
SiPM neutron hardening with Cf-252 for space environments

<u>Federico Suarez</u>, Shannon Hoogerheide, Daniel Hussey, Agustín Lucero, Johannes Hulsman SiPM radiation workshop @ CERN

Geneva, April 26th

Motivation

- Spaceborne instruments are prone to fail with background radiation
- Irradiate with n single SiPM to be used in POLAR-2 polarimeter
 - Hamamatsu S13360-6050PE (6mm x 6mm)
 - Provided by University of Geneva

Background Spectrum at 300km and at an inclination of 42 deg. (without SAA)

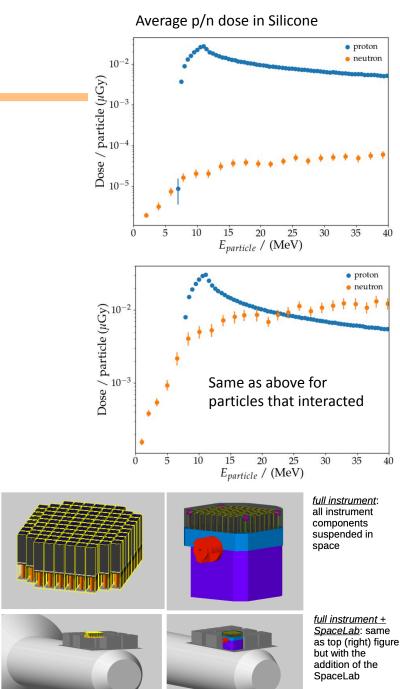
Some estimations

- Different sims scenarios for POLAR-2 with p
 - Dose from p < 2 Gy for 2 yrs. mission (without SAA)
- n flux generally higher than p
- Neutrons easily penetrate shielding for • charged particles and photons
 - n well absorbed in materials with Hydrogen •
 - not considered in Sims scenarios ٠
- Low n-Si interaction probability but produce additional damage than p (direct+indirect)
- Starting point for irradiation campaign: •
 - < 4.9x10¹¹ n on SiPM (2MeV) for 0.984 Gy/yr (extrapolation from p)

Simulation Bare Instru

Bare Instru

Full Instrun


Full Instrun

101 0.504 0 97 9				further shielding.
		- from proton flux - 100keV to 400MeV - prediction for 2025		
n Setup	POLAR-2 orbit	- solar	maximum	
ument	0.984 Gy/yr	- AP-8	model	
ument + SpaceLab	0.627 Gy/yr			<u>Bare instrument +</u>
ment	0.077 Gy/yr			<u>SpaceLab</u> : same as top (left) figure but
ment + SpaceLab	0.064 Gy/yr			with the addition of

Bare instrument:

instrument component

suspended in space. No

What do neutrons do to SiPM?

- Bulk damage in the crystalline structure
 - Increases SiPM noise: DarkCurrent, DCR, AP
 - May produce false triggering of detector
 - Bulk damage can also be from low energy n through indirect processes
- Surface damage of SiPM
 - Mostly from photons and low energy charged particles
 - Increases DarkCurrent & Power Consumption (important for space applications)
- Change of effective doping density
 - Low energy n produce transmutation doping in Si
 - Fast n produce AI/Mg (but 2 orders of magnitude less likely)
 - Removal of some dopants
- Other problems
 - Very difficult to shield
 - Activation
 - Additional impurities through other processes

0 0 0 00 0 0 0 0 0 0 $\bigcirc \bigcirc$

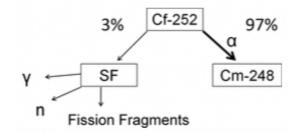
 $^{29}Si(n,\alpha)^{26}Mg$

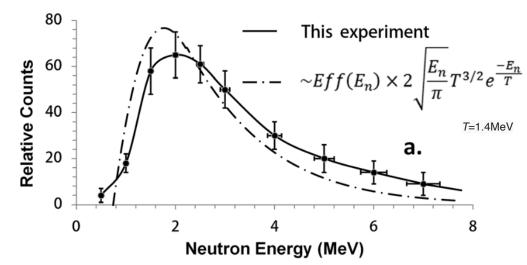
 ${}^{10}\mathrm{B}(\mathrm{n},\alpha)\mathrm{Li}$

 ${}^{30}\text{Si} + n \rightarrow {}^{31}\text{Si} \rightarrow (\beta)^{31}\text{P}$

NIST Californium Neutron Irradiation Facility (CNIF)

