Gravitational Dynamics from Scattering Amplitudes

Gravitational Dynamics from Scattering Amplitudes
 Semitai QiUL St GEX (Juhe 2022)

$\stackrel{{ }^{\star+\star}}{\stackrel{\star}{\star}} \stackrel{\star}{\star}{ }_{\star \star \star^{*}}$

SAGEX

Scattering Amplitudes:

Gravitational Dynamics from Scattering Amplitudes
 Semitai QiUL St GEX (Juhe 2022)

SAGEX

Scattering Amplitudes:

General Relativity

General Relativity

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds
- Graviton properties/mass etc

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds
- Graviton properties/mass etc
- Cosmological models

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds
- Graviton properties/mass etc
- Cosmological models
- Equivalence principle and quantum physics

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds
- Graviton properties/mass etc
- Cosmological models
- Equivalence principle and quantum physics
- Extra dimensions / SUSY

General Relativity

Einstein's theory presents us with a beautiful theory for gravity. Many exciting questions to study:

- Extreme gravity
- Quantum extensions
- Geometrical description <-> EFTQFT (flat space) formulation
- Higher derivative bounds
- Graviton properties/mass etc
- Cosmological models
- Equivalence principle and quantum physics
- Extra dimensions / SUSY
- String theory....

New data - new window

New data - new window

First direct observation of a binary merger of black holes

New data - new window

First direct observation of a binary merger of black holes

Direct access to gravitational interactions in the most extreme regimes

New data - new window

First direct observation of a binary merger of black holes

Direct access to gravitational interactions in the most extreme regimes
-Possibility of complimenting conventional analysis.

New data - new window

- First direct observation of a binary merger of black holes

Direct access to gravitational interactions in the most extreme regimes
-Possibility of complimenting conventional analysis.

- A current need for theory to catch up to match observational progress \& precision

New data - new window

- First direct observation of a binary merger of black holes

Direct access to gravitational interactions in the most extreme regimes
-Possibility of complimenting conventional analysis.

- A current need for theory to catch up to match observational progress \& precision

- Many Interesting questions to study: Validity of GR/ gravity phenomenology/ new theories?

New data - new window

- First direct observation of a binary merger of black holes

Direct access to gravitational interactions in the most extreme regimes
-Possibility of complimenting conventional analysis.

- A current need for theory to catch up to match observational progress \& precision

- Many Interesting questions to study: Validity of GR/ gravity phenomenology/ new theories?

Amplitudes methods allow refined computation and increased precision!

Key research directions (amplitudes)

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

> Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

One key question: Can we formulate a precise extraction of classical gravitational physics from on-shell amplitudes? (with least amount of work)

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

> Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

One key question: Can we formulate a precise extraction of classical gravitational physics from on-shell amplitudes? (with least amount of work)
-> Potential: discovery of new physics

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

> Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

One key question: Can we formulate a precise extraction of classical gravitational physics from on-shell amplitudes? (with least amount of work)
-> Potential: discovery of new physics
-> Faster and more accurate theoretical breakdown of gravitational wave events!

Key research directions (amplitudes)

Test of general relativity in certain regimes of binary mergers where GR observables are extracted from QFT methods.

> Surprise: Classical physics from a relativistic quantized theory of gravitons seems more efficient than directly solving Einstein's field equations!

One key question: Can we formulate a precise extraction of classical gravitational physics from on-shell amplitudes? (with least amount of work)
-> Potential: discovery of new physics
-> Faster and more accurate theoretical breakdown of gravitational wave events!

Traditional quantization of gravity

Traditional quantization of gravity

Known since the 1960ties that a particle version of General Relativity can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt)

Traditional quantization of gravity

- Known since the 1960ties that a particle version of General Relativity can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt)
- Expand Einstein-Hilbert Lagrangian :

$$
g_{\mu \nu} \equiv \eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

Traditional quantization of gravity

- Known since the 1960ties that a particle version of General Relativity can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt)
- Expand Einstein-Hilbert Lagrangian :

$$
g_{\mu \nu} \equiv \eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

Derive vertices as in a particle theory - compute amplitudes as Feynman diagrams! (GW Kovacs and Thorne 1977)

Traditional quantization of gravity

- Known since the 1960ties that a particle version of General Relativity can be derived from the Einstein Hilbert Lagrangian (Feynman, DeWitt)
- Expand Einstein-Hilbert Lagrangian :

$$
g_{\mu \nu} \equiv \eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

- Derive vertices as in a particle theory - compute amplitudes as Feynman diagrams! (GW Kovacs and Thorne 1977)

Amplitudes and

Feynman diagrams

© Feynman's method not flawless
© Diagrammatic expansion : huge permutational problem!
Q Scalar field theory : constant vertex (~ 1 term)
G Gluons : momentum dependent vertex (-3 terms)
Q Gravitons : momentum dependent vertex (~ 100 terms)
© Naïve basic 4pt diagram count (graviton exchange):
$100 \times 100 \sim 10^{4}$ terms + index contractions (~ 36 pr diagram)
Number of diagrams: ($\sim 4!$) $\sim 10^{5}$ terms $\sim 10^{6}$ index contractions
n-point: ($\quad \mathrm{n}!) \sim$ more atoms in your brain!
Too much off-shell (gauge dependent) clutter.....

Amplitudes and

Feynman diagrams

© Feynman's method not flawless
© Diagrammatic expansion : huge permutational problem!
Q Scalar field theory : constant vertex (~ 1 term)
G Gluons : momentum dependent vertex (-3 terms)
Q Gravitons : momentum dependent vertex (~ 100 terms)
© Naïve basic 4pt diagram count (graviton exchange):
$100 \times 100 \sim 10^{4}$ terms + index contractions (~ 36 pr diagram)
Number of diagrams: ($\sim 4!$) $\sim 10^{5}$ terms $\sim 10^{6}$ index contractions
n-point: ($\quad \mathrm{n}!) \sim$ more atoms in your brain!
Too much off-shell (gauge dependent) clutter.....

Quantum gravity? An effective field theory

Quantum gravity? An effective field theory

- A modern viewpoint (Weinberg) to view the quantization of general relativity from the viewpoint of effective field theory

$$
\mathscr{L}_{\mathrm{EH}}=\sqrt{-g}\left[\frac{R}{16 \pi G_{N}}+\mathscr{L}_{\text {matter }}\right]
$$

Quantum gravity? An effective field theory

- A modern viewpoint (Weinberg) to view the quantization of general relativity from the viewpoint of effective field theory

$$
\begin{gathered}
\mathscr{L}_{\mathrm{EH}}=\sqrt{-g}\left[\frac{R}{16 \pi G_{N}}+\mathscr{L}_{\text {matter }}\right] \\
\mathscr{L}_{\text {eff GR }}=\sqrt{-g}\left[\frac{2 R}{16 \pi G_{N}}+R^{2}+R_{\mu \nu}^{2}+\ldots+\mathscr{L}_{\text {matter }}+\ldots\right]
\end{gathered}
$$

- Consistent quantum gravity at low energies long-distance contributions at one-loop (Donoghue; NEJBB, Donoghue, Holstein)

Quantum gravity? An effective field theory

- A modern viewpoint (Weinberg) to view the quantization of general relativity from the viewpoint of effective field theory

$$
\begin{gathered}
\mathscr{L}_{\mathrm{EH}}=\sqrt{-g}\left[\frac{R}{16 \pi G_{N}}+\mathscr{L}_{\text {matter }}\right] \\
\mathscr{L}_{\text {eff GR }}=\sqrt{-g}\left[\frac{2 R}{16 \pi G_{N}}+R^{2}+R_{\mu \nu}^{2}+\ldots+\mathscr{L}_{\text {matter }}+\ldots\right]
\end{gathered}
$$

- Consistent quantum gravity at low energies long-distance contributions at one-loop (Donoghue; NEJBB, Donoghue, Holstein)

Quantum gravity? An effective field theory

- A modern viewpoint (Weinberg) to view the quantization of general relativity from the viewpoint of effective field theory

$$
\begin{gathered}
\mathscr{L}_{\mathrm{EH}}=\sqrt{-g}\left[\frac{R}{16 \pi G_{N}}+\mathscr{L}_{\text {matter }}\right] \\
\mathscr{L}_{\text {eff GR }}=\sqrt{-g}\left[\frac{2 R}{16 \pi G_{N}}+R^{2}+R_{\mu \nu}^{2}+\ldots+\mathscr{L}_{\text {matter }}+\ldots\right]
\end{gathered}
$$

- Consistent quantum gravity at low energies long-distance contributions at one-loop (Donoghue; NEJBB, Donoghue, Holstein)

Advantages: Gravity as an EFT

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory
- Ideal perturbative setup for QFT analysis of black hole binary mergers

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory
- Ideal perturbative setup for QFT analysis of black hole binary mergers
- Universal consequences of underlying fundamental theory

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory
- Ideal perturbative setup for QFT analysis of black hole binary mergers
- Universal consequences of underlying fundamental theory
-Direct connection to low energy phenomenology of string and supergravity theories

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory
- Ideal perturbative setup for QFT analysis of black hole binary mergers
- Universal consequences of underlying fundamental theory
- Direct connection to low energy phenomenology of string and supergravity theories

Classical GR has a huge validity for normal energies

Advantages: Gravity as an EFT

- Treating general relativity as an effective field theory avoid complications and confusions in quantising gravity -
- Natural generalisation of Einstein's theory
- Ideal perturbative setup for QFT analysis of black hole binary mergers
- Universal consequences of underlying fundamental theory
- Direct connection to low energy phenomenology of string and supergravity theories

Classical GR has a huge validity for normal energies
-GR-EFT is attractive for investigating quantum aspects

Gravity from quantum field theory

Gravity from quantum field theory

- We start with Einstein-Hilbert term

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi G}+g^{\mu \nu} T_{\mu \nu}\right]
$$

Gravity from quantum field theory

- We start with Einstein-Hilbert term

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi G}+g^{\mu \nu} T_{\mu \nu}\right]
$$

- where the minimal 'energy-momentum' tensor is

$$
T_{\mu \nu} \equiv \partial_{\mu} \varphi \partial_{n} u \varphi-\frac{\eta_{\mu \nu}}{2}\left[\partial^{\alpha} \varphi \partial_{\alpha} \varphi-m^{2} \varphi^{2}\right]
$$

Gravity from quantum field theory

- We start with Einstein-Hilbert term

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi G}+g^{\mu \nu} T_{\mu \nu}\right]
$$

- where the minimal 'energy-momentum' tensor is

$$
T_{\mu \nu} \equiv \partial_{\mu} \varphi \partial_{n} u \varphi-\frac{\eta_{\mu \nu}}{2}\left[\partial^{\alpha} \varphi \partial_{\alpha} \varphi-m^{2} \varphi^{2}\right]
$$

- Consider the $2->2$ process from path integral
$\varphi_{1}\left(p_{1}, m_{1}\right)+\varphi_{2}\left(p_{2}, m_{2}\right) \rightarrow \varphi_{1}\left(p_{1}^{\prime}, m_{1}\right)+\varphi_{2}\left(p_{2}^{\prime}, m_{2}\right) \quad: \sum_{l=0}^{\infty} \mathcal{M}_{L}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)=$

Classical gravitational scattering from quantum field theory

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand
- Annihilation channels

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand
- Annihilation channels
- Back-tracking diagrams (no intermediate multiparticle states)

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand
- Annihilation channels
- Back-tracking diagrams (no intermediate multiparticle states)
- Anti-particle intermediate states

Classical gravitational scattering from quantum field theory

- We use the language of old-fashioned time-ordered perturbation theory
- In particular we eliminate by hand
- Annihilation channels
- Back-tracking diagrams (no intermediate multiparticle states)
- Anti-particle intermediate states

We will also assume (classical) long-distance scattering (this has the consequence that we can focus on non-analytic contributions -> ideal for unitarity)
(NEJBB, Donoghue, Holstein; Cristofoli, NEJBB, Damgaard, Vanhove)

Classical potential from a LippmannSchwinger equation

Classical potential from a LippmannSchwinger equation

- Non-relativistic limit, the tree classical potential is simply equal to the amplitude after a Fourier transform:

Classical potential from a LippmannSchwinger equation

- Non-relativistic limit, the tree classical potential is simply equal to the amplitude after a Fourier transform:

$$
\mathcal{V}(r, p)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i q \cdot r} \mathcal{V}(p, q)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i q \cdot r} \tilde{\mathcal{M}}(p, q)
$$

- Extension is given by Lippmann Schwinger eq.

