Amplitude Singularities from Cluster Algebras \& Tropical Geometry

Georgios Papathanasiou

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

SAGEX Closing Meeting Queen Mary University of London, June 22, 2022

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r `}{ }^{24 \ldots]}$

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity $\left.{ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r `}{ }^{2} 44 \ldots\right]$
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich'10] }}$

Motivation: From $\mathcal{N}=4$ SYM to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity [Bern,Dixon,Dunbar,Kosower`94...]
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich'10] }}$
- Canonical Differential Equations ${ }^{[H e n n ' 13]}$

Motivation: From $\mathcal{N}=4 \mathrm{SYM}$ to the real world
$\mathcal{N}=4$ super Yang-Mills (SYM) theory: an ideal theoretical laboratory for developing new paradigms leading to significant practical applications.

For example,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r ' 94 \ldots] ~}$
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich'10] }}$
- Canonical Differential Equations

All of them crucial in recent state of the art calculations for collider and gravitational wave physics
[Abreu,Ita,Moriello,Page,Tschernow,Zeng'20] [Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng'21]

The Role of Cluster Algebras

Tremendously successful in describing singularities of n-particle amplitudes \mathcal{A}_{n} in planar (color $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed) limit of $\mathcal{N}=4 \mathrm{SYM}$. [Golden, Goncharov, Spradlin, Vergu,Volovich'13][Drummond,Foster, Gurdogan'17]

The Role of Cluster Algebras

Tremendously successful in describing singularities of n-particle amplitudes \mathcal{A}_{n} in planar (color $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed) limit of $\mathcal{N}=4 \mathrm{SYM}$. [Golden, Goncharov, Spradlin, Vergu,Volovich'13] [Drummond,Foster, Gurdogan'17]
\Rightarrow results for $n=6,7$ to unprecedented loop order. [Drummond,GP,Spradlin’14]
[Drummond,Foster, Gurdogan,GP'18] [Caron-Huot,Dixon,Dulat,Hippel,McLeod,GP'19A + B]

Recently observed to underlie analytic structure of a host of Feynman integrals and realistic processes such as Higgs+jet production in heavy-top limit of QCD! [Chicherin,Henn,GP;PRL 126091603 (2021)]

Long-standing Burning Questions

In $\mathcal{N}=4$ SYM, relevant cluster algebras for \mathcal{A}_{n} with $n \geq 8$ 1. become infinite \Rightarrow loss of predictability?

Long-standing Burning Questions

In $\mathcal{N}=4$ SYM, relevant cluster algebras for \mathcal{A}_{n} with $n \geq 8$

1. become infinite \Rightarrow loss of predictability?
2. Cannot describe more intricate singularities found in explicit calculations ${ }^{[H e, L i, Z h a n g ' 19 ' 20] ~[L i, ~ Z h a n g ' ~ 21] ~}$

Long-standing Burning Questions

In $\mathcal{N}=4$ SYM, relevant cluster algebras for \mathcal{A}_{n} with $n \geq 8$

1. become infinite \Rightarrow loss of predictability?
2. Cannot describe more intricate singularities found in explicit calculations ${ }^{[H e, L i, Z h a n g ' ~} 19^{2}$ 20] [Li, Zhang' 21]

This talk

Natural resolution of both issues from connection with tropical geometry

Long-standing Burning Questions

In $\mathcal{N}=4$ SYM, relevant cluster algebras for \mathcal{A}_{n} with $n \geq 8$

1. become infinite \Rightarrow loss of predictability?
2. Cannot describe more intricate singularities found in explicit calculations ${ }^{[H e, L i, Z h a n g ' 19 ' 20] ~[L i, ~ Z h a n g ' ~ 21] ~}$

This talk

Natural resolution of both issues from connection with tropical geometry

Explicit singularity predictions for

- $n=8{ }^{\text {[Henke, Papathanasiou'19] }}$ see also [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios'19B]

Long-standing Burning Questions

In $\mathcal{N}=4$ SYM, relevant cluster algebras for \mathcal{A}_{n} with $n \geq 8$

1. become infinite \Rightarrow loss of predictability?
2. Cannot describe more intricate singularities found in explicit calculations ${ }^{[H e, L i, Z h a n g ' ~ 19 ~ ' 20] ~[L i, ~ Z h a n g ' ~ 21] ~}$

This talk

Natural resolution of both issues from connection with tropical geometry

Explicit singularity predictions for

- $n=8{ }^{\text {[Henke, Papathanasiou'19] }}$ see also [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios' 19B]
- In principle any n, explicitly $n=9$, see also ${ }^{\text {[Ren,Spradlin,Volovich'21] }}$

In agreement with all known amplitude data.

