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With Anne Spiering (and Raul Pereira)

I Non-planar Spectrum of N = 4 SYM: analytical formula for one-loop
anomalous dimensions via perturbed integrable model and spin-chain scalar
products. [2005.14254]

I Random Matrix Theory description of statistical properties of finite-N
spectrum: signature of quantum chaos. [2011.04633]

I Marginally deformed theories: found holographic, weak coupling analogue of
chaotic strings in deformed AdS geometries. [2202.12075]

http://arxiv.org/abs/
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SAGEX Projects: Asymptotic Symmetries and Celestial Holography

With Riccardo Gonzo and Anne Spiering (and Diego Medrano)

{
+ . . .

}
− − = 0

I Faddeev-Kulish approach to QCD (á la Catani and Ciafaloni): in principle
defines dressed IR finite amplitudes including collinear divergences.

I Showed conservation of asymptotic charges - defined via soft-evolution
operators - corresponding to large gauge transformations and the resultant
Ward identity to one-loop and leading order in IR divergences. [1906.11763]

I The study of asymptotic symmetries in gauge and gravity theories has led to
recent reformulations of scattering amplitudes in alternative variables.

http://arxiv.org/abs/


Celestial Holography

Reformulation of 4D Minkowskian scattering amplitudes (in scalar theory, gauge
theory, gravity, ...) in the language of conformal field theory.

Reviews (and references):

I Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory

I S. Pasterski, M. Pate, and A.-M. Raclariu, “Celestial Holography,” in 2022
Snowmass Summer Study

I SAGEX Review Chaper 11 with Puhm and Raclariu



Celestial Holography

Reformulation of 4D Minkowskian scattering amplitudes (in scalar theory, gauge
theory, gravity, ...) in the language of conformal field theory.

I Motivated by the group identification

SO+(3, 1) ' PSL(2,C) ' Aut(Ĉ)

I Such a reformulation is interesting as it can reveal new properties, connections
and hidden structures (e.g. sub-leading soft theorems, memory effects, ...)

I Points to a holographic description of quantum gravity asymptotically flat
space-times. Good reasons for such a description exists e.g. BH entropy

formula SBH =
A

4L2
p

, Lp: Planck length



Celestial Holography
Boundary description of quantum field theory in Minkowski space-time:
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Massless momentum can be parameterized:

pµi = ηiωi (1 + |zi |2, zi + z̄i ,−i(zi − z̄i ), 1− |zi |2)

→ →



Celestial Conformal Field Theory

Good observables in gravity (and other theories!) are S-matrix elements:

boost〈out|S |in〉boost = 〈O±∆ (z1, z̄1) . . .O±∆ (zn, z̄n)〉CCFT

I Each massless momentum labels a point at I±

I Transform asymptotic states from momentum states to boost eigenstates

I Operators labelled by position on 2-sphere, SL(2,C) conformal dimensions ∆i

corresponding to boost eigenvalue and spins Ji

L0 = − i
2
(J3 + iK3) , L̄0 = − i

2
(−J3 + iK3)



Conformal Primary Wavefunctions

Define conformal primary scalar wavefunctions by transformation properties:

Φ∆(ΛµνX
ν , az+b

cz+d
) = |cz + d |2∆Φ∆(Xµ, z)

e.g. Mellin transform of plane-waves

φ±∆ (X ; z) =

∫ ∞
0

dω ω∆−1e±iωq·X =
(∓i)∆Γ(∆)

(−q · X±)∆

I qµ = (1 + |zi |2, zi + z̄i ,−i(zi − z̄i ), 1− |zi |2)

I Solution of 2φ = 0

I Arbitrary complex ∆; when ∆ ∈ 1 + i R (principle continuous series of
SL(2,C) ) form a complete δ-function normalizable basis

I Given amplitude of massless particles construct CCFT correlator by taking
Mellin transform on all external legs:

Ãn(∆i , zi ) =M[An] =
n∏

k=1

∫
dωkω

∆k−1
k An(ωi , zi )

Transforms with definite weights (∆i , Ji ) under SL(2,C).
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Conformal Primary Wavefunctions

Define conformal vectors, metrics, .... etc by transformation properties:

Φs
∆,J(ΛµνX

ν , az+b
cz+d

) = (cz + d)∆+J(cz + d)∗∆−JD(Λ)sΦ
s
∆(Xµ, z)

e.g. Shockwaves: φ∆=1(X ; z) = logX 2δ(q · X ) ,

Aµ∆=0,J=0(X ; z) = qµφ∆=1(X ; z),

hµν∆=−1,J=0(X ; z) = qµqνφ∆=1(X ; z)