Classical potential from a LippmannSchwinger equation

- Non-relativistic limit, the tree classical potential is simply equal to the amplitude after a Fourier transform:

$$
\mathcal{V}(r, p)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i q \cdot r} \mathcal{V}(p, q)=\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i q \cdot r} \tilde{\mathcal{M}}(p, q)
$$

- Extension is given by Lippmann Schwinger eq.

$$
\tilde{\mathcal{M}}\left(p, p^{\prime}\right)=\mathcal{V}\left(p, p^{\prime}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\mathcal{V}(p, k) \mathcal{M}\left(k, p^{\prime}\right)}{E_{p}-E_{k}+i \varepsilon}
$$

Tree level

Tree level

Tree level

Newton's law through Fourier transform

Tree level

Newton's law through Fourier transform

$$
\frac{G m_{1} m_{2}}{r}
$$

Computations: Loop level

Computations: Loop level

Long range behaviour can be efficiently be captured from the evaluation of unitarity cuts for using on-shell tree amplitudes

$$
C_{i, \ldots, j}=\operatorname{Im}_{K_{i, \ldots, j}>0} M^{1-\mathrm{loop}}
$$

Computations: Loop level

Long range behaviour can be efficiently be captured from the evaluation of unitarity cuts for using on-shell tree amplitudes

$$
C_{i, \ldots, j}=\operatorname{Im}_{K_{i, \ldots, j}>0} M^{1-\mathrm{loop}}
$$

(Neill, Rothstein; NEJBB, Donoghue, Vanhove)

Computations: Loop level

Long range behaviour can be efficiently be captured from the evaluation of unitarity cuts for using on-shell tree amplitudes

$$
C_{i, \ldots, j}=\operatorname{Im}_{K_{i, \ldots, j}>0} M^{1-\text { loop }}
$$

KLT+on-shell input trees (e.g. Badger et al., Forde, Kosower) recycled from Yang-Mills -> gravity

Computations: Loop level

Long range behaviour can be efficiently be captured from the evaluation of unitarity cuts for using on-shell tree amplitudes

$$
C_{i, \ldots, j}=\operatorname{Im}_{K_{i, \ldots, j}>0} M^{1-\text { loop }}
$$

(Neill, Rothstein; NEJBB, Donoghue, Vanhove)

KLT+on-shell input trees (e.g. Badger et al., Forde, Kosower) recycled from Yang-Mills -> gravity In D-dimensions from CHY (NEJBB, Cristofoli, Damgaard, Gomez; NEJBB, Plante, Vanhove)

Classical gravitational scattering from quantum field theory

Classical gravitational scattering from quantum field theory

- Surprise: Non-linear (classical) corrections from loop diagrams!
- Can consider the various exchanges

Classical gravitational scattering from quantum field theory

- Surprise: Non-linear (classical) corrections from loop diagrams!
- Can consider the various exchanges

- Define transfer momentum, CM energy

$$
\begin{aligned}
& q^{2} \equiv\left(p_{1}-p_{1}^{\prime}\right)^{2} \quad \gamma \equiv \frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
& \mathcal{E}_{C M}^{2} \equiv\left(p_{1}+p_{2}\right)^{2} \equiv\left(p_{1}^{\prime}+p_{2}^{\prime}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \gamma
\end{aligned}
$$

Classical gravitational scattering from quantum field theory

Classical gravitational scattering from quantum field theory p_{1}, m_{1}, S_{1}
$p_{1}^{\prime}, m_{1}, S_{1}$

p_{2}, m_{2}, S_{2}
$p_{2}^{\prime}, m_{2}, S_{2}$

Classical gravitational scattering from quantum field theory
 p_{1}, m_{1}, S_{1}
 $p_{1}^{\prime}, m_{1}, S_{1}$

p_{2}, m_{2}, S_{2} $p_{2}^{\prime}, m_{2}, S_{2}$

- Classical limit: we keep wave number fixed and take Planck's constant to zero, leads to the following Laurant expansion (quantum / classical / superclassical terms)

Classical gravitational scattering from quantum field theory
 p_{1}, m_{1}, S_{1}
 $p_{1}^{\prime}, m_{1}, S_{1}$

p_{2}, m_{2}, S_{2}
$p_{2}^{\prime}, m_{2}, S_{2}$

- Classical limit: we keep wave number fixed and take Planck's constant to zero, leads to the following Laurant expansion (quantum / classical / superclassical terms)

$$
\mathcal{M}_{L}\left(\gamma, \underline{q}^{2}, \hbar\right)=\frac{\mathcal{M}_{L}^{(-L-1)}\left(\gamma, q^{2}\right)}{\hbar^{L+1}|\underline{q}|^{\frac{L(4-D)}{2}+2}}+\cdots+\frac{\mathcal{M}_{L}^{(-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar \left\lvert\, \underline{q} \frac{L(4-D)}{2}+2-L\right.}+O\left(\hbar^{0}\right) \quad 1 / \hbar
$$

Origin: classical pieces in loops

Origin: classical pieces in loops

Expansion of massive propagators

Origin: classical pieces in loops

Expansion of massive propagators $\quad\left(\ell+p_{1}\right)^{2}-m_{1}^{2}=\ell^{2}+2 \ell \cdot p_{1} \simeq 2 m_{1} \ell_{0}$

$$
\frac{1}{2 m_{1}} \int \frac{d^{4} \ell}{(2 \pi)^{4} \ell^{2}+i \epsilon} \frac{1}{(\ell+q)^{2}+i \epsilon} \frac{1}{\ell_{0}+i \epsilon}
$$

Origin: classical pieces in loops

Expansion of massive propagators $\quad\left(\ell+p_{1}\right)^{2}-m_{1}^{2}=\ell^{2}+2 \ell \cdot p_{1} \simeq 2 m_{1} \ell_{0}$

$$
\frac{1}{2 m_{1}} \int \frac{d^{4} \ell}{(2 \pi)^{4} \ell^{2}+i \epsilon} \frac{1}{(\ell+q)^{2}+i \epsilon} \frac{1}{\ell_{0}+i \epsilon}
$$

Close contour
(NEJBB, Damgaard, Festuccia, Plante, Vanhove)

$$
\int_{|\vec{\ell}| \ll m} \frac{d^{3} \vec{\ell}}{(2 \pi)^{3}} \frac{i}{4 m} \frac{1}{\overrightarrow{\ell^{2}}} \frac{1}{(\vec{\ell}+q)^{2}}=-\frac{i}{32 m|\vec{q}|}
$$

One-loop result for gravity

One-loop result for gravity

Four-point amplitude can be deduced to take the form

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

Short range behaviour

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

Short range behaviour

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

Short range behaviour

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\begin{array}{r}
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right) \\
\text { Long range behaviour }
\end{array}
$$

Short range behaviour

One-loop result for gravity

Four-point amplitude can be deduced to take the form

$$
\mathcal{M} \sim\left(A+B q^{2}+\ldots+\alpha \kappa^{4} \frac{1}{q^{2}}+\beta_{1} \kappa^{4} \ln \left(-q^{2}\right)+\beta_{2} \kappa^{4} \frac{m}{\sqrt{-q^{2}}}+\ldots\right)
$$

Short range behaviour

Long range behaviour (NEJBB, Donoghue, Holstein; NEJBB, Donoghue, Vanhove)

One-loop result for gravity

One-loop result for gravity

The result for the amplitude (in coordinate space) after summing all diagrams in (leading in small momentum transfer contribution):

$$
-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}+\frac{41}{10 \pi} \frac{G \hbar}{r^{2}}\right] \quad \begin{aligned}
& \text { (NEJB, } \\
& \begin{array}{l}
\text { Donoghue, } \\
\text { Holstein) }
\end{array}
\end{aligned}
$$

One-loop result for gravity

The result for the amplitude (in coordinate space) after summing all diagrams in (leading in small momentum transfer contribution):

$$
\begin{array}{cl}
-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}+\frac{41}{10 \pi} \frac{G \hbar}{r^{2}}\right] & \begin{array}{l}
\text { (NEJB, } \\
\text { Donoghue, } \\
\text { Holstein) }
\end{array} \\
\text { Classical } &
\end{array}
$$

One-loop result for gravity

The result for the amplitude (in coordinate space) after summing all diagrams in (leading in small momentum transfer contribution):

$$
\begin{array}{rll}
-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}+\frac{41}{10 \pi} \frac{G \hbar}{r^{2}}\right] & \begin{array}{l}
\text { (NEJB, } \\
\text { Donoghue, } \\
\text { Holstein) }
\end{array} \\
\text { Classical } & \text { Quantum } &
\end{array}
$$

One-loop result for gravity

The result for the amplitude (in coordinate space) after summing all diagrams in (leading in small momentum transfer contribution):

$$
-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}+\frac{41}{10 \pi} \frac{G \hbar}{r^{2}}\right] \quad \begin{aligned}
& \text { (NEJB, } \\
& \text { Classical }
\end{aligned} \begin{aligned}
& \text { Quantum } \\
& \text { Holstein) }
\end{aligned}
$$

Post-Newtonian term in complete accordance with general relativity (Iwasaki; Holstein and Ross; Neill and Rothstein; NEJBB, Damgaard, Festuccia, Plante, Vanhove)

Einstein-Infeld-Hoffman Potential

Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

$$
\begin{aligned}
i\langle f| T|i\rangle & =-2 \pi i \delta\left(E-E^{\prime}\right) \\
& \times\left[\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle+\sum_{n} \frac{\langle f| \tilde{V}_{b s}(\mathbf{q})|n\rangle\langle n| \tilde{V}_{b s}(\mathbf{q})|i\rangle}{E-E_{n}+i \epsilon}+\ldots\right]
\end{aligned}
$$

Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

$$
\begin{aligned}
& i\langle f| T|i\rangle=-2 \pi i \delta\left(E-E^{\prime}\right) \\
& \times\left[\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle+\sum_{n} \frac{\langle f| \tilde{V}_{b s}(\mathbf{q})|n\rangle\langle n| \tilde{V}_{b s}(\mathbf{q})|i\rangle}{E-E_{n}+i \epsilon}+\ldots\right] \\
&\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle=-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}\right]
\end{aligned}
$$

Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

$$
\begin{aligned}
& i\langle f| T|i\rangle=-2 \pi i \delta\left(E-E^{\prime}\right) \\
& \times\left[\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle+\sum_{n} \frac{\langle f| \tilde{V}_{b s}(\mathbf{q})|n\rangle\langle n| \tilde{V}_{b s}(\mathbf{q})|i\rangle}{E-E_{n}+i \epsilon}+\ldots\right] \\
&\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle=-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}\right]
\end{aligned}
$$

Contact with the Einstein-Infeld-Hoffmann Hamiltonian

Einstein-Infeld-Hoffman Potential

Solve for potential in non-relativistic limit (Born subtraction)

$$
\begin{aligned}
& i\langle f| T|i\rangle=-2 \pi i \delta\left(E-E^{\prime}\right) \\
& \times\left[\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle+\sum_{n} \frac{\langle f| \tilde{V}_{b s}(\mathbf{q})|n\rangle\langle n| \tilde{V}_{b s}(\mathbf{q})|i\rangle}{E-E_{n}+i \epsilon}+\ldots\right] \\
&\langle f| \tilde{V}_{b s}(\mathbf{q})|i\rangle=-\frac{G m_{1} m_{2}}{r}\left[1+3 \frac{G\left(m_{1}+m_{2}\right)}{r}\right]
\end{aligned}
$$

Contact with the Einstein-Infeld-Hoffmann Hamiltonian

$$
\tilde{V}_{b s}(r)=V(r)+\frac{7 G m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 c^{2} r^{2}}
$$

Post-Newtonian interaction potentials

Post-Newtonian interaction potentials

$$
\begin{aligned}
H & =\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{4}^{2}}{2 m_{2}}-\frac{\vec{p}_{1}^{4}}{8 m_{1}^{3}}-\frac{\vec{p}_{4}^{4}}{8 m_{2}^{3}} \\
& -\frac{G m_{1} m_{2}}{r}-\frac{G^{2} m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 r^{2}} \\
& -\frac{G m_{1} m_{2}}{2 r}\left(\frac{3 \vec{p}_{1}^{2}}{m_{1}^{2}}+\frac{3 \vec{p}_{4}^{2}}{m_{2}^{2}}-\frac{7 \vec{p}_{1} \cdot \vec{p}_{4}}{m_{1} m_{2}}-\frac{\left(\vec{p}_{1} \cdot \vec{r}\right)\left(\vec{p}_{4} \cdot \vec{r}\right)}{m_{1} m_{2} r^{2}}\right)
\end{aligned}
$$