Outline

Introduction: Cluster Algebras and $\mathcal{N}=4$ SYM

Relation to Tropical Grassmannians

Predictions for 8- and 9-particle Singularities

Planar $\mathcal{N}=4$ Amplitudes: Symmetries and Kinematics

momenta $p_{i}^{2}=0$, helicities $h_{i}= \pm 1$, degree $m=\left(\# h_{i}=-1\right)-2\left(\mathrm{~N}^{m} \mathrm{MHV}\right)$ loop order L
amplitude $\mathcal{A}_{n, m}^{(L)}\left(\mathcal{X}_{i}\left(p_{1}, \ldots, p_{n}\right)\right)$

Planar $\mathcal{N}=4$ Amplitudes: Symmetries and Kinematics

momenta $p_{i}^{2}=0$, helicities $h_{i}= \pm 1$, degree $m=\left(\# h_{i}=-1\right)-2\left(\mathrm{~N}^{m} \mathrm{MHV}\right)$ loop order L
amplitude $\mathcal{A}_{n, m}^{(L)}\left(\mathcal{X}_{i}\left(p_{1}, \ldots, p_{n}\right)\right)$

Dual conformal symmetry: \mathcal{X}_{i} coordinates on $G r(4, n) /\left(\mathbb{C}^{*}\right)^{n-1}$, i.e. $3 n-15$ independent components of n ordered momentum twistors $Z_{i} \in \mathbb{C P}^{3}$ [Drummond,Henn,Sokatchev,Smirnov'06] [Hodges'09]

$$
\begin{gathered}
p_{i} \equiv x_{i+1}-x_{i}, \quad x_{i} \sim Z_{i-1} \wedge Z_{i} \\
\left(x_{i}-x_{j}\right)^{2} \sim \epsilon_{I J K L} Z_{i-1}^{I} Z_{i}^{J} Z_{j-1}^{K} Z_{j}^{L}=\operatorname{det}\left(Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right) \equiv\langle i-1 i j-1 j\rangle
\end{gathered}
$$

Planar $\mathcal{N}=4$ Amplitudes: The right functions

Planar $\mathcal{N}=4$ Amplitudes: The right functions

Evidence: $\mathcal{A}_{n, m=0,1}^{(L)}=$ multiple polylogarithms (MPL) of weight $k=2 L$
[Arkani-Hamed,Bourjaily, Cachazo, Goncharov,Postnikov, Trnka'12] [Duhr,Del Duca,Smirnov'09] ... [GP'13'14]

Planar $\mathcal{N}=4$ Amplitudes: The right functions
Evidence: $\mathcal{A}_{n, m=0,1}^{(L)}=$ multiple polylogarithms (MPL) of weight $k=2 L$
[Arkani-Hamed,Bourjaily, Cachazo, Goncharov, Postnikov, Trnka'12] [Duhr,Del Duca,Smirnov'09] ... [GP'13'14]
f_{k} is MPL of weight k if its differential obeys

$$
d f_{k}=\sum_{\alpha_{1}} f_{k-1}^{\left(\alpha_{1}\right)} d \log \phi_{\alpha_{1}}
$$

Planar $\mathcal{N}=4$ Amplitudes: The right functions
Evidence: $\mathcal{A}_{n, m=0,1}^{(L)}=$ multiple polylogarithms (MPL) of weight $k=2 L$
[Arkani-Hamed,Bourjaily, Cachazo, Goncharov, Postnikov, Trnka'12] [Duhr,Del Duca,Smirnov'09] ... [GP'13'14]
f_{k} is MPL of weight k if its differential obeys

$$
\begin{gathered}
d f_{k}=\sum_{\alpha_{1}} f_{k-1}^{\left(\alpha_{1}\right)} d \log \phi_{\alpha_{1}} \\
\vdots \\
d f_{1}^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}=\sum_{\alpha_{k}} f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{k}}
\end{gathered}
$$

- $f_{k^{\prime}}^{(\vec{\alpha})}$ functions of weight $k^{\prime}, f_{0}^{(\vec{\alpha})} \in \mathbb{Q}$

Planar $\mathcal{N}=4$ Amplitudes: The right functions
Evidence: $\mathcal{A}_{n, m=0,1}^{(L)}=$ multiple polylogarithms (MPL) of weight $k=2 L$ [Arkani-Hamed,Bourjaily, Cachazo, Goncharov, Postnikov, Trnka'12] [Duhr,Del Duca,Smirnov'09] ... [GP'13'14] f_{k} is MPL of weight k if its differential obeys

$$
\begin{gathered}
d f_{k}=\sum_{\alpha_{1}} f_{k-1}^{\left(\alpha_{1}\right)} d \log \phi_{\alpha_{1}} \\
\vdots \\
d f_{1}^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}=\sum_{\alpha_{k}} f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{k}}
\end{gathered}
$$

- $f_{k^{\prime}}^{(\vec{\alpha})}$ functions of weight $k^{\prime}, f_{0}^{(\vec{\alpha})} \in \mathbb{Q}$
- $\phi_{\alpha_{i}}$ algebraic functions of independent variables: (symbol) alphabet. [Goncharov,Spradlin,Vergu,Volovich'10]

Planar $\mathcal{N}=4$ Amplitudes: The right functions
Evidence: $\mathcal{A}_{n, m=0,1}^{(L)}=$ multiple polylogarithms (MPL) of weight $k=2 L$ [Arkani-Hamed,Bourjaily,Cachazo, Goncharov, Postnikov, Trnka'12] [Duhr,Del Duca,Smirnov'09]... [GP'13'14] f_{k} is MPL of weight k if its differential obeys

$$
\begin{gathered}
d f_{k}=\sum_{\alpha_{1}} f_{k-1}^{\left(\alpha_{1}\right)} d \log \phi_{\alpha_{1}} \\
\vdots \\
d f_{1}^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}=\sum_{\alpha_{k}} f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{k}}
\end{gathered}
$$

- $f_{k^{\prime}}^{(\vec{\alpha})}$ functions of weight $k^{\prime}, f_{0}^{(\vec{\alpha})} \in \mathbb{Q}$
- $\phi_{\alpha_{i}}$ algebraic functions of independent variables: (symbol) alphabet. [Goncharov,Spradlin,Vergu,Volovich'10]

Symbol $S\left(f_{k}\right)$ simultaneously takes account of all steps of recursion.