I Solution of massless wave equation with massless point source

I Spin-1 version is solution of Maxwell equations and spin-2 version is Kerr-Schild
form of Aichelberg-Sexl metric (exact solution of Einstein equations)
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Celestial Amplitudes

The four-point amplitude can be written as a universal prefactor times a function of
the cross-ratios z , z̄

Ã4(∆i , zi , z̄i ) =

(
z24
z14

)h12
(

z14
z13

)h34

zh1+h2
12 zh3+h4

34

(
z̄24
z̄14

)h̄12
(

z̄14
z̄13

)h̄34

z̄ h̄1+h̄2
12 z̄ h̄3+h̄4

34

Ã4(z , z̄)

I Conformal weights (hi , h̄j) = 1
2
(∆i + Ji ,∆i − Ji ) with hij = hi − hj

I Cross-ratios

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24

I Two scalars with photon exchange: (∆i = 1 + iνi , νi ∈ R, Ji = 0)

Ã4(z , z̄) ∝ eφ1eφ2δ(i z̄ − iz)(z − 1)1−2h2−2h3z2h−2(1 + z̄)

∫
dωω

∑
∆i−5

We use I(s) =

∫ ∞
0

dωωs−1 = 2πδ(Im(s)) with Re(s) = 0.
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Ã4(z , z̄)

I Conformal weights (hi , h̄j) = 1
2
(∆i + Ji ,∆i − Ji ) with hij = hi − hj

I Cross-ratios

z =
z12z34

z13z24
, z̄ =

z̄12z̄34

z̄13z̄24

I Two scalars with photon exchange: (∆i = 1 + iνi , νi ∈ R, Ji = 0)

Ã4(z , z̄) ∝ eφ1eφ2δ(i z̄ − iz)(z − 1)1−2h2−2h3z2h−2(1 + z̄)

∫
dωω

∑
∆i−5

We use I(s) =

∫ ∞
0

dωωs−1 = 2πδ(Im(s)) with Re(s) = 0.



Celestial Amplitudes

The four-point amplitude can be written as a universal prefactor times a function of
the cross-ratios z , z̄
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I Two scalars with graviton exchange: (∆i = 1 + iνi , νi ∈ R, Ji = 0)

Ã4(z , z̄) =
iκ2

2
(−1)2hδ(i z̄ − iz)(z − 1)−2h2−2h3z2hI(

∑
i

∆i − 2)

We use I(s) =

∫ ∞
0

dωωs−1 = 2πδ(Im(s)) with Re(s) = 0.



Amplitudes on Backgrounds

We want to extend the computation of celestial quantities to amplitudes on
non-trivial backgrounds.

p1 p2

I We consider two-point tree-level amplitudes for scalar field minimally coupled
to electromagnetism and gravity.

I We consider asymptotically flat backgrounds including Schwarzschild,
Aichelberg-Sexl shockwave, Gyraton, Kerr and

√
Kerr-Schild analogues.

I Use method of Boulware and Brown: classical solution gives tree-level
generating functional of connected correlation functions W [J] as
Φcl [J] = δW /δJ.

I Amplitudes are found using LSZ prescription:

A(p1, . . . , pn) ≡ lim
p2
n→0

ip2
n

n−1∏
i=1

lim
p2
i→0

ip2
i
δΦ̃cl(−pn)

δJ̃(pi )

∣∣∣∣
J=0
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Two-point Amplitude in Scalar Electrodynamics

p1 p2

Solve wave equation

∂2Φ− 2ieAµ∂µΦ− ie∂µA
µΦ− e2AµA

µΦ = J

perturbatively in e

Φ̃cl(p) =
∞∑
n=0

Φ̃
(n)
cl (p)

with

φ̃(0)(p) = − J̃(p)

p2
, φ̃(1)(p) =

e

p2

∫
d4k

(2π)4
Ãµ(p − k)(pµ + kµ)φ̃(0)(k) , . . .

gives the leading amplitude

A(1)
2 (p1, p2) = e(p1 − p2)µÃ

µ(p1 + p2)



Ex 1: Two-point Amplitude on Coulomb Background

p1 p2

So with Coulomb potential Aµ(x) =
Q

4πr
qµ with qµ = (1,

~x

r
) the amplitude is

A(1)
2,Coulomb(p1, p2) = −4πeQ

p0
1δ(p0

1 + p0
2)

(p1 + p2)2

and Mellin transforming we have

Ã(1)
2,Coulomb(∆1,∆2) = (2π)2 eQ

4π

1

|z12|2

(
1 + |z1|2

1 + |z2|2

)∆2−1

I(∆1 + ∆2 − 2),

I No kinematic delta-function; delta-function support for dimensions on principle
series