Post-Newtonian interaction potentials

$$
\begin{aligned}
H & =\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{4}^{2}}{2 m_{2}}-\frac{\vec{p}_{1}^{4}}{8 m_{1}^{3}}-\frac{\vec{p}_{4}^{4}}{8 m_{2}^{3}} \\
& -\frac{G m_{1} m_{2}}{r}-\frac{G^{2} m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 r^{2}} \\
& -\frac{G m_{1} m_{2}}{2 r}\left(\frac{3 \vec{p}_{1}^{2}}{m_{1}^{2}}+\frac{3 \vec{p}_{4}^{2}}{m_{2}^{2}}-\frac{7 \vec{p}_{1} \cdot \vec{p}_{4}}{m_{1} m_{2}}-\frac{\left(\vec{p}_{1} \cdot \vec{r}\right)\left(\vec{p}_{4} \cdot \vec{r}\right)}{m_{1} m_{2} r^{2}}\right)
\end{aligned}
$$

(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein, Ross) Crucial subtraction of Born term in order to the correct PN potential

Post-Newtonian interaction potentials

$$
\begin{aligned}
H & =\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{4}^{2}}{2 m_{2}}-\frac{\vec{p}_{1}^{4}}{8 m_{1}^{3}}-\frac{\vec{p}_{4}^{4}}{8 m_{2}^{3}} \\
& -\frac{G m_{1} m_{2}}{r}-\frac{G^{2} m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 r^{2}} \\
& -\frac{G m_{1} m_{2}}{2 r}\left(\frac{3 \vec{p}_{1}^{2}}{m_{1}^{2}}+\frac{3 \vec{p}_{4}^{2}}{m_{2}^{2}}-\frac{7 \vec{p}_{1} \cdot \vec{p}_{4}}{m_{1} m_{2}}-\frac{\left(\vec{p}_{1} \cdot \vec{r}\right)\left(\vec{p}_{4} \cdot \vec{r}\right)}{m_{1} m_{2} r^{2}}\right)
\end{aligned}
$$

(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein, Ross) Crucial subtraction of Born term in order to the correct PN potential

Post-Newtonian interaction potentials

$$
\begin{aligned}
H & =\frac{\vec{p}_{1}^{2}}{2 m_{1}}+\frac{\vec{p}_{4}^{2}}{2 m_{2}}-\frac{\vec{p}_{1}^{4}}{8 m_{1}^{3}}-\frac{\vec{p}_{4}^{4}}{8 m_{2}^{3}} \\
& -\frac{G m_{1} m_{2}}{r}-\frac{G^{2} m_{1} m_{2}\left(m_{1}+m_{2}\right)}{2 r^{2}} \\
& -\frac{G m_{1} m_{2}}{2 r}\left(\frac{3 \vec{p}_{1}^{2}}{m_{1}^{2}}+\frac{3 \vec{p}_{4}^{2}}{m_{2}^{2}}-\frac{7 \vec{p}_{1} \cdot \vec{p}_{4}}{m_{1} m_{2}}-\frac{\left(\vec{p}_{1} \cdot \vec{r}\right)\left(\vec{p}_{4} \cdot \vec{r}\right)}{m_{1} m_{2} r^{2}}\right)
\end{aligned}
$$

(Einstein-Infeld-Hoffmann, Iwasaki; NEJBB, Donoghue, Holstein; Holstein, Ross) Crucial subtraction of Born term in order to the correct PN potential

$$
3-\frac{7}{2}=-\frac{1}{2}
$$

Post-Minkowskian framework and amplitudes

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration
- IBP relation reduction (various programs)

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration
- IBP relation reduction (various programs)
- Modern integration techniques ..

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration
- IBP relation reduction (various programs)
- Modern integration techniques .
- Integration regions .. PDE approaches

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration
- IBP relation reduction (various programs)
- Modern integration techniques .
- Integration regions .. PDE approaches
- Main focus on the two-body problem in general relativity without spin

Post-Minkowskian framework and amplitudes

- Post-Minkowskian expansion of Einstein's general theory of relativity has received much recent attention in the amplitude community
- Idea: use scattering amplitude to provide a self-contained framework for deriving the twobody scattering valid in all regimes of energy and employ the computational power of modern amplitude calculations in an expansion in G (Damour)
- On-shell Integrand construction
- Multi-loop integration
- IBP relation reduction (various programs)
- Modern integration techniques .
- Integration regions .. PDE approaches
- Main focus on the two-body problem in general relativity without spin
- NB: Many other problems can be considered in this framework

Classical potential from a LippmannSchwinger equation

Classical potential from a LippmannSchwinger equation

- Problem in scattering theory to relate a scattering loop amplitude M to an interaction potential V.

Classical potential from a LippmannSchwinger equation

- Problem in scattering theory to relate a scattering loop amplitude M to an interaction potential V .
- In PN we consider non-relativistic quantum mechanics, and this can be generalized to the relativistic case.

Classical potential from a LippmannSchwinger equation

- Problem in scattering theory to relate a scattering loop amplitude M to an interaction potential V .
- In PN we consider non-relativistic quantum mechanics, and this can be generalized to the relativistic case.
- We restrict classical objects that scatter to classical distance scales.

Classical potential from a LippmannSchwinger equation

- Problem in scattering theory to relate a scattering loop amplitude M to an interaction potential V .
- In PN we consider non-relativistic quantum mechanics, and this can be generalized to the relativistic case.
- We restrict classical objects that scatter to classical distance scales.
- The Hamiltonian H for the two massive scalars is given by Salpeter eq.

Classical potential from a LippmannSchwinger equation

- Problem in scattering theory to relate a scattering loop amplitude M to an interaction potential V .
- In PN we consider non-relativistic quantum mechanics, and this can be generalized to the relativistic case.
- We restrict classical objects that scatter to classical distance scales.
- The Hamiltonian H for the two massive scalars is given by Salpeter eq.

$$
\begin{aligned}
H= & \sqrt{p^{2}+m_{1}^{2}}+ \\
& \sqrt{p^{2}+m_{2}^{2}}+\mathcal{V}(r, p)
\end{aligned}
$$

Result for the one-loop amplitude

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}
$$

Result for the one-loop amplitude

- Reduce to scalar integral basis
$\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}$

Result for the one-loop amplitude

- Reduce to scalar integral basis
- Isolate coefficients

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}
$$

Result for the one-loop amplitude

- Reduce to scalar integral basis
- Isolate coefficients
(NEJB, Donoghue, Vanhove)

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}
$$

Result for the one-loop amplitude

- Reduce to scalar integral basis
- Isolate coefficients
(NEJB, Donoghue, Vanhove)
(See also Cachazo and Guevara; Bern, Cheung Roiban, Shen, Solon, Zeng)

$$
\mathcal{M}_{1}\left(\gamma, q^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}
$$

Result for the one-loop amplitude

- Reduce to scalar integral basis
- Isolate coefficients
(NEJB, Donoghue, Vanhove)
(See also Cachazo and Guevara; Bern, Cheung Roiban, Shen, Solon, Zeng)

$$
\mathcal{M}_{1}\left(\gamma, q^{2}, \hbar\right)=\mathcal{M}_{1}^{\square}+\mathcal{M}_{1}^{\triangleright}+\mathcal{M}_{1}^{\triangleleft}+\mathcal{M}_{1}^{\circ}
$$

Result for the one-loop amplitude

Result for the one-loop amplitude

The amplitude has a

Result for the one-loop amplitude

The amplitude has a Laurent expansion

Result for the one-loop amplitude

The amplitude has a Laurent expansion

Result for the one-loop amplitude

The amplitude has a
Laurent expansion

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\frac{1}{\mid \underline{q}^{4-D}}\left(\frac{\mathcal{M}_{1}^{(-2)}\left(\gamma, \underline{q}^{2}\right)}{\hbar^{2}}+\frac{\mathcal{M}_{1}^{(-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar}+\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{O}(\hbar)\right)
$$

Result for the one-loop amplitude

The amplitude has a Laurent expansion

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\frac{1}{|\underline{q}|^{4-D}}\left(\frac{\mathcal{M}_{1}^{(-2)}\left(\gamma, \underline{q}^{2}\right)}{\hbar^{2}}+\frac{\mathcal{M}_{1}^{(-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar}+\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{O}(\hbar)\right)
$$

$$
\begin{aligned}
\mathcal{M}_{1}^{(-2)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(-2)}\left(\gamma, \underline{q}^{2}\right), \\
\mathcal{M}_{1}^{(-1)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(-1)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleright(-1)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleleft(-1)}\left(\gamma, \underline{q}^{2}\right), \\
\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleright(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleleft(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\circ(0)}\left(\gamma, \underline{q}^{2}\right)
\end{aligned}
$$

Result for the one-loop amplitude

The amplitude has a Laurent expansion

$$
\mathcal{M}_{1}\left(\gamma, \underline{q}^{2}, \hbar\right)=\frac{1}{\mid \underline{q}^{4-D}}\left(\frac{\mathcal{M}_{1}^{(-2)}\left(\gamma, \underline{q}^{2}\right)}{\hbar^{2}}+\frac{\mathcal{M}_{1}^{(-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar}+\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{O}(\hbar)\right)
$$

$$
\begin{aligned}
\mathcal{M}_{1}^{(-2)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(-2)}\left(\gamma, \underline{q}^{2}\right), \\
\mathcal{M}_{1}^{(-1)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(-1)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleright(-1)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\Omega(-1)}\left(\gamma, \underline{q}^{2}\right), \\
\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right) & =\mathcal{M}_{1}^{\square(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleright(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{\triangleleft(0)}\left(\gamma, \underline{q}^{2}\right)+\mathcal{M}_{1}^{(0)}\left(\gamma, \underline{q}^{2}\right)
\end{aligned}
$$

Order by order in Planck's constant

PM potential one-loop amplitude

PM potential one-loop amplitude

$$
\mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right)
$$

PM potential one-loop amplitude

$$
\begin{aligned}
& \mathcal{M}^{1-\mathrm{loop}}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
\mathcal{I}_{\square}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell-p_{3}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)}
\end{aligned}
$$

PM potential one-loop amplitude

$$
\begin{aligned}
& \mathcal{M}^{1-\mathrm{loop}}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
\mathcal{I}_{\square}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell-p_{3}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\bowtie}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell+p_{4}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)}
\end{aligned}
$$

PM potential one-loop amplitude

$$
\begin{aligned}
& \mathcal{M}^{1-\mathrm{loop}}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
\mathcal{I}_{\square}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell-p_{3}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\bowtie}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell+p_{4}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\triangleright}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left((\ell+q)^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)}
\end{aligned}
$$

PM potential one-loop amplitude

$$
\begin{aligned}
& \mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
\mathcal{I}_{\square}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell-p_{3}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\bowtie}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)\left(\left(\ell+p_{4}\right)^{2}-m_{b}^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left((\ell+q)^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\triangleright}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left((\ell+q)^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left(\left(\ell+p_{1}\right)^{2}-m_{a}^{2}+i \varepsilon\right)} \\
\mathcal{I}_{\triangleleft}= & \int \frac{d^{d+1} \ell}{(2 \pi)^{d+1}} \frac{1}{\left((\ell-q)^{2}+i \varepsilon\right)\left(\ell^{2}+i \varepsilon\right)\left(\left(\ell-p_{3}\right)^{2}-m_{b}^{2}+i \varepsilon\right)}
\end{aligned}
$$

Putting it all together

Putting it all together

Ignore quantum keep only classical pieces

Putting it all together

Ignore quantum keep only classical pieces

$$
\begin{aligned}
& \mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
& \left.\mathcal{I}_{\square}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(-\frac{1}{m_{a} m_{b}}+\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{a}^{2} m_{b}^{2}}+\frac{i \pi}{|p| E_{p}}\right)\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\bowtie}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(\frac{1}{m_{a} m_{b}}-\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{\curvearrowleft}^{2} m_{\llcorner }^{2}}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots
\end{aligned}
$$

Putting it all together

Ignore quantum keep only classical pieces phase

$$
\begin{aligned}
& \mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\infty} \mathcal{I}_{\infty}+c_{\Delta} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
& { }^{\mathcal{I}_{\square}}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(-\frac{1}{m_{a} m_{b}}+\frac{m_{a}\left(m_{a}-m_{b}\right.}{3 m_{a}^{2} m_{b}^{2}}+\frac{i \pi}{\left|| | E_{p}\right.}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\infty}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(\frac{1}{m_{a} m_{b}}-\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{2}^{2} m_{土}^{2}}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots
\end{aligned}
$$

