark-count rate)
 - dynamic regime
- Cross-talk
 - ph or carriers from avalanche may trigger other cells
 - reduced by manufacturing design with trenches and guard rings between cells
- After-pulse

Amplitude (V)

Trapped carriers trigger cell

 $I_{dark} = I_{drift} + I_{Generation} + I_{Surface} + I_{ThermalAvalanches}$

 $SNR = \frac{N_{photon} \times PDE}{\sqrt{(N_{photon} \times PDE) + N_{dark}}}$

Protection Window

 $CT = ID_{CT} + IR_{CT} + EI_{CT}$

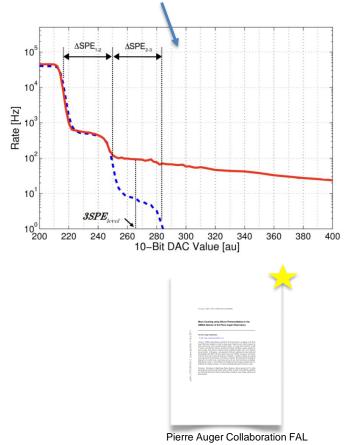
Incident Photon

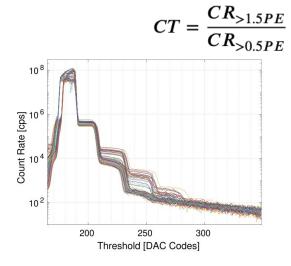
Stefan Gundacker et al 2020 Phys. Med. Biol., Reproduction from Acerbi and Gundacker, 2019

Semiconductor Fundamentals (a) Reverse bias

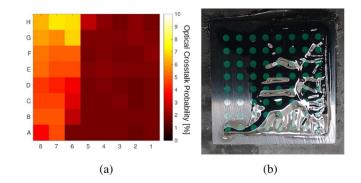
Hampel et al. NIM-A 976 (2020) 164262

Nakamura et al. https://doi.org/10.7566/JPSCP.27.011

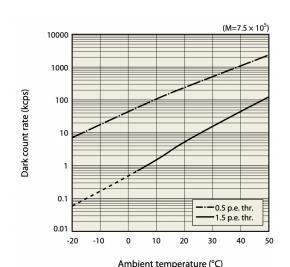

0-500 µm

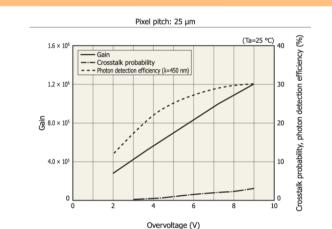

Pierret.

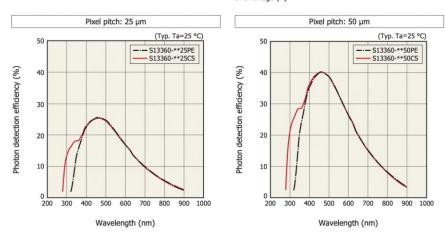
Device


Parameters cont': Noise???

- Useful for:
 - Detector diagnostics
 - Calibration

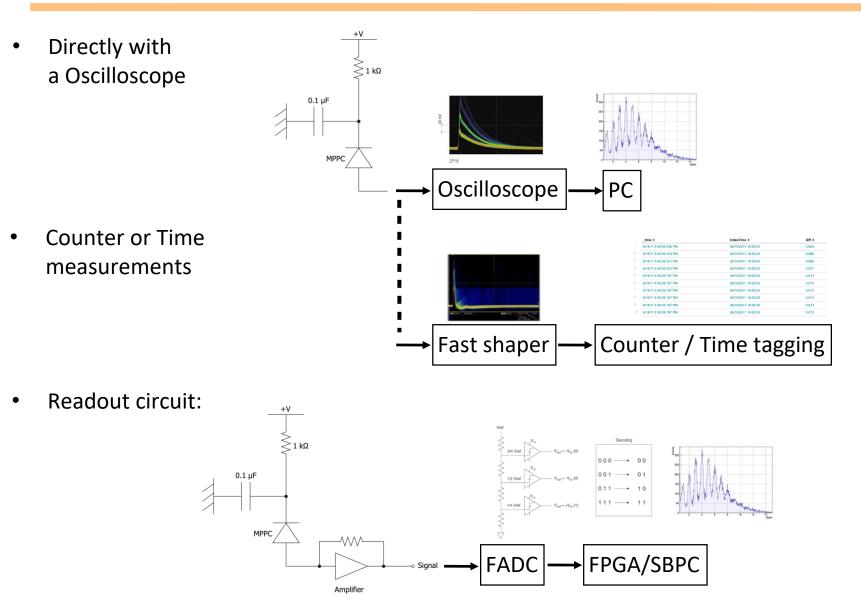

Fig. 8. Measurement of the average count rate over the threshold of the 64 SiPMs of the module after it first deployment. It can be seen that at 1.5 PE level there is a high dispersion of the count rate between channels, this is produced by a change in the CT of the devices due to a bad coupling of the SiPMs to the optical adapter.

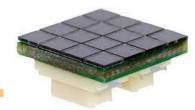



Fig. 9. (a) Plot of the optical crosstalk probability of each channel aligned with its position in the optical adapter. (b) Picture of the optical adapter after the extraction of the electronics. A high optical crosstalk probability correlates with the absence of optical silicone grease in the optical adapter.