I Distinctive |z12|−2 two-point function dependence

I Similar result for Schwarzschild but integral is not convergent on principle
series, I(∆1 + ∆2 − 1)



Ex 2: Two-point Amplitude on Point Source Background
p1 p2

Charged particle corresponding to a current jµ(x) = −
∫

dτ qµ(τ)δ(4)(x − y)

generates a potential with two-point amplitude:

A(1)
2 (p1, p2) = −eQ

∫
dτ

(p1 − p2) · q
(p1 + p2)2

e−i(p1+p2)·y

For a massless source (shockwave background) with 4-velocity

qµ = (1 + |zsw |2, zsw + z̄sw , i(z̄sw − zsw ), 1− |zsw |2)

The Mellin transformed amplitude

Ã(1)
2 (∆1,∆2) =

eQ(2π)3δ(i(∆1 + ∆2 − 2))

|z12|∆1+∆2 |z1sw |∆1−∆2 |z2sw |∆2−∆1

Has the form of a standard CFT three point amplitude!



Ex 2: Three-point Correlator from Shockwave Background

Start from form factor of electromagnetic current

A3;µ(p1, p2, p) = 〈p1|j̃µ(p)|p2〉 = e(2π)4δ(4)(p1 + p2 + p)(p1µ − p2µ)

Mellin transform massless on-shell legs and use electromagnetic shockwave
wavefunction

Asw
0,0;µ(x , q) = −Qqµ log(x2)δ(q · x)

= Sµ[e ip·x ] = 8π2Qqµ

∫
d4p

(2π)4

δ(p · q)

p2
e ip·x

so that

Ã3(∆1,∆2,∆sw = 0) ≡ M[Sµ[Aµ3 (p1, p2, p)]]

∝ eQδ(i(∆1 + ∆2 − 2))

|z12|∆1+∆2 |z1sw |∆1−∆2 |z2sw |∆2−∆1

i.e. same as Ã(1)
2 . The two-point function in the shockwave background is a

three-point function with the background state created by a shockwave operator.



Ex 3: Two-point Amplitude on Gyraton Background

Consider scalar field gravitationally minimally coupled to metric

gµν = ηµν + hµν

with hµν taken to be small. Equation of motion

2φ− hµν∂µ∂νφ− ∂µ(hµν − 1
2
hλλη

µν)∂νφ = J

⇒ A(1)
2 (p1, p2) = −

[
(p1)µ(p2)ν − 1

2
ηµνp1 · p2

]
h̃µν(p1 + p2)

Spinning particle infinitely boosted along axis of rotation (gyraton)

hµν = −qµqνr0δ(q · x) log(x2 − a2)

= 4π3qµqνr0ia

∫
d4p

δ(p · q)

|p| H
(2)
−1(a|p|)e ip·x ≡ Sa

µν [e ip·x ]

I hµν is conformal primary metric of dimenson ∆ = −1, spin J = 0.

I Take qµ = (1, 0, 0, 1) for convenience and p−i =
1

2
(p0 − p3).



Ex 3: Two-point amplitude on Gyraton Background

Amplitude is given by Hankel function:

A(1)
2 = −8π3r0iaH

(2)
−1(a|p1 + p2|)

p−1 p−2 δ(p−1 + p−2 )

|p1 + p2|

to leading order in G (via r0), all orders in a. The Mellin transformed celestial
two-point function is:

Ã(1)
2,gyraton(∆1,∆2) = (2π)2r0

a1−∆1−∆2 |z2|2

|z12|∆1+∆2+1

(
|z1|2

|z2|2

)∆2−∆1+1
2

×I′(∆1 + ∆2 − 1)

I Integral is finite and smooth for a range of dimensions:

I′(s) = − iπ

2

Γ(1 + s/2)

Γ(1− s/2)
(1 + i cot(πs/2)) , 0 < Re(s) < 1

2
.

Spin “softens” high-energy behaviour, exactly same seen in electromagnetic
analogue (I′(∆1 + ∆2 − 2)); somewhat similar effect for Kerr/spinning
charged particle.