Putting it all together

Ignore quantum keep only classical pieces phase

$$
\begin{aligned}
& \mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\infty} \mathcal{I}_{\infty}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
& \mathcal{I}_{\square}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(-\frac{1}{m_{a} m_{b}}+\frac{m_{a}\left(m_{a}-m_{b}\right.}{3 m_{a}^{2} m_{b}^{2}}+\frac{i \pi}{\left|| | E_{\triangleright}\right.}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\infty}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(\frac{1}{m_{a} m_{b}}-\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{2}^{2} m_{2}^{2}}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\triangleright}=-\frac{i}{32 m_{a}} \frac{1}{|\vec{q}|}+\cdots \\
& \mathcal{I}_{\triangleleft}=-\frac{i}{32 m_{b}} \frac{1}{|\vec{q}|}+\cdots
\end{aligned}
$$

Putting it all together

Ignore quantum keep only classical pieces phase

$$
\begin{aligned}
& \mathcal{M}^{1-\text { loop }}=\frac{i 16 \pi^{2} G_{N}^{2}}{E_{a} E_{b}}\left(c_{\square} \mathcal{I}_{\square}+c_{\bowtie} \mathcal{I}_{\bowtie}+c_{\triangleright} \mathcal{I}_{\triangleright}+c_{\triangleleft} \mathcal{I}_{\triangleleft}+\cdots\right) \\
& \left.{ }^{\square} \mathcal{I}_{\square}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(-\frac{1}{m_{a} m_{b}}+\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{a}^{2} m_{b}^{2}}+\frac{i \pi}{|p| E_{p}}\right)\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\bowtie}=-\frac{i}{16 \pi^{2}|\vec{q}|^{2}}\left(\frac{1}{m_{a} m_{b}}-\frac{m_{a}\left(m_{a}-m_{b}\right)}{3 m_{2}^{2} m_{\leftarrow}^{2}}\right)\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)+\cdots \\
& \mathcal{I}_{\triangleright}=-\frac{i}{22 m^{2}} \frac{1}{|\vec{q}|}+\cdots \quad c_{\square}=c_{\bowtie}=16 m_{1}^{4} m_{2}^{4} \frac{\left(1-(D-2) \sigma^{2}\right)^{2}}{(D-2)^{2}}, \\
& \mathcal{I}_{\triangleright}=-\overline{32 m_{a}} \frac{1}{|\vec{q}|}+\cdots \\
& \mathcal{I}_{\triangleleft}=-\frac{i}{32 m_{b}} \frac{1}{|\vec{q}|}+\cdots \\
& c_{\triangleright}=\frac{4 m_{1}^{4} m_{2}^{2}\left(D-7+(D(4 D-17)+19) \sigma^{2}\right)}{(D-2)^{2}} \\
& c_{\triangleleft}=\frac{4 m_{1}^{2} m_{2}^{4}\left(D-7+(D(4 D-17)+19) \sigma^{2}\right)}{(D-2)^{2}}
\end{aligned}
$$

Relation to a PM potential

Relation to a PM potential

One-loop amplitude after summing all contributions

Relation to a PM potential

One-loop amplitude after summing all contributions

$$
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square}}{|\vec{p}|} \frac{\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)}{\pi|\vec{q}|^{2}}\right]
$$

(NEJBB, Cristofoli,
Damgaard, Vanhove)

Relation to a PM potential

One-loop amplitude after summing all contributions

$$
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square}}{|\vec{p}|} \frac{\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)}{\pi|\vec{q}|^{2}}\right]
$$

(NEJBB, Cristofoli, Damgaard, Vanhove)

How to relate to a classical potential

Relation to a PM potential

One-loop amplitude after summing all contributions

$$
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square}|\vec{p}|}{\left.\left.\left|\frac{2}{3-d}-\log \right| \vec{q}\right|^{2}\right)} \underset{\pi|\vec{q}|^{2}}{ }\right]
$$

(NEJBB, Cristofoli, Damgaard, Vanhove)

How to relate to a classical potential

- Choice of coordinates

Relation to a PM potential

One-loop amplitude after summing all contributions

$$
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square}|\vec{p}|}{\left.\left.\frac{\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)}{\pi|\vec{q}|^{2}}\right], ~\right]}\right]
$$

(NEJBB, Cristofoli, Damgaard, Vanhove)

How to relate to a classical potential

- Choice of coordinates
- Born subtraction/Lippmann-Schwinger

Relation to a PM potential

One-loop amplitude after summing all contributions

$$
\mathcal{M}^{1 \text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square} \left\lvert\,\left(\frac{2}{\vec{p} \mid}-\log |\vec{q}|^{2}\right)\right.}{\pi|\vec{q}|^{2}}\right]
$$

(NEJBB, Cristofoli,
Damgaard, Vanhove)
How to relate to a classical potential

- Choice of coordinates
- Born subtraction/Lippmann-Schwinger

One-loop

One-loop

Born subtraction important to make contact with classical physics

One-loop

Born subtraction important to make contact with classical physics

$$
\begin{aligned}
& \mathcal{M}^{\text {Iterated }}=\frac{i \pi G_{N}^{2}}{E_{p}^{3} \xi} \frac{4 c_{1}^{2}}{|\vec{p}|} \frac{\left(\log |\vec{q}|^{2}-\frac{2}{3-d}\right)}{|\vec{q}|^{2}}+\frac{2 \pi^{2} G_{N}^{2}}{E_{p}^{33} \xi^{2}|\vec{q}|}\left(\frac{c_{1}^{2}(\xi-1)}{2 E_{p}^{22} \xi}-4 c_{1} p_{1} \cdot p_{3}\right) \\
& \mathcal{M}^{1 \text {-loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{p}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{c_{\square}}{|\vec{p}|} \frac{\left(\frac{2}{3-d}-\log |\vec{q}|^{2}\right)}{\pi|\vec{q}|^{2}}\right]
\end{aligned}
$$

One-loop

Born subtraction important to make contact with classical physics

$$
\begin{gathered}
\mathcal{M}^{\text {Iterated }}=\frac{i \pi G_{N}^{2}}{E_{\Sigma_{j}^{3} \xi} \frac{4 c_{1}^{2}\left(\log |\vec{q}|^{2}-\frac{2}{\mid-d}\right)}{|\vec{q}|^{2}}+\frac{2 \pi^{2} G_{N}^{2}}{E_{p}^{3} \xi^{2}|\vec{q}|}\left(\frac{c_{1}^{2}(\xi-1)}{2 E_{p}^{2 \xi}}-4 c_{1} p_{1} \cdot p_{3}\right)} \\
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{\left.c_{\square}|\vec{p}| \frac{2}{3-d}-\log |\vec{q}|^{2}\right)}{\pi|\vec{q}|^{2}}\right] \\
V_{2 \mathrm{PM}}(p, q)=\mathcal{M}^{1 \text { loopp }}+\mathcal{M}^{\text {Iterated }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi|\vec{q}|}\left[\frac{1}{2}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{2}{E_{p} \xi}\left(\frac{c_{1}^{2}(\xi-1)}{2 E_{p}^{2} \xi}-4 c_{1} p_{1} \cdot p_{3}\right)\right]
\end{gathered}
$$

One-loop

Born subtraction important to make contact with classical physics

$$
\begin{gathered}
\left.\mathcal{M}^{\text {Iterated }}=\frac{i \pi G_{N}^{2}}{E_{p}^{3} \xi} \frac{4 c_{1}^{2}\left(\log |\vec{q}|^{2}-\frac{2}{\mid \overrightarrow{\mid}}\right)}{|\vec{q}|^{2}}\right) \frac{2 \pi^{2} G_{N}^{2}}{E_{p}^{3} \xi|\vec{q}|}\left(\frac{c_{1}^{2}(\xi-1)}{2 E_{p_{j}^{2} \xi}^{2}}-4 c_{1} p_{1} \cdot p_{3}\right) \\
\mathcal{M}^{1-\text { loop }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi}\left[\frac{1}{2|\vec{q}|}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{i}{E_{p}} \frac{\left.\left.c_{\square}\left|\frac{2}{3-d}-\log \right| \vec{q}\right|^{2}\right)}{\pi|\vec{q}|^{2}}\right] \\
V_{2 \mathrm{PM}}(p, q)=\mathcal{M}^{1 \text { looop }}+\mathcal{M}^{\text {Iterated }}=\frac{\pi^{2} G_{N}^{2}}{E_{p}^{2} \xi|\vec{q}|}\left[\frac{1}{2}\left(\frac{c_{\triangleright}}{m_{a}}+\frac{c_{\triangleleft}}{m_{b}}\right)+\frac{2}{E_{p} \xi}\left(\frac{c_{1}^{2}(\xi-1)}{2 E_{p}^{2} \xi}-4 c_{1} p_{1} \cdot p_{3}\right)\right]
\end{gathered}
$$

Again same result as from matching, singular term gone!

Scalar interaction potentials
 (one-loop)

Scalar interaction potentials (one-loop)

Important ‘empirical' observation classical part of radial action that for the gravitational Hamiltonian is given by triangle diagrams only rest is cancelled in subtractions

Scalar interaction potentials (one-loop)

Important 'empirical' observation classical part of radial action that for the gravitational Hamiltonian is given by triangle diagrams only rest is cancelled in subtractions One-loop level

$$
\mathcal{M}_{2}=\underset{\sim}{\sim} \sim \underset{\sim}{\sim}
$$

Result for the one-loop amplitude

Result for the one-loop amplitude

It follows that the classical part is

Result for the one-loop amplitude

It follows that the classical part is

$$
\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl} .}(\gamma, b, \hbar)=\frac{3 \pi G_{N}^{2}\left(m_{1}+m_{2}\right) m_{1} m_{2}\left(5 \gamma^{2}-1\right)}{4 b \sqrt{\gamma^{2}-1} \hbar}\left(\pi b^{2} e^{\gamma_{E}}\right)^{4-D}+\mathcal{O}(4-D)
$$

Result for the one-loop amplitude

It follows that the classical part is

$$
\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl} .}(\gamma, b, \hbar)=\frac{3 \pi G_{N}^{2}\left(m_{1}+m_{2}\right) m_{1} m_{2}\left(5 \gamma^{2}-1\right)}{4 b \sqrt{\gamma^{2}-1} \hbar}\left(\pi b^{2} e^{\gamma_{E}}\right)^{4-D}+\mathcal{O}(4-D)
$$

With quantum correction (important in iterations)

Result for the one-loop amplitude

It follows that the classical part is

$$
\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl}}(\gamma, b, \hbar)=\frac{3 \pi G_{N}^{2}\left(m_{1}+m_{2}\right) m_{1} m_{2}\left(5 \gamma^{2}-1\right)}{4 b \sqrt{\gamma^{2}-1} \hbar}\left(\pi b^{2} e^{\gamma_{E}}\right)^{4-D}+\mathcal{O}(4-D)
$$

With quantum correction (important in iterations)

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{1}^{\text {Qt. }}(\gamma, b)=\frac{G_{N}^{2}\left(\pi b^{2} e^{\gamma E}\right)^{4-D}}{b^{2}}\left(i \frac{4-D}{2} \frac{\left(2 \gamma^{2}-1\right)^{2} \mathcal{E}_{\text {C.M. }}^{2}}{\left(\gamma^{2}-1\right)^{2}}\right. \\
& - \\
& \left.-\frac{m_{1} m_{2}}{\pi\left(\gamma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \gamma^{2}+18 \gamma^{4}}{15}-\frac{2 \gamma\left(2 \gamma^{2}-1\right)\left(6 \gamma^{2}-7\right) \operatorname{arccosh}(\gamma)}{\sqrt{\gamma^{2}-1}}\right)\right)+\mathcal{O}\left((4-D)^{2}\right)
\end{aligned}
$$

Lessons from one-loop

Lessons from one-loop

- Only part of the amplitude is relevant for deriving observables in General Relativity

Lessons from one-loop

- Only part of the amplitude is relevant for deriving observables in General Relativity

Part of the amplitude is there to be subtracted for consistency with matching with a Quantum-Mechanical potential

Lessons from one-loop

- Only part of the amplitude is relevant for deriving observables in General Relativity

Part of the amplitude is there to be subtracted for consistency with matching with a Quantum-Mechanical potential

We will now consider what happens at two-loops

Classical gravitational scattering: Loop level

Classical gravitational scattering: Loop level

Classical gravitational scattering: Loop level

- 1) compute multi-loop cuts and 2) use consistency of the representation in master integrals to generate the full non-analytics pieces of the amplitude (classical and super-classical contributions)