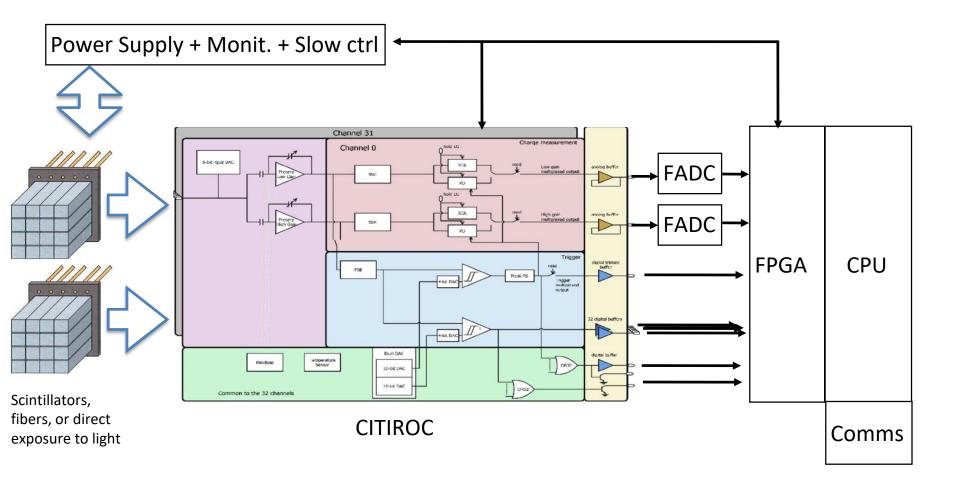
Parameters correlation and variations

- Gain vs. Overvoltage
- Gain and PDE vs. cell size
- Dynamic range vs. # of cells
- Gain/PDE vs. T
- DCR vs. T
- DCR/CT vs. Overvoltage
- many other...

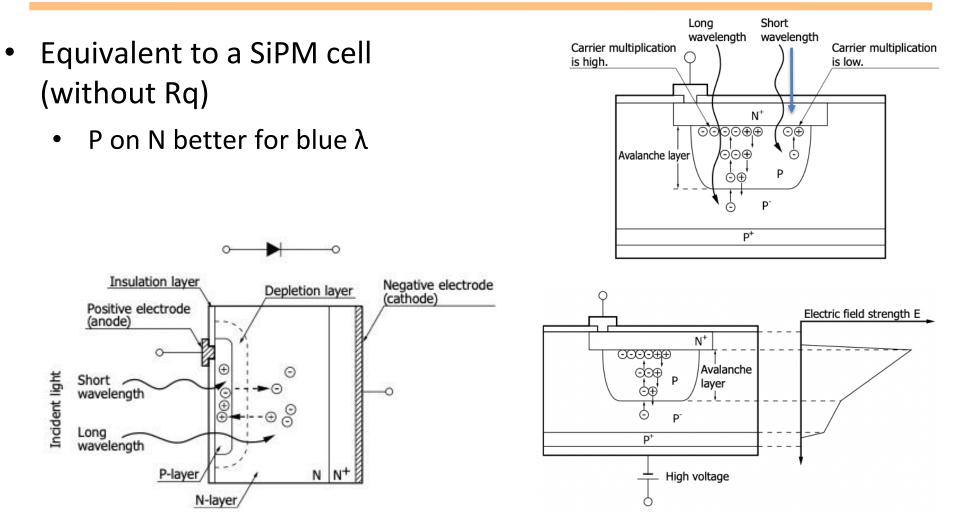




Signal Readout


Single SiPM: Readout

SiPM arrays



Muchas Gracias

Src: Hamamatsu technical note 22

N on P diode

P on N diode

23

Harsh environments

- Radiation damage produce defects
 - Bulk damage in the crystalline structure
 - From high energy particles (p, e, γ , π , n, ions)
 - Increases SiPM noise: dark-current, dark-counts, and therefore false triggering of detector
 - Also from low energy n through indirect processes
 - Surface damage in anti-reflective coating and maybe in first layer
 - Mostly from photons and low energy charged particles
 - Increases dark-current
 - Change of effective doping density
 - Low energy n produce transmutation doping in Si
 - Fast n produce AI/Mg but 2 orders of magnitude less likely)
 - Removal of some dopants (¹⁰B capture and other processes)
- Annealing (damage recovery)
 - Reordering of displaced atoms
 - Somehow proportional to temperature

00000	000000000000000000000000000000000000000
00000	000000000
(b)	0000 0000
	000000000
00000	00000000
00000	0 0 0 0 0 0 0 0 0
00000	0 0 0 0 0 0 0 0 0
00000	0 0 0 0 0 0 0 0
	(e)

 $^{29}Si(n,\alpha)^{26}Mg$

 ${}^{10}B(n,\alpha)Li$

 ${}^{30}\text{Si} + n \rightarrow {}^{31}\text{Si} \rightarrow (\beta) {}^{31}\text{P}$

SiPM vs PMT


Advantages

Compact and light

- Very robust, mechanically and opto-electronically
- More deterministic gain
- Low ENF
- Cheap and with multiple vendors
- V_{Bias} 10-100x lower => simpler electronics, more reliable, low maintenance and costs
- Higher red to near-IR QE
- Almost not sensitive to magnetic fields
- Low cross-talk between channels in SiPM arrays

Disadvantages

- High Dark-current and Dark-counts
- May require cooling => increased complexity and cost
- No large active areas => higher dark counts per area, and high cost
- High dependence of gain with temperature => Compensation also requires additional complexity and costs.
- Output signal is complex and slow => requires more analog filtering and pulse shaping