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras

The right variables

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ?

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich'13]

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich'13]

Appear naturally as compactification of $G r(4, n)$ positive kinematic region [Arkani-Hamed,Bourjaily, Cachazo, Goncharov,Postnikov, Trnka]

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin,Vergu,Volovich'13]

Appear naturally as compactification of $G r(4, n)$ positive kinematic region [Arkani-Hamed,Bourjaily, Cachazo, Goncharov,Postnikov,Trnka]

Potential amplitude singularities when cluster variables $a_{m}=0, \infty$

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $G r(4, n)$ cluster algebra [Golden, Goncharov,Spradlin, Vergu, Volovich'13]

Appear naturally as compactification of $G r(4, n)$ positive kinematic region [Arkani-Hamed,Bourjaily,Cachazo, Goncharov,Postnikov,Trnka]

Potential amplitude singularities when cluster variables $a_{m}=0, \infty$
\square
Crucial information for computing \mathcal{A}_{n} via amplitude bootstrap:
[SAGEX Review: Ch.5, GP'22]

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin, Vergu,Volovich'13]

Appear naturally as compactification of $G r(4, n)$ positive kinematic region [Arkani-Hamed,Bourjaily,Cachazo, Goncharov, Postnikov,Trnka]

Potential amplitude singularities when cluster variables $a_{m}=0, \infty$
\Downarrow
Crucial information for computing \mathcal{A}_{n} via amplitude bootstrap:

Planar $\mathcal{N}=4$ Amplitudes and Cluster Algebras
The right variables
What is the symbol alphabet describing \mathcal{A}_{n} ? For $n=6,7$,

- variables a_{m} of a Grassmannian $\operatorname{Gr}(4, n)$ cluster algebra [Golden, Goncharov,Spradlin, Vergu,Volovich'13]

Appear naturally as compactification of $G r(4, n)$ positive kinematic region [Arkani-Hamed,Bourjaily,Cachazo, Goncharov,Postnikov,Trnka]

Potential amplitude singularities when cluster variables $a_{m}=0, \infty$
\Downarrow
Crucial information for computing \mathcal{A}_{n} via amplitude bootstrap:

GP - Amplitude Singularities from Cluster Algebras \& Tropical Geometry Introduction: Cluster Algebras and $\mathcal{N}=4$ SYM 8/25

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure
QFT Property Computation

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_{6}^{(L)}, L=3,4$
[Gaiotto,Maldacena, Sever,Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts [Gaiotto,Maldacena, Sever,Vieira]	$\mathcal{A}_{6}^{(L)}, L=3,4$
Cluster Algebras [Dixon,Drummond, (Henn, $)$ Duhr/Hippel,Pennington] [Golden, Goncharov, Spradlin,Vergu,Volovich]	$S\left(\mathcal{A}_{7,0}^{(3)}\right)$

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_{6}^{(L)}, L=3,4$
[Gaiotto,Maldacena, Sever, Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	$S\left(\mathcal{A}_{7,0}^{(3)}\right)$
[Golden, Goncharov, Spradlin, Vergu, Volovich]	[Drummond, GP, Spradlin]
Steinmann Relation	$\mathcal{A}_{6}^{(5)}, S\left(\mathcal{A}_{7,1}^{(3)}, \mathcal{A}_{7,0}^{(4)}\right)$
[Steinmann]	[Caron-Huot,Dixon,...] [Dixon,..., GP,Spradlin]

Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

QFT Property	Computation
Physical Branch Cuts	$\mathcal{A}_{6}^{(L)}, L=3,4$
[Gaiotto,Maldacena, Sever, Vieira]	[Dixon,Drummond, (Henn,) Duhr/Hippel,Pennington]
Cluster Algebras	$S\left(\mathcal{A}_{7,0}^{(3)}\right)$
[Golden, Goncharov, Spradlin,Vergu, Volovich]	[Drummond, GP, Spradlin]
Steinmann Relation	$\mathcal{A}_{6}^{(5)}, S\left(\mathcal{A}_{7,1}^{(3)}, \mathcal{A}_{7,0}^{(4)}\right)$
[Steinmann]	$\begin{aligned} & \text { [Caron-Huot,Dixon,...] } \\ & \text { [Dixon,..., GP,Spradlin] } \end{aligned}$
Cluster Adjacency	$S\left(\mathcal{A}_{7,1}^{(4)}\right)$
[Drummond,Foster, Gurdogan]	[Drummond,Foster, Gurdogan, GP]
Extended Steinmann	$\Leftrightarrow \quad \mathcal{A}_{6}^{(6)}, \mathcal{A}_{6,0}^{(7)}$
Coaction Principle	[Caron-Huot,Dixon,Dulat, McLeod,Hippel,GP]

[^0]Application: The Steinmann Cluster Bootstrap for $\mathcal{N}=4$ SYM Amplitudes Evade Feynman diagrams by exploiting analytic structure

See also $S\left(A_{n}^{(2)}\right) \rightarrow A_{n}^{(2)}, S\left(\mathcal{A}_{7}\right) \rightarrow \mathcal{A}_{7}$ work $\begin{gathered}\text { [Gixon,Liu] [Golden,McLeoded }\end{gathered}$
GP - Amplitude Singularities from Cluster Algebras \& Tropical Geometry Introduction: Cluster Algebras and $\mathcal{N}=4$ SYM 9/25

Cluster Algebras [Fomin,Zelevinsky'01A]

Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

- A set of variables a_{i}, the cluster (\mathcal{A}-)coordinates

Cluster Algebras [Fomin,Zelevinsky'01A]
They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters

Cluster Algebras [Fomin,Zelevinsky'01A]
They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Cluster Algebras [Fomin,Zelevinsky'01A]
They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers.

Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} cluster algebra

Initial Cluster

Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} cluster algebra

Initial Cluster

Mutate a_{2} : New cluster

General rule for mutation at node k :

1. $\forall i \rightarrow k \rightarrow j$, add $i \rightarrow j$, reverse $i \leftarrow k \leftarrow j$, remove \rightleftarrows.

Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A_{3} cluster algebra

Initial Cluster

Mutate a_{2} : New cluster

$$
a_{2}^{\prime}=\left(a_{1}+a_{3}\right) / a_{2}
$$

and so on...

General rule for mutation at node k :

1. $\forall i \rightarrow k \rightarrow j$, add $i \rightarrow j$, reverse $i \leftarrow k \leftarrow j$, remove \rightleftarrows.
2. In new quiver/cluster, $a_{k} \rightarrow a_{k}^{\prime}=\left(\prod_{\text {arrows } i \rightarrow k} a_{i}+\prod_{\text {arrows } k \rightarrow j} a_{j}\right) / a_{k}$

Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

- A set of variables a_{i}, the cluster $(\mathcal{A}$-)coordinates
- Grouped into overlapping subsets $\left\{a_{1}, \ldots, a_{d}\right\}$ of rank d, the clusters
- Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: $A_{3} \simeq G r(4,6)$ cluster algebra

- Further refinement: Include frozen variables a_{d+i} that do not mutate
- Setting $a_{d+i} \rightarrow 1$ recovers previous definition

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams
- Associate polytope to them: Clusters=vertices, mutations=edges

Example: A_{2}

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams
- Associate polytope to them: Clusters=vertices, mutations=edges

Example: A_{2}

$$
a_{3}=\frac{1+a_{2}}{a_{1}}
$$

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams
- Associate polytope to them: Clusters=vertices, mutations=edges

Example: A_{2}

$$
\begin{aligned}
& a_{3}=\frac{1+a_{2}}{a_{1}} \\
& a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}}{a_{1} a_{2}}
\end{aligned}
$$

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams
- Associate polytope to them: Clusters=vertices, mutations=edges

Example: $A_{2} \supset A_{1}$

$$
\begin{aligned}
& a_{3}=\frac{1+a_{2}}{a_{1}} \\
& a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}}{a_{1} a_{2}} \\
& a_{5}=\frac{1+a_{1}}{a_{2}} \\
& a_{6}=a_{1}
\end{aligned}
$$

Geometric Realization of Cluster Algebras [Fomin,Zelevinsky'01B'02]

- Finite cluster algebras classified by Dynkin diagrams
- Associate polytope to them: Clusters=vertices, mutations=edges

Example: $A_{2} \supset A_{1}$

$$
\begin{aligned}
& a_{3}=\frac{1+a_{2}}{a_{1}} \\
& a_{4}=\frac{1+a_{3}}{a_{2}}=\frac{1+a_{1}+a_{2}}{a_{1} a_{2}} \\
& a_{5}=\frac{1+a_{1}}{a_{2}} \\
& a_{6}=a_{1}
\end{aligned}
$$

- Obtain subalgebras by freezing =forbidding mutation of certain nodes

The Dual Cluster Fan

Equivalent description of cluster polytope
Take normal vectors (of undetermined length) to maximal dimension faces

- Give rise to rays (half-lines emanating from origin) \leftrightarrow cluster variables
A_{2}

The Dual Cluster Fan

Equivalent description of cluster polytope
Take normal vectors (of undetermined length) to maximal dimension faces

- Give rise to rays (half-lines emanating from origin) \leftrightarrow cluster variables
- Grouped in cones \leftrightarrow clusters

A_{2}

Collection of cones $=($ polyhedral $)$ fan ${ }^{\left[\text {FFomin, Zelevinsky }{ }^{\prime} 01 B^{\prime} 02\right]}$

Back to First Burning Question

For $n \geq 8, \operatorname{Gr}(4,8)$ cluster algebra associated to \mathcal{A}_{n} becomes infinite! \Rightarrow infinite potential symbol letters render bootstrap inapplicable.

Back to First Burning Question

For $n \geq 8, G r(4,8)$ cluster algebra associated to \mathcal{A}_{n} becomes infinite! \Rightarrow infinite potential symbol letters render bootstrap inapplicable.

As we will see, tropical Grassmannians $\operatorname{Tr}(4, n)$ provide a natural selection rule yielding a finite subset of cluster variables/rational letters of \mathcal{A}_{n}.