Classical gravitational scattering: Loop level

- 1) compute multi-loop cuts and 2) use consistency of the representation in master integrals to generate the full non-analytics pieces of the amplitude (classical and super-classical contributions)

Classical gravitational scattering: Loop level

- 1) compute multi-loop cuts and 2) use consistency of the representation in master integrals to generate the full non-analytics pieces of the amplitude (classical and super-classical contributions)

$$
=\mathcal{M}\left(\gamma, q^{2}\right)=\sum_{L=0}^{\infty} \mathcal{M}_{L}\left(\gamma, q^{2}\right) .
$$

$$
\mathcal{M}_{L+1}^{\mathrm{cut}}\left(\gamma, q^{2}\right)=
$$

Classical gravitational scattering: Loop level

- 1) compute multi-loop cuts and 2) use consistency of the representation in master integrals to generate the full non-analytics pieces of the amplitude (classical and super-classical contributions)

Extraction of integrand similar to QCD Spinor-helicity and D-dimension covariant tree amplitudes can be used in cuts

$$
=\mathcal{M}\left(\gamma, q^{2}\right)=\sum_{L=0}^{\infty} \mathcal{M}_{L}\left(\gamma, q^{2}\right) .
$$

$$
\mathcal{M}_{L+1}^{\text {cut }}\left(\gamma, q^{2}\right)=
$$

Example: Einstein gravity at two-loop order

Example: Einstein gravity at two-loop order

Example: Einstein gravity at two-loop order

$$
\begin{aligned}
& \mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\int \frac{d^{D} l_{1} d^{D} l_{2} d^{D} l_{3}}{(2 \pi)^{3 D}}(2 \pi)^{D} \delta^{(D)}\left(l_{1}+l_{2}+l_{3}+q\right) \frac{i^{3}}{l_{1}^{2} l_{2}^{2} l_{3}^{2}} \\
& \quad \times \frac{1}{3!} \sum_{\substack{\text { Perm }\left(l_{1}, l_{2}, l_{3}\right) \\
\lambda_{1}= \pm, \lambda_{2}= \pm, \lambda_{3}= \pm}} \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{\lambda_{1}}, l_{2}^{\lambda_{2}}, l_{3}^{\lambda_{3}}\right)\left(\mathcal{M}_{0}\left(p_{2}, p_{2}^{\prime},-l_{1}^{\lambda_{1}},-l_{2}^{\lambda_{2}},-l_{3}^{\lambda_{3}}\right)\right)^{*}
\end{aligned}
$$

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Can e.g. use helicity formalism

Einstein gravity at two-loop order

Can e.g. use helicity formalism to derive $D=4$ integrand - from traces..

Einstein gravity at two-loop order

Can e.g. use helicity formalism to derive $D=4$ integrand - from traces..

Einstein gravity at two-loop order

Can e.g. use helicity formalism to derive $D=4$ integrand - from traces..

$$
i \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{+}, l_{2}^{+}, l_{3}^{+}\right)=-\frac{\left(8 \pi G_{N}\right)^{\frac{3}{2}} m_{1}^{4}}{\left\langle l_{1} l_{2}\right\rangle^{2}\left\langle l_{1} l_{3}\right\rangle^{2}\left\langle l_{2} l_{3}\right\rangle^{2}} \sum_{1 \leq i \neq j \neq k \leq 3} \frac{\left(l_{i} \cdot l_{j}\right)\left(l_{j} \cdot l_{k}\right) t r_{+}\left[l_{k}, p_{1}, p_{1}^{\prime}, l_{i}\right]}{\left(p_{1} \cdot l_{k}\right)\left(p_{1}^{\prime} \cdot l_{i}\right)} .
$$

Einstein gravity at two-loop order

Can e.g. use helicity formalism to derive $D=4$ integrand - from traces..

$$
\begin{aligned}
& i \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{+}, l_{2}^{+}, l_{3}^{+}\right)=-\frac{\left(8 \pi G_{N}{ }^{\frac{3}{2}} m_{1}^{4}\right.}{\left\langle l_{1} l_{2}\right\rangle^{2}\left\langle l_{1} l_{3}\right\rangle^{2}\left\langle l_{2} l_{3}\right\rangle^{2}} \sum_{1 \leq i \neq j \neq k \leq 3} \frac{\left(l_{i} \cdot l_{j}\right)\left(l_{j} \cdot l_{k}\right) t r_{+}\left[l_{k}, p_{1}, p_{1}^{\prime}, l_{i}\right]}{\left(p_{1} \cdot l_{k}\right)\left(p_{1}^{\prime} \cdot l_{i}\right)} \\
& i \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{-}, l_{2}^{+}, l_{3}^{+}\right)=\frac{\left(2 \pi G_{N}\right)^{\frac{3}{2}}}{2}\left(\sum_{2 \leq j \neq k \leq 3}\right. \frac{\left.\left.\left.\left\langle l_{1}\right| p_{1} \mid l_{j}\right]\left\langle l_{1}\right| p_{1}^{\prime} \mid l_{j}\right]^{2}\left\langle l_{1}\right| p_{1} \mid l_{k}\right]^{3}}{\left\langle l_{1} l_{j}\right\rangle\left\langle l_{1} l_{k}\right\rangle\left(l_{1} \cdot l_{j}\right)\left(l_{1} \cdot l_{k}\right)\left(p_{1} \cdot l_{1}\right)\left(p_{1}^{\prime} \cdot l_{j}\right)} \\
&-\frac{\left.\left.\left\langle l_{1}\right| p_{1} \mid l_{2}\right]^{3}\left\langle l_{1}\right| p_{1}^{\prime} \mid l_{3}\right]^{3}}{\left\langle l_{1} l_{2}\right\rangle\left\langle l_{1} l_{3}\right\rangle\left(l_{1} \cdot l_{2}\right)\left(l_{1} \cdot l_{3}\right)\left(p_{1} \cdot l_{2}\right)\left(p_{1}^{\prime} \cdot l_{3}\right)}-\frac{\left.\left.\left.2\left[l_{2} l_{3}\right]\left\langle l_{1}\right| p_{1} \mid l_{2}\right]\left\langle l_{1}\right| p_{1} \mid l_{3}\right]\left\langle l_{1}\right| p_{1}\left|p_{1}^{\prime}\right| l_{1}\right\rangle^{2}}{\left\langle l_{1} l_{2}\right\rangle\left\langle l_{1} l_{3}\right\rangle\left\langle l_{2} l_{3}\right\rangle\left(l_{1} \cdot l_{2}\right)\left(l_{1} \cdot l_{3}\right)\left(p_{1} \cdot l_{1}\right)} \\
&\left.+\frac{\left.2\left[l_{2} l_{3}\right]^{3}\left\langle l_{1}\right| p_{1}\left|p_{1}^{\prime}\right| l_{1}\right\rangle^{2}}{\left\langle l_{2} l_{3}\right\rangle\left(l_{1} \cdot l_{2}\right)\left(l_{1} \cdot l_{3}\right) t}\right)+\left(p_{1} \leftrightarrow-p_{1}^{\prime}\right),
\end{aligned}
$$

Einstein gravity at two-loop order

Can e.g. use helicity formalism to derive $D=4$ integrand - from traces..

$$
\begin{aligned}
& i \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{+}, l_{2}^{+}, l_{3}^{+}\right)=-\frac{\left(8 \pi G_{N}{ }^{\frac{3}{2}} m_{1}^{4}\right.}{\left\langle l_{1} l_{2}\right\rangle^{2}\left\langle l_{1} l_{3}\right\rangle^{2}\left\langle l_{2} l_{3}\right\rangle^{2}} \sum_{1 \leq i \neq j \neq k \leq 3} \frac{\left(l_{i} \cdot l_{j}\right)\left(l_{j} \cdot l_{k}\right) t r_{+}\left[l_{k}, p_{1}, p_{1}^{\prime}, l_{i}\right]}{\left(p_{1} \cdot l_{k}\right)\left(p_{1}^{\prime} \cdot l_{i}\right)} \\
& i \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{-}, l_{2}^{+}, l_{3}^{+}\right)=\frac{\left(2 \pi G_{N}\right)^{\frac{3}{2}}}{2}\left(\sum_{2 \leq j \neq k \leq 3} \frac{\left.\left.\left.\left\langle l_{1}\right| p_{1} \mid l_{j}\right]\left\langle l_{1}\right| p_{1}^{\prime} \mid l_{j}\right]^{2}\left\langle l_{1}\right| p_{1} \mid l_{k}\right]^{3}}{\left\langle l_{1} l_{j}\right\rangle\left\langle l_{1} l_{k}\right\rangle\left(l_{1} \cdot l_{j}\right)\left(l_{1} \cdot l_{k}\right)\left(p_{1} \cdot l_{1}\right)\left(p_{1}^{\prime} \cdot l_{j}\right)}\right. \\
& -\frac{\left.\left.\left\langle l_{1}\right| p_{1} \mid l_{2}\right]^{3}\left\langle l_{1}\right| p_{1}^{\prime} \mid l_{3}\right]^{3}}{\left\langle l_{1} l_{2}\right\rangle\left\langle l_{1} l_{3}\right\rangle\left(l_{1} \cdot l_{2}\right)\left(l_{1} \cdot l_{3}\right)\left(p_{1} \cdot l_{2}\right)\left(p_{1}^{\prime} \cdot l_{3}\right)}-\frac{\left.\left.\left.2\left[l_{2} l_{3}\right]\left\langle l_{1}\right| p_{1} \mid l_{2}\right]\left\langle l_{1}\right| p_{1} \mid l_{3}\right]\left\langle l_{1}\right| p_{1}\left|p_{1}^{\prime}\right| l_{1}\right\rangle^{2}}{\left\langle l_{1} l_{2}\right\rangle\left\langle l_{1} l_{3}\right\rangle\left\langle l_{2} l_{3}\right\rangle\left(l_{1} \cdot l_{2}\right)\left(l_{1} \cdot l_{3}\right)\left(p_{1} \cdot l_{1}\right)} \\
& \quad .
\end{aligned}
$$

Alternative is covariant tree - D-dimensional formalism

Einstein gravity at two-loop order

Einstein gravity at two-loop order

New integrals

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square \triangleright}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square \triangleright}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square \triangleright}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square \triangleright}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Where the SE contribution is

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square \triangleright}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Where the SE contribution is

$$
\mathcal{M}_{2}^{\text {self-energy }}\left(\gamma, \underline{q}^{2}\right)=-4\left(16 \pi G_{N}\right)^{3} \sum_{i=I}^{I V}\left(J_{S E}^{i, s}+J_{S E}^{i, u}\right)+\left(m_{1} \leftrightarrow m_{2}\right)
$$

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\Phi}+\mathcal{M}_{2}^{\text {®® }}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Where the SE contribution is
$\mathcal{M}_{2}^{\text {self-energy }}\left(\gamma, \underline{q}^{2}\right)=-4\left(16 \pi G_{N}\right)^{3} \sum_{i=1}^{I V}\left(J_{S E}^{i, s}+J_{S E}^{i, u}\right)+\left(m_{1} \leftrightarrow m_{2}\right)$

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\Phi}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Where the SE contribution is
$\mathcal{M}_{2}^{\text {self-energy }}\left(\gamma, \underline{q}^{2}\right)=-4\left(16 \pi G_{N}\right)^{3} \sum_{i=1}^{I V}\left(J_{S E}^{i, s}+J_{S E}^{i, u}\right)+\left(m_{1} \leftrightarrow m_{2}\right)$

Einstein gravity at two-loop order

New integrals

$$
\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\square}+\mathcal{M}_{2}^{\Phi}+\mathcal{M}_{2}^{\triangleleft \triangleleft}+\mathcal{M}_{2}^{\triangleright \triangleright}+\mathcal{M}_{2}^{H}+\mathcal{M}_{2}^{\square \circ}
$$

We use unitarity cut to fix coefficients in front of master-integrals. The full result can be written

$$
\mathcal{M}_{2}\left(\gamma, q^{2}\right)=\mathcal{M}_{2}^{3-\mathrm{cut}}\left(\gamma, q^{2}\right)+\mathcal{M}_{2}^{\mathrm{SE}}\left(\gamma, q^{2}\right)
$$

Where the SE contribution is

$$
\mathcal{M}_{2}^{\text {self-energy }}\left(\gamma, \underline{q}^{2}\right)=-4\left(16 \pi G_{N}\right)^{3} \sum_{i=I}^{I V}\left(J_{S E}^{i, s}+J_{S E}^{i, u}\right)+\left(m_{1} \leftrightarrow m_{2}\right)
$$

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Einstein gravity at two-loop order

Needed master integrals at two-loops for the conservative part of the amplitude - determined by LiteRed/FIRE6/KIRA etc.