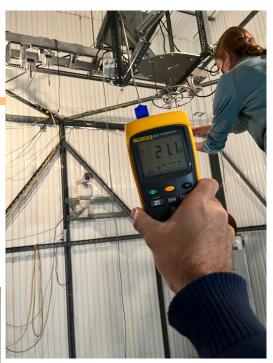
- Located at NIST, Gaithersburg (Maryland, USA)
- Double room underground facility
 - Room with source in sub-room with n absorbers
 - Room for experiment preparation and remote control
- Cf-252 source intensity: 1.688 x 10⁷ ns⁻¹ (4π)
 - At the moment of irradiation
 - Diameter ~7.7mm



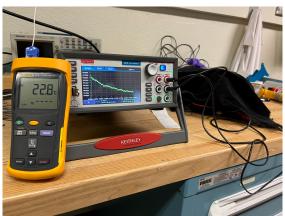


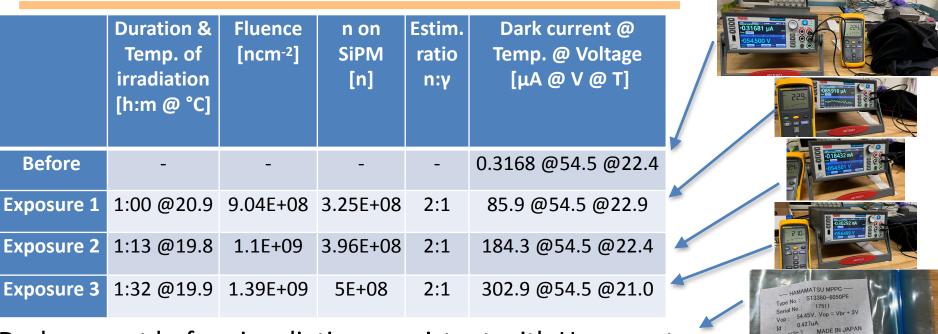
Californium-252

- Neutrons and gammas from spontaneous fissions
 - Neutrons in the MeV order of magnitude
 - Expected bulk damage in Si lattice of the SiPM
 - Gammas rate ~ 2n:1γ with E<155 KeV
 - Expected some surface damage in the SiPM
- Alpha decay
 - Alphas stopped in ²⁵²Cf source cladding (Pt-Ir capsule)

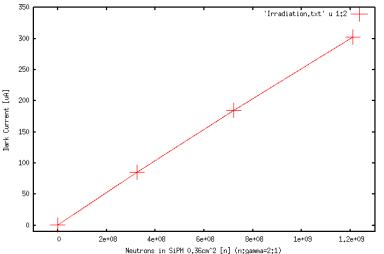


Experiment setup and strategy


- 1 hr exposition @ 2.3 cm away from ²⁵²Cf source center giving ~3x10⁸ n in the SiPM
 - ~1000x lower dose from sims compared to p but still much damage expected
 - Several exposures with different exposition time (check T)
- Measurements of dark-current after each exposure
 - In dark-box
 - Directly powered with a SMU Keithley 2450



Exposures and Dark-current


Date of 3 exposure 29/Oct/2021 DR measurements taken 20s after polarization SiPM surface 0.36cm²

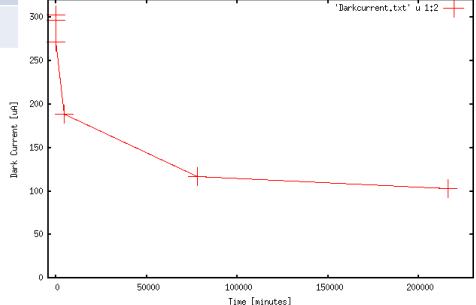
Dark-current before irradiation consistent with Hamamatsu