The (Positive) Tropical Grassmannian [Speyer,Sturmfels'03][Speyer,Williams'03]

- Parametrize kinematics with $\operatorname{Gr}(4, n)$ initial cluster \mathcal{X}-coordinates x_{i}

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & -1 & * & * & * \\
0 & 1 & 0 & 0 & 1 & 1+x_{1}+x_{1} x_{2} & * & * \\
0 & 0 & 1 & 0 & -1 & -1-x_{1} & * & * \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right), \quad x_{i}=\frac{\prod_{\text {arrows } j \rightarrow i} a_{j}}{\prod_{\text {arrows } j \leftarrow i} a_{j}} .
$$

The (Positive) Tropical Grassmannian [Speyer,Sturmfels'03][Speyer,Williams'03]

- Parametrize kinematics with $\operatorname{Gr}(4, n)$ initial cluster \mathcal{X}-coordinates x_{i}

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & * & * \\
0 & * \\
0 & 1 & 0 & 0 & 1 & 1+x_{1}+x_{1} x_{2} & * \\
0 & 0 & 1 & 0 & -1 & -1-x_{1} & * \\
* & * \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0
\end{array}\right), \quad x_{i}=\frac{\prod_{\operatorname{arrows} j \leftarrow i} a_{j}}{\prod_{j}}
$$

- Tropicalize $\langle i j k l\rangle$: addition \longrightarrow minimum \mathbb{C}^{*} constants $\rightarrow 0$ multiplication \longrightarrow addition $\quad 0 \rightarrow \infty$

Example: $\quad\langle 1346\rangle=1+x_{1}+x_{1} x_{2} \longrightarrow \min \left(0, x_{1}, x_{1}+x_{2}\right)$

The (Positive) Tropical Grassmannian [Speyer,Sturmfels'03][Speyer,Williams'03]

- Parametrize kinematics with $\operatorname{Gr}(4, n)$ initial cluster \mathcal{X}-coordinates x_{i}

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & -1 & * & * \\
0 & 1 & 0 & 0 & 1 & 1+x_{1}+x_{1} x_{2} & * \\
* \\
0 & 0 & 1 & 0 & -1 & -1-x_{1} & * \\
0 & * & * \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} 1 . \quad, \quad x_{i}=\frac{\prod_{\operatorname{arrows} j \rightarrow i} a_{j}}{\prod_{j \leftarrow i} a_{j}} .\right.
$$

- Tropicalize $\langle i j k l\rangle$: addition \longrightarrow minimum \mathbb{C}^{*} constants $\rightarrow 0$ multiplication \longrightarrow addition $\quad 0 \rightarrow \infty$

Example: $\quad\langle 1346\rangle=1+x_{1}+x_{1} x_{2} \longrightarrow \min \left(0, x_{1}, x_{1}+x_{2}\right)$

- Tropical hypersurface for $\langle 1346\rangle$: $(d-1)$-dim. surface in \mathbb{R}^{d} where minimum attained twice simultaneously

The Positive Tropical Grassmannian $\operatorname{Tr}(4, n)$

- Defined as union of tropical hypersurfaces for all $\langle i j k l\rangle$

The Positive Tropical Grassmannian $\operatorname{Tr}(4, n)$

- Defined as union of tropical hypersurfaces for all $\langle i j k l\rangle$
- Not parity invariant \Rightarrow May choose to tropicalize subset of $\langle i j k l\rangle$

For amplitudes, natural to consider minimal parity-invariant subset, $p \operatorname{Tr}(4, n)$: Tropicalize $\langle i-1 i j-1 j\rangle,\langle i j-1 j j+1\rangle$ for $i=1, \ldots, n$

Solution of linear (in)equalities, inherently finite-dim.

The Positive Tropical Grassmannian $\operatorname{Tr}(4, n)$

- Defined as union of tropical hypersurfaces for all $\langle i j k l\rangle^{\left[S p e y e r, \text { Williams }{ }^{\circ}{ }^{\circ}{ }^{\circ}\right]}$
- Not parity invariant \Rightarrow May choose to tropicalize subset of $\langle i j k l\rangle$

For amplitudes, natural to consider minimal parity-invariant subset, $p \operatorname{Tr}(4, n)$: Tropicalize $\langle i-1 i j-1 j\rangle,\langle i j-1 j j+1\rangle$ for $i=1, \ldots, n$

Solution of linear (in)equalities, inherently finite-dim. May similarly define

- Rays $=1$-dim. intersections of tropical hypersurfaces, start at origin
- Cones $=$ regions in \mathbb{R}^{d} where all $\min (\ldots)$ continuous $=$ positive span of certain sets of $d=3 n-15$ rays
- Fan $=$ set of all cones

Tropical Grassmannians and Cluster Algebras

- Finite $\operatorname{Gr}(k, n)$ cluster algebras triangulate $(p) \operatorname{Tr}(k, n)$! Illustration: Intersections of 3D cones with sphere \sim locally screen plane

Finite case

- : $(p) T r+G r$ rays
- : $(p) T r+G r$ boundaries
- : $G r$ rays
- : $G r$ boundaries

Tropical Grassmannians and Cluster Algebras

- Finite $\operatorname{Gr}(k, n)$ cluster algebras triangulate $(p) \operatorname{Tr}(k, n)$! Illustration: Intersections of 3D cones with sphere \sim locally screen plane

- : $(p) T r+G r$ rays
- : $(p) T r+G r$ boundaries
- : $G r$ rays
- : $G r$ boundaries

Finite case

- Triangulation used to compute generalized biadjoint scalar amplitudes [Cachazo,Early,Guevara,Mizera'19] [Drummond,Foster,Gurdogan,Kalousios'19B]

Sometimes redundant (cluster but not tropical - in red) rays produced

Tropical Grassmannians and Cluster Algebras

- Finite $\operatorname{Gr}(k, n)$ cluster algebras triangulate $(p) \operatorname{Tr}(k, n)$! Illustration: Intersections of 3D cones with sphere ~ locally screen plane