Some examples of numerators

Some examples of numerators

$$
\mathcal{N}_{\square}^{(s)}=512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) s+s^{2}\right)^{3}=2^{12} \pi^{3} G_{N}^{3} m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}
$$

Some examples of numerators

$$
\begin{aligned}
\mathcal{N}_{\square}^{(s)} & =512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) s+s^{2}\right)^{3}=2^{12} \pi^{3} G_{N}^{3} m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}: \\
\mathcal{N}_{\square}^{(\text {cross }, s)} & =2^{13} \pi^{3} G_{N}^{3}\left(96 m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}+8 m_{1}^{5} m_{2}^{5} \sigma\left(2 \sigma^{2}-1\right)^{2}(\hbar \underline{\vec{q}})^{2}\left(l_{2} \cdot l_{3}\right)+\mathcal{O}\left((\hbar \underline{\vec{q}})^{4}\right)\right)
\end{aligned}
$$

Some examples of numerators

$$
\begin{aligned}
\mathcal{N}_{\square}^{(s)} & =512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) s+s^{2}\right)^{3}=2^{12} \pi^{3} G_{N}^{3} m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}: \\
\mathcal{N}_{\square}^{(\text {cross }, s)} & =2^{13} \pi^{3} G_{N}^{3}\left(96 m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}+8 m_{1}^{5} m_{2}^{5} \sigma\left(2 \sigma^{2}-1\right)^{2}(\hbar \underline{\vec{q}})^{2}\left(l_{2} \cdot l_{3}\right)+\mathcal{O}\left((\hbar \underline{\vec{q}})^{4}\right)\right) \\
\mathcal{N}_{\square}^{(u)} & =512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) u+u^{2}\right)^{3} \\
& =2^{12} \pi^{3} G_{N}^{3}\left(96 m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}-6 m_{1}^{5} m_{2}^{5} \sigma\left(2 \sigma^{2}-1\right)^{2}(\hbar \underline{\vec{q}})^{2}+\mathcal{O}\left((\hbar \underline{\vec{q}})^{4}\right)\right)
\end{aligned}
$$

Some examples of numerators

$$
\mathcal{N}_{\square \square}^{(s)}=512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) s+s^{2}\right)^{3}=2^{12} \pi^{3} G_{N}^{3} m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}
$$

$$
\begin{aligned}
& \mathcal{N}_{\square}^{(c r o s, s)}=2^{13} \pi^{3} G_{N}^{3}\left(96 m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}+8 m_{1}^{5} m_{2}^{5} \sigma\left(2 \sigma^{2}-1\right)^{2}(\hbar \underline{\vec{q}})^{2}\left(l_{2} \cdot l_{3}\right)+\mathcal{O}\left((\hbar \underline{\vec{q}})^{4}\right)\right) \\
& \quad \mathcal{N}_{\square}^{(u)}=512 \pi^{3} G_{N}^{3}\left(m_{1}^{4}+m_{2}^{4}-2\left(m_{1}^{2}+m_{2}^{2}\right) u+u^{2}\right)^{3} \\
& =2^{12} \pi^{3} G_{N}^{3}\left(96 m_{1}^{6} m_{2}^{6}\left(2 \sigma^{2}-1\right)^{3}-6 m_{1}^{5} m_{2}^{5} \sigma\left(2 \sigma^{2}-1\right)^{2}(\hbar \underline{\vec{q}})^{2}+\mathcal{O}\left((\hbar \underline{\vec{q}})^{4}\right)\right)
\end{aligned} \begin{gathered}
\mathcal{N}_{H}=\frac{128 \pi^{3} G_{N}^{3}}{3}\left(-48\left(-4 m_{1}^{2} m_{2}^{4}\left(\left(l_{2}+l_{3}\right)^{2}-\left(l_{1}+l_{3}\right)^{2}+4 \sigma^{2}\right)\left(\bar{p}_{1} \cdot l_{2}\right)^{2}\right.\right. \\
\quad-8 m_{2}^{4}\left(\bar{p}_{1} \cdot l_{2}\right)^{4}+16 m_{1}^{3} m_{2}^{3} \sigma\left(\bar{p}_{1} \cdot l_{2}\right)\left(\bar{p}_{2} \cdot l_{1}\right) \\
\quad+m_{1}^{4}\left(m _ { 2 } ^ { 4 } \left(-1-2\left(l_{2}+l_{3}\right)^{2}\left(1+\left(l_{2}+l_{3}\right)^{2}\right)-2\left(l_{1}+l_{3}\right)^{2}\left(1+\left(l_{1}+l_{3}\right)^{2}\right)\right.\right. \\
+4 \sigma^{2}+4\left(\left(l_{2}+l_{3}\right)^{2}+\left(l_{2}+l_{3}\right)^{4}+\left(l_{1}+l_{3}\right)^{2}-2\left(l_{2}+l_{3}\right)^{2}\left(l_{1}+l_{3}\right)^{2}+\left(l_{1}+l_{3}\right)^{4}\right) \sigma^{2} \\
\left.\left.\left.\left.-4 \sigma^{4}\right)+4 m_{2}^{2}\left(\left(l_{2}+l_{3}\right)^{2}-\left(l_{1}+l_{3}\right)^{2}-4 \sigma^{2}\right)\left(\bar{p}_{2} \cdot l_{1}\right)^{2}-8\left(\bar{p}_{2} \cdot l_{1}\right)^{4}\right)\right)(\hbar \vec{q})^{4}+\mathcal{O}\left((\hbar \vec{q})^{5}\right)\right) .
\end{gathered}
$$

Einstein gravity at two-loop order

$$
\begin{aligned}
& \mathcal{M}_{2}^{3-\operatorname{cut}(-1)}\left(\sigma, q^{2}\right)=\frac{2\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} \pi G_{N}^{3} m_{1}^{2} m_{2}^{2}}{3 \epsilon \mid q \underline{4}^{4 \epsilon} \hbar}\left(\frac{3 s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. \\
& +\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{5}-\frac{6 \sigma\left(2 \sigma^{2}-1\right)\left(6 \sigma^{2}-7\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
& -\frac{9\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{3}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(-1+18 \sigma^{2}\right)-m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) \\
& \quad+\frac{12 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
& \left.-\frac{6 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon} \frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
\end{aligned}
$$

Einstein gravity at two-loop order

$$
\begin{gathered}
\mathcal{M}_{2}^{3-\operatorname{cut}(-1)}\left(\sigma, q^{2}\right)=\frac{2\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} \pi G_{N}^{3} m_{1}^{2} m_{2}^{2}}{3 \epsilon \mid q \underline{ }^{4 \epsilon} \hbar}\left(\frac{3 s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. \\
+\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{5}-\frac{6 \sigma\left(2 \sigma^{2}-1\right)\left(6 \sigma^{2}-7\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
-\frac{9\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{3}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(-1+18 \sigma^{2}\right)-m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) \\
+\frac{12 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
\left.-\frac{6 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon} \frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
\end{gathered}
$$

Einstein gravity at two-loop order

$$
\begin{gathered}
\mathcal{M}_{2}^{3-\operatorname{cut}(-1)}\left(\sigma, q^{2}\right)=\frac{2\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} \pi G_{N}^{3} m_{1}^{2} m_{2}^{2}}{3 \epsilon \mid \underline{q} \mathbf{}^{4 \epsilon} \hbar}\left(\frac{3 s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. \\
+\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{5}-\frac{6 \sigma\left(2 \sigma^{2}-1\right)\left(6 \sigma^{2}-7\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
-\frac{9\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{3}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(-1+18 \sigma^{2}\right)-m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) \\
+\frac{12 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}
\end{gathered}
$$

Imaginary

$$
\left.-\frac{6 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon} \frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
$$

Gravity amplitude in powers of hbar

Gravity amplitude in powers of hbar

$$
\mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right)
$$

Gravity amplitude in powers of hbar

$$
\begin{aligned}
& \mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
& \mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3} \mid \underline{2^{2}}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon \Gamma(-3 \epsilon)}}
\end{aligned}
$$

Gravity amplitude in powers of hbar

$$
\begin{aligned}
& \mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
& \mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3}|\underline{q}|^{2}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon} \Gamma(-3 \epsilon)} \\
& \mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)=\frac{6 i \pi^{2} G_{N}^{3}\left(m_{1}+m_{2}\right) m_{1}^{3} m_{2}^{3}\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right)\left(4 \pi e^{\left.-\gamma_{E}\right)^{2 \epsilon}}\right.}{\epsilon \sqrt{\sigma^{2}-1} \hbar^{2}|\underline{q}|}+\mathcal{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

Gravity amplitude in powers of hbar

$$
\begin{aligned}
& \mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
& \mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3}|\underline{q}|^{2}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon} \Gamma(-3 \epsilon)} \\
& \mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)=\frac{6 i \pi^{2} G_{N}^{3}\left(m_{1}+m_{2}\right) m_{1}^{3} m_{2}^{3}\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right)\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon}}{\epsilon \sqrt{\sigma^{2}-1} \hbar^{2}|\underline{q}|}+\mathcal{O}\left(\epsilon^{0}\right) \\
& \mathcal{M}_{2}^{(-1)}(\sigma, \mid \underline{\mid q})=\frac{2 \pi G_{N}^{3}\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} m_{1}^{2} m_{2}^{2}}{\hbar \epsilon}\left(\frac{s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. \\
& \quad+\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{15}-\frac{2 \sigma\left(7-20 \sigma^{2}+12 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
& \quad-\frac{3\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(18 \sigma^{2}-1\right)-\frac{1}{3} m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) \\
& \quad+\frac{4 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
& \left.-\frac{2 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)\right) .
\end{aligned}
$$

Gravity amplitude in powers of hbar

$$
\begin{aligned}
& \mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
& \mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3}|\underline{\mid c}|^{2}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon} \Gamma(-3 \epsilon)} \\
& \mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)=\frac{6 i \pi^{2} G_{N}^{3}\left(m_{1}+m_{2}\right) m_{1}^{3} m_{2}^{3}\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right)\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon}}{\epsilon \sqrt{\sigma^{2}-1} \hbar^{2}|\underline{q}|}+\mathcal{O}\left(\epsilon^{0}\right) \\
& \begin{array}{cc}
\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)=\frac{2 \pi G_{N}^{3}\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} m_{1}^{2} m_{2}^{2}}{\hbar \epsilon}\left(\frac{s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. & \text { Laurant expansion in } \\
\quad+\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{15}-\frac{2 \sigma\left(7-20 \sigma^{2}+12 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) & \text { Planck's constant } \\
\quad-\frac{3\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(18 \sigma^{2}-1\right)-\frac{1}{3} m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) & \text { cancelled by radiative } \\
\quad+\frac{4 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
\left.-\frac{2 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)\right) .
\end{array}
\end{aligned}
$$

Gravity amplitude in powers of hbar

$$
\begin{aligned}
& \mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|\underline{q}|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
& \mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3}|\underline{q}|^{2}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon} \Gamma(-3 \epsilon)} . \\
& \mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)=\frac{6 i \pi^{2} G_{N}^{3}\left(m_{1}+m_{2}\right) m_{1}^{3} m_{2}^{3}\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right)\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon}}{\epsilon \sqrt{\sigma^{2}-1} \hbar^{2}|\underline{q}|}+\mathcal{O}\left(\epsilon^{0}\right) \text { Laurant expansion in } \\
& \mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)=\frac{2 \pi G_{N}^{3}\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} m_{1}^{2} m_{2}^{2}}{\hbar \epsilon}\left(\frac{s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. \\
& +\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{15}-\frac{2 \sigma\left(7-20 \sigma^{2}+12 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
& -\frac{3\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(18 \sigma^{2}-1\right)-\frac{1}{3} m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) \\
& +\frac{4 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
& \left.-\frac{2 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)\right) . \\
& \text { - imaginary contribution } \\
& \text { cancelled by radiative } \\
& \text { contributions } \\
& \text { (Di Vecchia, Heissenberg, } \\
& \text { Russo, Veneziano) }
\end{aligned}
$$