Almost 1000x Dark-current after 3 exposures

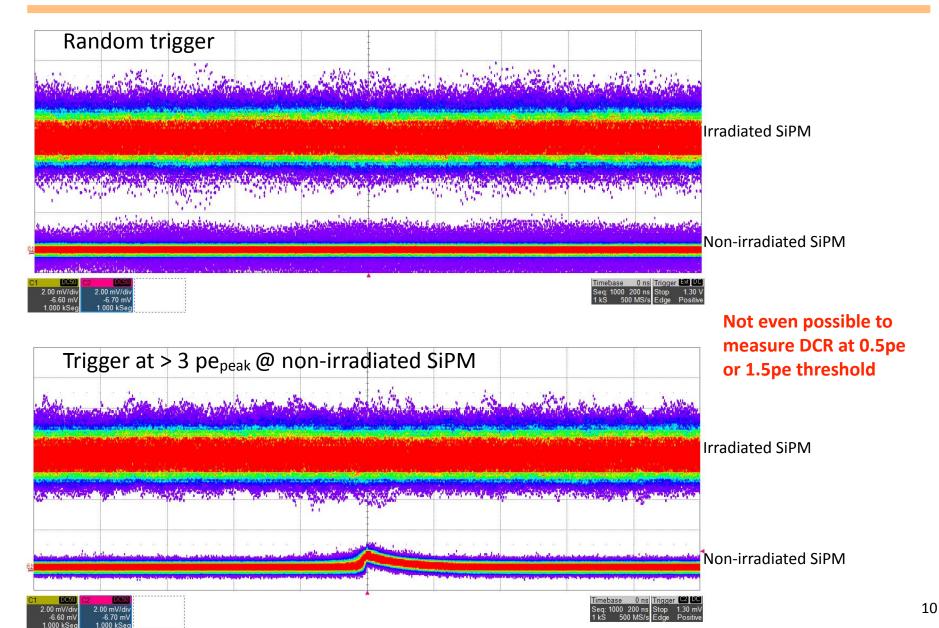
- x271 after 3.25x10⁸ n in the SiPM
- x581 after 7.21x10⁸ n
- x956 after 1.22x10⁹ n

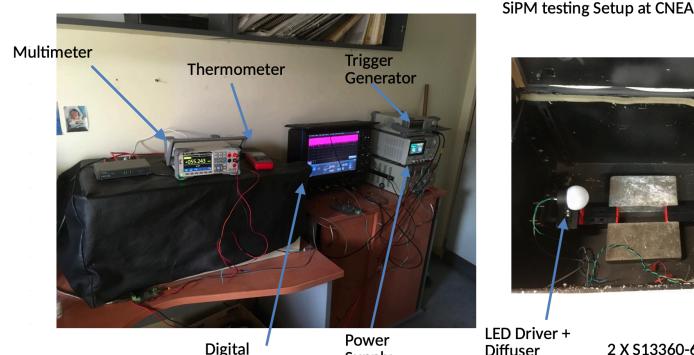
8

Dark-current settling

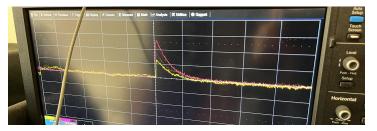

	Time after last irrad. [d h:m]	Dark current @ Temp. @ Voltage [µA @ V @ T]
Meas. 1	0d 00:00	302.9 @54.5 @22.4
Meas. 2	0d 00:03	297 @54.5 @22.7
Meas. 3	0d 00:36	272 @54.5 @23.3
Meas. 4	3d	189 @54.5 @20.6
Meas. 5	54d	117 @54.5 @24.0
Meas. 6	150d	103 @54.5 @24.0

Result after slow annealing at room temperature


- **150 days storage @** $T \le 25^{\circ}C$
- Total of 335x more than before irradiation


SiPM S13360-6050PE after 1.22×10^9 n from Cf-252

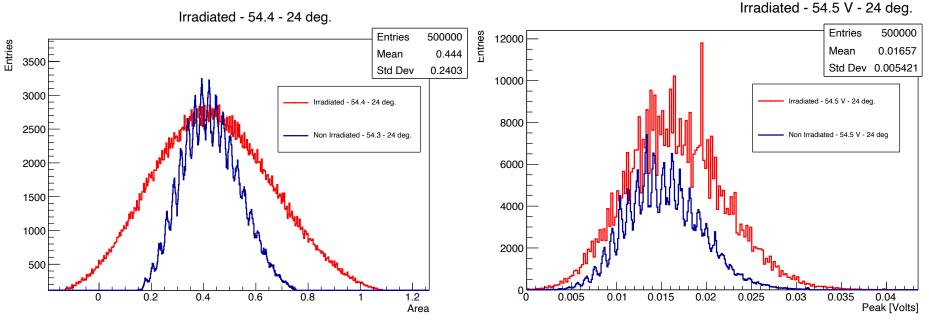
Baseline and Dark-pulses (@ 25°C)