Finite case

- : $(p) T r+G r$ rays
- : $(p) T r+G r$ boundaries
- : $G r$ rays
- : $G r$ boundaries

Infinite case

- Triangulation used to compute generalized biadjoint scalar amplitudes [Cachazo,Early, Guevara,Mizera'19] [Drummond,Foster, Gurdogan,Kalousios'19B]

Sometimes redundant (cluster but not tropical - in red) rays produced
Idea: Cluster algebra ∞ due to infinitely redundant triangulations! Select finite subset of cluster variables corresponding to tropical rays
[Arkani-Hamed,Lam,Spradlin'19] [Henke,GP'19] [Drummond,Foster, Gurdogan,Kalousios'19B]

Back to Second Burning Question

It's an Irrational World
Unfortunately, we are not done yet:

- Cluster variables are always rational variables of $\langle i j k l\rangle$

Back to Second Burning Question

It's an Irrational World

Unfortunately, we are not done yet:

- Cluster variables are always rational variables of $\langle i j k l\rangle$
- However square-root letters appear already at 1-loop integrals, e.g.

symbol letters contain $\sqrt{\Delta_{i j k \ell}}$,

$$
\begin{aligned}
& \Delta_{i j k \ell} \equiv\left(f_{i j} f_{k \ell}-f_{i k} f_{j \ell}+f_{i \ell} f_{j k}\right)^{2}-4 f_{i j} f_{j k} f_{k \ell} f_{i \ell} \\
& \text { with } f_{i j} \equiv\langle i i+1 j j+1\rangle .
\end{aligned}
$$

Back to Second Burning Question

It's an Irrational World
Unfortunately, we are not done yet:

- Cluster variables are always rational variables of $\langle i j k l\rangle$
- However square-root letters appear already at 1-loop integrals, e.g.

symbol letters contain $\sqrt{\Delta_{i j k \ell}}$,
$\Delta_{i j k \ell} \equiv\left(f_{i j} f_{k \ell}-f_{i k} f_{j \ell}+f_{i \ell} f_{j k}\right)^{2}-4 f_{i j} f_{j k} f_{k \ell} f_{i \ell}$
with $f_{i j} \equiv\langle i i+1 j j+1\rangle$.
- Start at $n \geq 8$, and letters containing $\sqrt{\Delta_{i j k \ell}}$ indeed observed in explicit calculations of $\mathcal{A}_{8,1}^{(1)}, \mathcal{A}_{n, 1}^{(2)} \mathcal{A}_{8,0}^{(3)}$
[Henn, Herrmann,Parra-Martinez'18] [He,Li,Zhang'19'20] [Li,Zhang'21]

Square Root Letters from Infinite Mutation Sequences

For sequence of mutations mapping quiver back to itself, e.g. $A_{1}^{(1)}$

obtain recursion relations among a_{i}

Square Root Letters from Infinite Mutation Sequences

For sequence of mutations mapping quiver back to itself, e.g. $A_{1}^{(1)}$

obtain recursion relations among a_{i}, and [Canakci,Schiffler'16]

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{a_{i-1}}=\frac{a_{2}}{2 a_{1}}\left(1+x_{1}+x_{1} x_{2}+\sqrt{\left(1+x_{1}+x_{1} x_{2}\right)^{2}-4 x_{1} x_{2}}\right)
$$

where $x_{1}=1 / a_{2}^{2}, x_{1}=a_{1}^{2}$.

Square Root Letters from Infinite Mutation Sequences

For sequence of mutations mapping quiver back to itself, e.g. $A_{1}^{(1)}$
(a1 $\leftrightarrows a_{2} \xrightarrow{\mu_{1}} a_{3} \leftrightarrows a_{2} \xrightarrow{\mu_{2}} a_{3} \longrightarrow a_{4} \xrightarrow{\mu_{1}} a_{5} \square a_{4} \xrightarrow{\mu_{2}}$
obtain recursion relations among a_{i}, and

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{a_{i-1}}=\frac{a_{2}}{2 a_{1}}\left(1+x_{1}+x_{1} x_{2}+\sqrt{\left(1+x_{1}+x_{1} x_{2}\right)^{2}-4 x_{1} x_{2}}\right)
$$

where $x_{1}=1 / a_{2}^{2}, x_{1}=a_{1}^{2}$.

Idea: Include infinite mutation sequences to obtain generalized cluster variables=square-root letters of amplitudes!
[Arkani-Hamed,Lam,Spradlin'19] [Henke, GP'19] [Drummond,Foster, Gurdogan,Kalousios'19B]

Application: $G r(4,8) \&$ Eight-particle Alphabet

Rational part:

- Start from initial cluster, mutate until redundant ray is reached
- Find 272 rational letters of degree up to 3 in $\langle i j k l\rangle$
- Includes the $196 \mathcal{A}_{8,0}^{(3)}$ rational letters (which in turn contain the 172 $\mathcal{A}_{8,1}^{(2)}$ and $108 \mathcal{A}_{8,0}^{(2)}$ rational letters resp.) ${ }^{\text {[Li,Zhang }{ }^{\text {2 21] }}}$

Application: $\operatorname{Gr}(4,8)$ \& Eight-particle Alphabet

Rational part:

- Start from initial cluster, mutate until redundant ray is reached
- Find 272 rational letters of degree up to 3 in $\langle i j k l\rangle$
- Includes the $196 \mathcal{A}_{8,0}^{(3)}$ rational letters (which in turn contain the 172 $\mathcal{A}_{8,1}^{(2)}$ and $108 \mathcal{A}_{8,0}^{(2)}$ rational letters resp.) ${ }^{\left[L i, Z h a n g{ }^{\prime} 21\right]}$

Square-root part:

- (rank-2 affine) $A_{1}^{(1)}$ a subalgebra of $G r(4,8)$ cluster algebra! Contains cluster (in certain \mathcal{X}-coordinates):

Application: $\operatorname{Gr}(4,8)$ \& Eight-particle Alphabet

Rational part:

- Start from initial cluster, mutate until redundant ray is reached
- Find 272 rational letters of degree up to 3 in $\langle i j k l\rangle$
- Includes the $196 \mathcal{A}_{8,0}^{(3)}$ rational letters (which in turn contain the 172 $\mathcal{A}_{8,1}^{(2)}$ and $108 \mathcal{A}_{8,0}^{(2)}$ rational letters resp.) ${ }^{\text {[Li,Zhang' 21] }}$

Square-root part:

- (rank-2 affine) $A_{1}^{(1)}$ a subalgebra of $G r(4,8)$ cluster algebra!

Contains cluster (in certain \mathcal{X}-coordinates):

- Fine print: Limit value depends on cluster variables held frozen in infinite mutation sequence

The Role of Coefficients

There exists framework for simultaneously describing any choice of frozen variables: [Fomin,Zelevinsky ${ }^{\text {0 }}{ }^{66]}$

- Can think of them as fundamental, define mutation rules they obey.
- Simplest case: principal coefficients, to each unfrozen node a_{1},

$$
y_{1}=a_{2}
$$

Square-root Letters from Infinite sequences II

- We generalized $A_{1}^{(1)}$ sequence to principal coefficients [Henke, GP'19] [Reading'18]

Square-root Letters from Infinite sequences II

- We generalized $A_{1}^{(1)}$ sequence to principal coefficients [Henke, GP'19] [Reading'18]
- Possible to perform specifically for $A_{1}^{(1)}$ subagebra of $\operatorname{Gr}(4,8)$ [Arkani-Hamed,Lam,Spradlin'19] [Drummond,Foster, Gurdogan,Kalousios'19B]:

Square-root Letters from Infinite sequences II

- We generalized $A_{1}^{(1)}$ sequence to principal coefficients [Henke,GP' 1 19] [Reading' 18]
- Possible to perform specifically for $A_{1}^{(1)}$ subagebra of $\operatorname{Gr}(4,8)$ [Arkani-Hamed,Lam,Spradlin'19] [Drummond, Foster, Gurdogan,Kalousios'19B]:
- Additionally, proposal to also take into account direction of approach to limit in a particular fashion: [Drummond,Foster, Gurdogan,Kalousios' 19B]

Ray \leftrightarrow generalized cluster variable correspondence

- Implies $2 p \operatorname{Tr}(4,8)$ limit rays $\rightarrow 18$ square-root letters
- Indeed present in $\mathcal{A}_{8,1}^{(2)}, \mathcal{A}_{8,0}^{(3)}{ }^{\left[H e, L i, Z h a n g{ }^{\prime} 19\right][\text { LLi,Zhang' 21] }}$

Square-root Letters from Infinite sequences II

- We generalized $A_{1}^{(1)}$ sequence to principal coefficients [Henke, GP '19] [Reading' 18]
- Possible to perform specifically for $A_{1}^{(1)}$ subagebra of $G r(4,8)$ [Arkani-Hamed,Lam,Spradlin'19] [Drummond, Foster, Gurdogan,Kalousios'19B] :
- Additionally, proposal to also take into account direction of approach to limit in a particular fashion: [Drummond,Foster, Gurdogan,Kalousios' 19B]

Ray \leftrightarrow generalized cluster variable correspondence

- Implies $2 p \operatorname{Tr}(4,8)$ limit rays $\rightarrow 18$ square-root letters
- Indeed present in $\mathcal{A}_{8,1}^{(2)}, \mathcal{A}_{8,0}^{(3)}{ }_{\left[H e, L i, Z h a n g{ }^{\prime} 19\right][\text { LLi,Zhang' 21] }}$

Recently: $A_{1}^{(m)}$ infinite mutation sequence with general coefficients \Rightarrow Proposal for \mathcal{A}_{n} alphabet in principle $\forall n$, explicitly for $n=9$!
$A_{1}^{(1)}$ Sequences with General Coefficients

where

$$
K_{1}=1+x_{1}+x_{1} x_{2}, \quad K_{2}=x_{1} x_{2}, \quad x_{i}=y_{i} \frac{\prod_{\operatorname{arrows} j+i} a_{j}}{\prod_{j} a_{j}}, j \text { unfrozs } j+i,
$$

and

$$
\prod_{i} f_{i}^{b_{i}} \hat{\oplus} \prod_{i} f_{i}^{c_{i}}=\prod_{i} f_{i}^{\min \left(b_{i}, c_{i}\right)}
$$

Also generalized to rank- $(m+1) A_{m}^{(1)}$ sequences.