Gravity amplitude in powers of hbar

$$
\begin{array}{cc}
\mathcal{M}_{2}(\sigma,|\underline{q}|)=\frac{1}{|q|^{4 \epsilon}}\left(\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)+\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)+\mathcal{O}\left(\hbar^{0}\right)\right) \\
\mathcal{M}_{2}^{(-3)}(\sigma,|\underline{q}|)=-\frac{8 \pi G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{3} \Gamma(-\epsilon)^{3} \Gamma(1+2 \epsilon)}{3 \hbar^{3}|q|^{2}\left(\sigma^{2}-1\right)(4 \pi)^{-2 \epsilon} \Gamma(-3 \epsilon)}, & \text { (Bern et al, Parra-Martinez et al) } \\
\mathcal{M}_{2}^{(-2)}(\sigma,|\underline{q}|)=\frac{6 i \pi^{2} G_{N}^{3}\left(m_{1}+m_{2}\right) m_{1}^{3} m_{2}^{3}\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right)\left(4 \pi e^{\left.-\gamma_{E}\right)^{2 \epsilon}}\right.}{\epsilon \sqrt{\sigma^{2}-1} \hbar^{2}|\underline{q}|}+\mathcal{O}\left(\epsilon^{0}\right) & \text { Laurant expansion in } \\
\mathcal{M}_{2}^{(-1)}(\sigma,|\underline{q}|)=\frac{2 \pi G_{N}^{3}\left(4 \pi e^{-\gamma_{E}}\right)^{2 \epsilon} m_{1}^{2} m_{2}^{2}}{\hbar \epsilon}\left(\frac{s\left(2 \sigma^{2}-1\right)^{3}}{\left(\sigma^{2}-1\right)^{2}}\right. & \text { Planck's constant } \\
+\frac{i m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{\pi \epsilon\left(\sigma^{2}-1\right)^{\frac{3}{2}}}\left(\frac{1-49 \sigma^{2}+18 \sigma^{4}}{15}-\frac{2 \sigma\left(7-20 \sigma^{2}+12 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) & \text { cancelled by radiative } \\
-\frac{3\left(2 \sigma^{2}-1\right)\left(1-5 \sigma^{2}\right) s}{2\left(\sigma^{2}-1\right)}+\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)\left(18 \sigma^{2}-1\right)-\frac{1}{3} m_{1} m_{2} \sigma\left(103+2 \sigma^{2}\right) & \text { contributions } \\
+\frac{\text { (Di Vecchia, Heissenberg, }}{} & \text { Russo, Veneziano) } \\
-\frac{4 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} & \\
\left.-\frac{2 i m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\pi \epsilon \sqrt{\sigma^{2}-1}}\left(\frac{-1}{4\left(\sigma^{2}-1\right)}\right)^{\epsilon}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)\right) . &
\end{array}
$$

Gravity amplitude in b-space

Gravity amplitude in b-space

$$
\widetilde{\mathcal{M}}_{2}(\sigma, b)=\frac{1}{4 E_{\mathrm{c} . \mathrm{m} . P} P} \int_{\mathbb{R}^{D}-2} \frac{d^{D-2}(2 \pi)^{D}}{(2)^{-2}} \mathcal{M}_{2}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right)^{i \vec{T} \overrightarrow{\underline{b}}}
$$

Gravity amplitude in b-space

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=\frac{1}{4 E_{\text {c.m. }} P} \int_{\mathbb{R}^{D-2}} \frac{d^{D-2} \underline{\underline{q}}}{(2 \pi)^{D-2}} \mathcal{M}_{2}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right) e^{i \vec{q} \cdot \vec{b}} \\
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=-\frac{1}{6}\left(\widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\right)^{3}+i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl} .}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\mathrm{Qt}}(\sigma, b)\right) \\
& \quad+\widetilde{\mathcal{M}}_{2}^{\mathrm{Cl} .}(\sigma, b)+\mathcal{O}\left(\hbar^{0}\right) .
\end{aligned}
$$

Gravity amplitude in b-space

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=\frac{1}{4 E_{\text {c.m. }} P} \int_{\mathbb{R}^{D-2}} \frac{d^{D-2} \vec{q}}{(2 \pi)^{D-2}} \mathcal{M}_{2}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right) e^{i \overrightarrow{\underline{q}} \cdot \vec{b}} \\
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=-\frac{1}{6}\left(\widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\right)^{3}+i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl} .}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\mathrm{Qt} .}(\sigma, b)\right) \\
& +\widetilde{\mathcal{M}}_{2}^{\mathrm{Cl}}(\sigma, b)+\mathcal{O}\left(\hbar^{0}\right) . \\
& \widetilde{\mathcal{M}}_{2}^{\square(-3)}(\sigma, b)=-\frac{1}{6}\left(\widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\right)^{3}, \\
& \widetilde{\mathcal{M}}_{2}^{\square(-2)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\square(-1)}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\triangleleft(-2)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\triangleright(-2)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\triangleleft(-1)}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\triangleright(-1)}(\sigma, b)\right) \\
& \widetilde{\mathcal{M}}_{2}^{\square(-1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\square(0)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \mathrm{Cl}}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\square(-1)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\text {D(}}{ }^{(1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\triangleleft(0)}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\triangleright(0)}(\sigma, b)\right) \\
& +\widetilde{\mathcal{M}}_{2}^{\square{ }^{\text {Cl }}}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \mathrm{Cl}}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\square 0(-1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\text {o(0) }}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \mathrm{O}}{ }^{\mathrm{Cl}}(\sigma, b),
\end{aligned}
$$

Gravity amplitude in b-space

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=\frac{1}{4 E_{\text {c.m. }} P} \int_{\mathbb{R}^{D-2}} \frac{d^{D-2} \overrightarrow{\underline{q}}}{(2 \pi)^{D-2}} \mathcal{M}_{2}\left(p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}\right) e^{i \overrightarrow{\underline{q}} \cdot \vec{b}} \\
& \widetilde{\mathcal{M}}_{2}(\sigma, b)=-\frac{1}{6}\left(\widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\right)^{3}+i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\mathrm{Cl}}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\mathrm{Qt.}}(\sigma, b)\right) \\
& +\widetilde{\mathcal{M}}_{2}^{\mathrm{Cl}}(\sigma, b)+\mathcal{O}\left(\hbar^{0}\right) . \\
& \widetilde{\mathcal{M}}_{2}^{\square(-3)}(\sigma, b)=-\frac{1}{6}\left(\widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\right)^{3}, \\
& \widetilde{\mathcal{M}}_{2}^{\square(-2)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\square(-1)}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\triangle(-2)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \triangleright(-2)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\triangleleft(-1)}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\triangleright(-1)}(\sigma, b)\right) \\
& \widetilde{\mathcal{M}}_{2}^{\square(-1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\square(0)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \mathrm{Cl}}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\square(-1)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square(-1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b)\left(\widetilde{\mathcal{M}}_{1}^{\triangleleft(0)}(\sigma, b)+\widetilde{\mathcal{M}}_{1}^{\triangleright(0)}(\sigma, b)\right) \\
& +\widetilde{\mathcal{M}}_{2}^{\square \mathrm{Cl}}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \mathrm{Cl} .}(\sigma, b), \\
& \widetilde{\mathcal{M}}_{2}^{\square \circ(-1)}(\sigma, b)=i \widetilde{\mathcal{M}}_{0}^{(-1)}(\sigma, b) \widetilde{\mathcal{M}}_{1}^{\circ(0)}(\sigma, b)+\widetilde{\mathcal{M}}_{2}^{\square \circ \mathrm{Cl} .}(\sigma, b), \\
& \text { Again iterative } \\
& \text { structure like } \\
& \text { one-loop, part } \\
& \text { of a bigger } \\
& \text { scheme..Seen } \\
& \text { after Fourier } \\
& \text { transform to b } \\
& \text { space }
\end{aligned}
$$

Scattering angle from amplitudes

Scattering angle from amplitudes

$$
1+i \sum_{L \geq 0} \widetilde{\mathcal{M}}_{L}(\sigma, b)=(1+2 i \Delta(\sigma, b)) \exp \left(\frac{2 i}{\hbar} \sum_{L \geq 0} \delta_{L}(\sigma, b)\right)
$$

Scattering angle from amplitudes

$$
1+i \sum_{L \geq 0} \widetilde{\mathcal{M}}_{L}(\sigma, b)=(1+2 i \Delta(\sigma, b)) \exp \left(\frac{2 i}{\hbar} \sum_{L \geq 0} \delta_{L}(\sigma, b)\right)
$$

Gravity eikonal

Scattering angle from amplitudes

$$
1+i \sum_{L \geq 0} \widetilde{\mathcal{M}}_{L}(\sigma, b)=(1+2 i \Delta(\sigma, b)) \exp \left(\frac{2 i}{\hbar} \sum_{L \geq 0} \delta_{L}(\sigma, b)\right)
$$

Gravity eikonal

$$
\delta_{0}(\sigma, b)=-\frac{G_{N} m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{2 \epsilon \sqrt{\sigma^{2}-1}}\left(\pi b^{2} e^{\gamma_{V}}\right)^{\epsilon}+\mathcal{O}(\epsilon),
$$

Scattering angle from amplitudes

$$
1+i \sum_{L \geq 0} \widetilde{\mathcal{M}}_{L}(\sigma, b)=(1+2 i \Delta(\sigma, b)) \exp \left(\frac{2 i}{\hbar} \sum_{L \geq 0} \delta_{L}(\sigma, b)\right)
$$

Gravity eikonal

$$
\begin{aligned}
& \delta_{0}(\sigma, b)=-\frac{G_{N} m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{2 \epsilon \sqrt{\sigma^{2}-1}}\left(\pi b^{2} e^{\tau \xi}\right)^{\epsilon}+\mathcal{O}(\epsilon), \\
& \delta_{1}(\sigma, b)=\frac{3 \pi G_{N}^{2}\left(m_{1}+m_{2}\right) m_{1} m_{2}\left(5 \sigma^{2}-1\right)}{8 b \sqrt{\sigma^{2}-1}}\left(\pi b^{2} e^{\gamma E}\right)^{2 \epsilon} .
\end{aligned}
$$

Scattering angle from amplitudes

$$
1+i \sum_{L \geq 0} \widetilde{\mathcal{M}}_{L}(\sigma, b)=(1+2 i \Delta(\sigma, b)) \exp \left(\frac{2 i}{\hbar} \sum_{L \geq 0} \delta_{L}(\sigma, b)\right)
$$

Gravity eikonal

$$
2 \Delta_{1}=\widetilde{\mathcal{M}}_{1}^{\mathrm{Qt} .}(\sigma, b)
$$

$$
\begin{aligned}
& \delta_{2}(\sigma, b)=\frac{G_{N}^{3} m_{1} m_{2}\left(\pi b^{2} e^{\gamma_{E}}\right)^{3 \epsilon}}{2 b^{2} \sqrt{\sigma^{2}-1}}\left(\frac{2 s\left(12 \sigma^{4}-10 \sigma^{2}+1\right)}{\sigma^{2}-1}\right. \\
& \quad-\frac{4 m_{1} m_{2} \sigma}{3}\left(25+14 \sigma^{2}\right)+\frac{4 m_{1} m_{2}\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \\
& \left.+\frac{2 m_{1} m_{2}\left(2 \sigma^{2}-1\right)^{2}}{\sqrt{\sigma^{2}-1}} \frac{1}{\left(4\left(\sigma^{2}-1\right)\right)^{\epsilon}}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)\right) .
\end{aligned}
$$

Scattering angle from amplitudes

Scattering angle from amplitudes

$$
\left.\sin \left(\frac{\chi}{2}\right)\right|_{3 P M}=-\frac{\sqrt{s}}{m_{1} m_{2} \sqrt{\sigma^{2}-1}} \frac{\partial \delta_{2}(\sigma, b)}{\partial b}
$$

Scattering angle from amplitudes

$$
\begin{aligned}
& \left.\sin \left(\frac{\chi}{2}\right)\right|_{3 P M}=-\frac{\sqrt{s}}{m_{1} m_{2} \sqrt{\sigma^{2}-1}} \frac{\partial \delta_{2}(\sigma, b)}{\partial b} \\
& J=\frac{m_{1} m_{2} \sqrt{\sigma^{2}-1}}{\sqrt{s}} b \cos \left(\frac{\chi}{2}\right)
\end{aligned}
$$

Scattering angle from amplitudes

$$
\begin{aligned}
& \left.\sin \left(\frac{\chi}{2}\right)\right|_{3 P M}=-\frac{\sqrt{s}}{m_{1} m_{2} \sqrt{\sigma^{2}-1}} \frac{\partial \delta_{2}(\sigma, b)}{\partial b} \\
& J=\frac{m_{1} m_{2} \sqrt{\sigma^{2}-1}}{\sqrt{s}} b \cos \left(\frac{\chi}{2}\right) \\
& \chi_{1 P M}=\frac{2 G_{N} m_{1} m_{2}\left(2 \sigma^{2}-1\right)}{J \sqrt{\sigma^{2}-1}} \\
& \chi_{2 P M}=\frac{3 \pi G_{N}^{2} m_{1}^{2} m_{2}^{2}\left(m_{1}+m_{2}\right)\left(5 \sigma^{2}-1\right)}{4 J^{2} \sqrt{s}}
\end{aligned}
$$