Measurements with pulsed light

Digital Power Di Oscilloscope Supply Di (DAQ) Lecroy Waverunner 9404 10Gs/s

2 X S13360-6050PE (Irradiated & Non Irradiated)

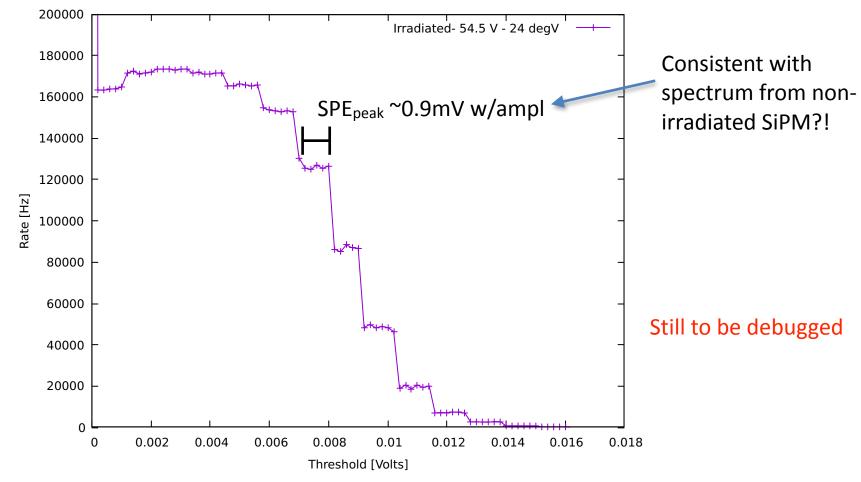
- And it still works!!!!
 - at least with many pe
- But how well does it work?


Spectrums

- Absolute calibration of Irradiated SiPM not possible with spectrums
 - Not even with 500000 million shots neither amplification
 - ENC too high
 - Artifacts in data analysis too high due to high DCR (poor S/N ratio) but it can be improved

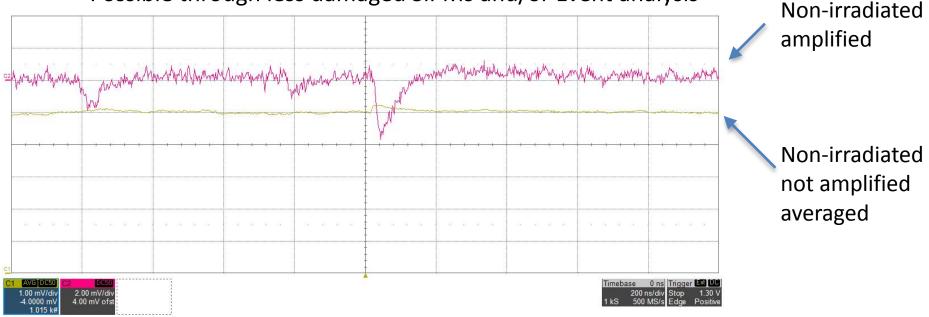
LED Driver + Diffuser

2 X S13360-6050PE (Irradiated Non Irradiated)


Cross-calibrated with non-irradiated SiPM with approx. same #photons

Charge and Peak spectrums for ~16pe @24°C with 5x amplifier calibrated with VNA Peak spectrum for irradiated SiPM biased because artifacts in analysis due to big baseline fluctuations $_{12}$

Is it still useful to produce data & science?


• Still possible to roughly calibrate it through DCR vs. Threshold !?!

- Absolutely useful for signals over 14pe
- Also shows accidental T1 self-trigger rate for lower thresholds

Is it still useful to produce data & science?

- Low #photos and T2s or External triggering
 - Possible through less damaged SiPMs and/or Event analysis

- Useful above ###photons with external triggering???
 - but much lower than self-trigger

Conclusions:

- Results for Dark-current
 - ~1000x increase in Dark-current after 3.394×10^9 n cm⁻² on SiPM area (from ²⁵²Cf and its γ)
 - Dark-current increases linearly with fluence in our exposition
 - Dark-current settles to ~330x after 3 months at room temp.
- SiPM still works and detect pulsed light!!! but S/N ratio degrades at room temp.
 - Still useful for science by increasing threshold or advanced triggering
 - It can still be calibrated?!
 - May reduce acceptance of detector
- Next steps?
 - Measure other parameters: AP, CT, others???
 - Specification of SiPM "damage" for application?
 - Testing at application temperature?
 - Quantification of "damage" per Gy or Fluence for n vs. p at same E?
 - Study effect of thermal neutrons in the SiPM?
 - thermal neutrons are very abundant in space

Muchas Gracias