Generalized Cluster Variables for any $A_{1}^{(1)}$ Subalgebra of $\operatorname{Gr}(4, n)$ Namely square-root letters for any amplitude multiplicity n For any quiver containing $A_{1}^{(1)}$ with \mathcal{X}-coordinates x_{1}, x_{2},

obtain limiting letters:

$$
\begin{gathered}
\phi_{0} \equiv \frac{2-K_{1}+\sqrt{K_{1}^{2}-4 K_{2}}}{-2+K_{1}+\sqrt{K_{1}^{2}-4 K_{2}}}, \quad \tilde{\phi}_{0} \equiv \frac{2 K_{2}-K_{1}+\sqrt{K_{1}^{2}-4 K_{2}}}{-2 K_{2}+K_{1}+\sqrt{K_{1}^{2}-4 K_{2}}}, \\
K_{1}=1+x_{1}+x_{1} x_{2}, \quad K_{2}=x_{1} x_{2}
\end{gathered}
$$

We showed that particular choice is motivated by closely related scattering diagrams approach.

Application: $p \operatorname{Tr}(4,9)$ and Nine-particle Singularities

- 3078 cluster rays $=$ rational letters of degree up to 6

Degree	1	2	3	4	5	6	7	8	9	10	Total
$p \operatorname{Tr}(4,9)$	117	576	1287	963	126	9	-	-	-	-	3078
$\operatorname{Tr}(4,9)$	117	576	1854	3159	2943	1926	1296	531	180	63	12645

- 324 limit rays $\rightarrow 2349$ square-root letters
- Contains alphabet of $\mathcal{A}_{9,1}^{(2)}$!
- Also new types of square roots, e.g. $\Delta=A^{2}-4 B$ with

$$
\begin{aligned}
& A=1-\frac{\langle 6789\rangle\langle 13(278) \cap(246)\rangle^{2}}{\langle 1235\rangle\langle 1289\rangle\langle 3567\rangle\langle 1679\rangle^{2}}+\frac{\langle 1267\rangle\langle 23(146) \cap(178)\rangle\langle 46(278) \cap(129)\rangle}{\langle 1235\rangle\langle 1289\rangle\langle 3567\rangle\langle 1679\rangle^{2}}, \\
& B=\frac{\langle 1267\rangle\langle 23(146) \cap(178)\rangle\langle 46(278) \cap(129)\rangle}{\langle 1235\rangle\langle 1289\rangle\langle 3567\rangle\langle 1679\rangle^{2}} .
\end{aligned}
$$

Rational letters and radicands Δ also accounted for by tensor diagrams, but not complete square-root letters

Conclusions

Connection between cluster algebras and tropical Grassmannians provides candidate singularities/letters of \mathcal{A}_{n} in principle $\forall n$!

- Selects finite subset of ∞ cluster algebras \Rightarrow rational letters
- Limits of ∞ mutation sequences \Rightarrow square-root letters
- Explicitly worked out for $n=8,9$
- Excellent agreement with fixed-order results \& alternative approaches

Moving Forward

- Efficient bootstrap of new results
- First-principle derivation of these remarkable mathematical structures
- Relevance for realistic gauge theories [Chicherin,Henn,GP;PRL 126091603 (2021)][He,Li,Ma,Wu, Yang,Zhang'22]
- Generalization beyond multiple polylogarithms

Open Questions

- $27 p \operatorname{Tr}(4,9)$ rays unaccounted for by $A_{1}^{(1)}$ infinite mutation sequences
- Evidence that $\operatorname{Gr}(4, n)$ cluster algebra does not entirely triangulate $p \operatorname{Tr}(4, n)$ with $n \geq 9$ for any kind of such mutation sequence
- Likely related to its mutation-infinite class. E.g. rank-2 example,

Indeed appears as $G r(4,9)$ subalgebra

Momentum Twistors Z^{I} [Hodges' $^{\text {O9] }}$

Momentum Twistors $Z^{I}{ }^{\left[\text {Hodges's }^{\circ}{ }^{\circ}\right]}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X$.

Momentum Twistors Z^{I} [Hodges' $^{\text {O9] }}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X .
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

Momentum Twistors Z^{I} [Hodges' $^{\text {O9] }}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X .
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

Momentum Twistors $Z^{I}{ }^{\text {[Hodges' }}{ }^{\text {O9] }}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.

Momentum Twistors $Z^{I}{ }^{\text {[Hodges' }}{ }^{\text {09] }}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle
$$

Momentum Twistors Z^{I} [Hodges' $^{\text {O9] }}$

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\begin{aligned}
& \left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{\prime L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle \\
& \left(x_{i+i}-x_{i}\right)^{2}=0 \Rightarrow X_{i}=Z_{i-1} \wedge Z_{i}
\end{aligned}
$$

The Kinematic Space of $\mathcal{N}=4$ Amplitudes and Grassmannians

- Can realize kinematic space as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right) \in G r(4, n) /\left(C^{*}\right)^{n-1}
$$

modulo rescalings of the n columns and $S L(4)$ transformations \Rightarrow

$$
\text { dimension }=3 n-15 \text {. }
$$

- Closely related to Grassmannian $\operatorname{Gr}(4, n)$: The space of 4 -dimensional planes passing through origin in n-dimensional space.

- $\operatorname{Gr}(4, n)$ cluster algebras provide compactification of positive region of kinematics with $\langle i j k l\rangle>0$ for $i<j<k<l$.

[^0]: GP - Amplitude Singularities from Cluster Algebras \& Tropical Geometry Introduction: Cluster Algebras and $\mathcal{N}=4$ SYM 9/25