Ex 3: Three-point Correlator from Gyraton Background

Consider form factor of stress-energy tensor

A3;µν(p1, p2, p) = 〈p1|T̃µν(p)|p2〉
= −κ(2π)4δ(4)(p1 + p2 − p)

[
p1µp2ν − 1

2
ηµνp1 · p2

]
Mellin transform massless on-shell legs and use spinning shockwave wavefunction
So that again taking qµ = (1 + |zssw |2, zssw + z̄ssw , i(z̄ssw − zssw ), 1− |zssw |2)

Ã3(∆1,∆2,∆ssw = −1) ≡ M[Sa
µν [Aµν3 (p1, p2, p)]]

∝ a1−∆1−∆2I′(∆1 + ∆2 − 1)

|z12|∆1+∆2+1|z1ssw |∆1−∆2−1|z2ssw |∆2−∆1−1

I Agrees with two-point amplitude computed in gyraton background: Shockwave
backgrounds have CCFT operator interpretation. Not obvious for “massive”
backgrounds e.g. Schwarzschild & Kerr.



All Order Amplitudes and IR divergences

All previous results are linear order in the background.

p1 p2

I We can solve the wave-equation iteratively

δΦ̃(−p2)

δJ(p1)
= − 1

p2
2

∞∑
n=1

∫ n−1∏
`=1

d4k (`)

(2π)4

A(1)
2 (−p2,−k (1))

k (1)2
. . .
A(1)

2 (k (n−1),−p1)

p2
1

I Resum in the eikonal approximation: 1/(k (1) + p1)2 → 1/2k (1) · p1 and

dropping powers of k (`) in numerators, so the amplitude becomes

Aeik
2 (p1, p2) = exp

[
e

∫
d4k

(2π)4

Ã(−k) · p2

k · p2

]
A(1)

2 (p1, p2) .

Familiar Wilson line result in eikonal limit. Similar result in gravity.



All Order Amplitudes and IR divergences

p1 p2

I For point particle backgrounds eikonal phase factor produces IR divergent
prefactor and factorization persists for celestial amplitudes:

ÃIR
2 (∆1,∆2) =

∫ 2∏
i=1

dωiω
∆i−1
i AIR,eik

2 (ω1, ω2, p̂1, p̂2) = Ãsoft
2 Ã

(1)
2

IR divergent prefactor is operator valued in gravity.

I Wave equation result can be matched to eikonal limit of 4-pt amplitude and IR
divergences are related to known all-order results for amplitudes/celestial
correlators.

I Interpretation as vertex operator correlation functions of Goldstone bosons for
large gauge symmetry/supertranslations and a composite operator for
background.



All Order Amplitudes and IR divergences

p1 p2

I For point particle backgrounds eikonal phase factor produces IR divergent
prefactor and factorization persists for celestial amplitudes:
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IR divergences from Vertex Operators

For massless source/shockwave we introduce two bosons Φ(+) and Φ(−) which have
the two-point functions

〈Φ(a)(zi )Φ(b)(zj)〉 = − 1

8π2ε
(ln |zij |2 + iδabπ)

We define the dressing factor for in-/out-going particles as R
(∓)
k = ηkekΦ(∓)(zk) and

background dressing operator the appropriately normalised normal ordered product

e−iRsw =: e−
i
2
RPA e−

i
2
RPB := exp

[
− i Q

2
(Φ(+) − Φ(−))

]
Soft factor of the two-point amplitude/three-point correlator can be written as

Ãsoft
2 = 〈e iRsw e iR1e iR2〉

Contractions between R1 and R2 are sub-leading and neglected.



IR Finite Correlators

IR finite celestial amplitudes between massless scalars are obtained by dressing the
conformal primary operator for outgoing or incoming states:

Ô(±)

∆k+αe2
k

(z) = lim
z→w
|z − w |−2αe2

k : e−iekηkΦ(z) :: O(±)
∆k

(w) : .

Note shifted dimension.
Similarly define a dressed shockwave operator

Ôsw (z) = lim
z→w

: e−iQ(Φ(+)(z)−Φ(−)(z) :: Osw (w) :

The IR finite two-point amplitude in the shockwave background is then

Ãdressed
2 = 〈Ôsw (zsw )Ô(−)

∆1
(z1)Ô(+)

∆2
(z2)〉

where contractions between the Goldstone bosons cancel the IR divergent phases



Conclusions

I Computed tree-level two-point amplitudes in various Kerr-Schild backgrounds
and their celestial counterparts.

I For backgrounds which are conformal primary potentials/metrics two-point
amplitudes can be interpreted as three-point functions
I Can this be extended to other backgrounds?
I To “massive” backgrounds e.g. Schwarzschild?

I Can we include higher-order results? Included all-order eikonal phase factors
for point particle backgrounds.
I Can we incorporate next-to-eikonal? Genuine quantum corrections?
I IR divergences for AS shockwaves have natural interpretation in CCFT, can this

be extended to spin? to loop effects? to massive backgrounds?

I Can we learn anything interesting about quantum gravity?