Scattering angle from amplitudes

Scattering angle from amplitudes

$$
\begin{aligned}
& \widehat{\chi}_{3 P M}=\frac{2 G_{N}^{3} m_{1}^{3} m_{2}^{3}\left(64 \sigma^{6}-120 \sigma^{4}+60 \sigma^{2}-5\right)}{3 J^{3}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} \\
& \quad+\frac{8 G_{N}^{3} m_{1}^{4} m_{2}^{4} \sqrt{\sigma^{2}-1}}{3 J^{3} s}\left(\sigma\left(-25-14 \sigma^{2}\right)+\frac{3\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)
\end{aligned}
$$

Scattering angle from amplitudes

$$
\begin{aligned}
& \widehat{\chi}_{3 P M}=\frac{2 G_{N}^{3} m_{1}^{3} m_{2}^{3}\left(64 \sigma^{6}-120 \sigma^{4}+60 \sigma^{2}-5\right)}{3 J^{3}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} \\
& +\frac{8 G_{N}^{3} m_{1}^{4} m_{2}^{4} \sqrt{\sigma^{2}-1}}{3 J^{3} s}\left(\sigma\left(-25-14 \sigma^{2}\right)+\frac{3\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
& \chi_{3 P M}^{\text {Rad. }}=\frac{4 G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{2}}{J^{3} s} \frac{1}{\left(4\left(\sigma^{2}-1\right)\right)^{\epsilon}}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
\end{aligned}
$$

Scattering angle from amplitudes

$$
\begin{aligned}
& \widehat{\chi}_{3 P M}=\frac{2 G_{N}^{3} m_{1}^{3} m_{2}^{3}\left(64 \sigma^{6}-120 \sigma^{4}+60 \sigma^{2}-5\right)}{3 J^{3}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} \\
& \quad+\frac{8 G_{N}^{3} m_{1}^{4} m_{2}^{4} \sqrt{\sigma^{2}-1}}{3 J^{3} s}\left(\sigma\left(-25-14 \sigma^{2}\right)+\frac{3\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)
\end{aligned}
$$

$$
\chi_{3 P M}^{\mathrm{Rad} .}=\frac{4 G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{2}}{J^{3} s} \frac{1}{\left(4\left(\sigma^{2}-1\right)\right)^{\epsilon}}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
$$

Match with expectations
(Damour; Di Vecchia et al; Hermann et al)

Scattering angle from amplitudes

$$
\begin{aligned}
& \widehat{\chi}_{3 P M}=\frac{2 G_{N}^{3} m_{1}^{3} m_{2}^{3}\left(64 \sigma^{6}-120 \sigma^{4}+60 \sigma^{2}-5\right)}{3 J^{3}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} \\
& +\frac{8 G_{N}^{3} m_{1}^{4} m_{2}^{4} \sqrt{\sigma^{2}-1}}{3 J^{3} s}\left(\sigma\left(-25-14 \sigma^{2}\right)+\frac{3\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right) \\
& \chi_{3 P M}^{\text {Rad. }}=\frac{4 G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{2}}{J^{3} s} \frac{1}{\left(4\left(\sigma^{2}-1\right)\right)^{\epsilon}}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right) \\
& \text { Match with expectations } \\
& \text { (Damour; Di Vecchia et al; Hermann et al) } \\
& \text { (NEJB, } \\
& \text { Damgaard, } \\
& \text { Plante, } \\
& \text { Vanhove) }
\end{aligned}
$$

Scattering angle from amplitudes

$$
\begin{aligned}
& \widehat{\chi}_{3 P M}=\frac{2 G_{N}^{3} m_{1}^{3} m_{2}^{3}\left(64 \sigma^{6}-120 \sigma^{4}+60 \sigma^{2}-5\right)}{3 J^{3}\left(\sigma^{2}-1\right)^{\frac{3}{2}}} \\
& \quad+\frac{8 G_{N}^{3} m_{1}^{4} m_{2}^{4} \sqrt{\sigma^{2}-1}}{3 J^{3} s}\left(\sigma\left(-25-14 \sigma^{2}\right)+\frac{3\left(3+12 \sigma^{2}-4 \sigma^{4}\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)
\end{aligned}
$$

$$
\chi_{3 P M}^{\mathrm{Rad.}}=\frac{4 G_{N}^{3} m_{1}^{4} m_{2}^{4}\left(2 \sigma^{2}-1\right)^{2}}{J^{3} s} \frac{1}{\left(4\left(\sigma^{2}-1\right)\right)^{\epsilon}}\left(-\frac{11}{3}+\frac{d}{d \sigma}\left(\frac{\left(2 \sigma^{2}-1\right) \operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}\right)\right)
$$

Match with expectations (Damour; Di Vecchia et al; Hermann et al)

What is nice to see is the fact that everything matches up! - the cancellation of terms that is demonstrated explicitly gives important consistency of computations.
(NEJB,
Damgaard,
Plante, Vanhove)

Even simpler organisation of results - velocity cuts, exponentiation and soft expansion

Even simpler organisation of results - velocity cuts, exponentiation and soft expansion

An example of this is the 'velocity cuts' is a clever to organise the integrand for simpler computations. The basic observation is that the combination of linear propagators

$$
\begin{aligned}
& \left(\frac{1}{\left(p_{A} \cdot \ell_{A}+i \varepsilon\right)\left(p_{A} \cdot \ell_{B}-i \varepsilon\right)}-\frac{1}{\left(p_{A} \cdot \ell_{B}+i \varepsilon\right)\left(p_{A} \cdot \ell_{A}-i \varepsilon\right)}\right) \times \\
& \quad\left(\frac{1}{\left(p_{B} \cdot \ell_{A}-i \varepsilon\right)\left(p_{B} \cdot \ell_{C}+i \varepsilon\right)}-\frac{1}{\left(p_{B} \cdot \ell_{C}-i \varepsilon\right)\left(p_{B} \cdot \ell_{A}+i \varepsilon\right)}\right)
\end{aligned}
$$

can be expressed as
using

Even simpler organisation of results - velocity cuts, exponentiation and soft expansion

An example of this is the 'velocity cuts' is a clever to organise the integrand for simpler computations. The basic observation is that the combination of linear propagators

$$
\begin{aligned}
& \left(\frac{1}{\left(p_{A} \cdot \ell_{A}+i \varepsilon\right)\left(p_{A} \cdot \ell_{B}-i \varepsilon\right)}-\frac{1}{\left(p_{A} \cdot \ell_{B}+i \varepsilon\right)\left(p_{A} \cdot \ell_{A}-i \varepsilon\right)}\right) \times \\
& \quad\left(\frac{1}{\left(p_{B} \cdot \ell_{A}-i \varepsilon\right)\left(p_{B} \cdot \ell_{C}+i \varepsilon\right)}-\frac{1}{\left(p_{B} \cdot \ell_{C}-i \varepsilon\right)\left(p_{B} \cdot \ell_{A}+i \varepsilon\right)}\right)
\end{aligned}
$$

can be expressed as
using
$\left(\frac{\delta\left(p_{A} \cdot \ell_{A}\right)}{p_{A} \cdot \ell_{B}+i \varepsilon}-\frac{\delta\left(p_{A} \cdot \ell_{B}\right)}{p_{B} \cdot \ell_{A}+i \varepsilon}\right) \times\left(\frac{\delta\left(p_{B} \cdot \ell_{C}\right)}{p_{B} \cdot \ell_{A}+i \varepsilon}-\frac{\delta\left(p_{B} \cdot \ell_{A}\right)}{p_{B} \cdot \ell_{C}+i \varepsilon}\right)$

Even simpler organisation of results - velocity cuts, exponentiation and soft expansion

An example of this is the 'velocity cuts' is a clever to organise the integrand for simpler computations. The basic observation is that the combination of linear propagators

$$
\begin{aligned}
& \left(\frac{1}{\left(p_{A} \cdot \ell_{A}+i \varepsilon\right)\left(p_{A} \cdot \ell_{B}-i \varepsilon\right)}-\frac{1}{\left(p_{A} \cdot \ell_{B}+i \varepsilon\right)\left(p_{A} \cdot \ell_{A}-i \varepsilon\right)}\right) \times \\
& \quad\left(\frac{1}{\left(p_{B} \cdot \ell_{A}-i \varepsilon\right)\left(p_{B} \cdot \ell_{C}+i \varepsilon\right)}-\frac{1}{\left(p_{B} \cdot \ell_{C}-i \varepsilon\right)\left(p_{B} \cdot \ell_{A}+i \varepsilon\right)}\right)
\end{aligned}
$$

can be expressed as
$\left(\frac{\delta\left(p_{A} \cdot \ell_{A}\right)}{p_{A} \cdot \ell_{B}+i \varepsilon}-\frac{\delta\left(p_{A} \cdot \ell_{B}\right)}{p_{B} \cdot \ell_{A}+i \varepsilon}\right) \times\left(\frac{\delta\left(p_{B} \cdot \ell_{C}\right)}{p_{B} \cdot \ell_{A}+i \varepsilon}-\frac{\delta\left(p_{B} \cdot \ell_{A}\right)}{p_{B} \cdot \ell_{C}+i \varepsilon}\right) \quad \frac{1}{x+i \varepsilon}-\frac{1}{x-i \varepsilon}=-2 i \pi \delta(x)$

We can see this in the organisation of the one-loop

$$
\begin{aligned}
I_{\square} & =p_{1}^{\prime} \\
& =\int \frac{d^{D} \ell}{(2 \pi \hbar)^{D}} \frac{1}{\ell^{2}(\ell+q)^{2}}\left(\frac{1}{\left(-p_{1}+\ell\right)^{2}-m_{1}^{2}+i \varepsilon}+\frac{1}{\left(p_{1}^{\prime}+\ell\right)^{2}-m_{1}^{2}+i \varepsilon}\right) \\
& \times\left(\frac{1}{\left(-p_{2}+\ell\right)^{2}-m_{2}^{2}+i \varepsilon}+\frac{1}{\left(p_{2}^{\prime}+\ell\right)^{2}-m_{2}^{2}+i \varepsilon}\right) .
\end{aligned}
$$

We can see this in the organisation of the one-loop

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& I_{\square}=-\frac{|\vec{q}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \\
& \times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\bar{p}_{1} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}\right) \\
& \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{aligned}
$$

We can see this in the organisation of the one-loop

We can see this in the organisation of the one-loop

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& I_{\square}=-\frac{|\vec{q}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \quad \begin{array}{l}
p_{1}=\bar{p}_{1}+\frac{\hbar}{2} \underline{q}, p_{1}^{\prime}=\bar{p}_{1}^{\prime}-\frac{\hbar}{2} \underline{q}, p_{2}=\bar{p}_{2}-\frac{\hbar}{2} \underline{q}, p_{2}^{\prime}=\bar{p}_{2}^{\prime}+\frac{\hbar}{2} \underline{q} \\
\end{array} \\
& \times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\overrightarrow{\underline{q}}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\overline{p_{1}} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}\right) \\
& \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{aligned}
$$

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& \qquad \begin{array}{l}
I_{\square}=-\frac{|\overrightarrow{\vec{q}}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \quad \ell=\hbar|\underline{q}| l \quad p_{1}=\bar{p}_{1}+\frac{\hbar}{2} q, p_{1}^{\prime}=\bar{p}_{1}^{\prime}-\frac{\hbar}{2} \underline{q}, p_{2}=\bar{p}_{2}-\frac{\hbar}{2} \underline{q}, \left.p_{2}^{\prime}=\bar{p}_{2}^{\prime}+\frac{\hbar}{2} \underline{q} \right\rvert\,
\end{array} \\
& \times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\left.\overline{p_{1} \cdot k-\frac{\hbar|\underline{q}| u_{q} \cdot k}{2}-i \varepsilon}\right)}\right. \\
& \\
& \text { Can be seen to be cancelled in } \quad \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\underline{q}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{aligned}
$$

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& \qquad \begin{array}{l}
I_{\square}=-\frac{|\vec{q}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \quad \ell=\hbar|\underline{q}| l \quad p_{1}=\bar{p}_{1}+\frac{\hbar}{2} \underline{q}, p_{1}^{\prime}=\bar{p}_{1}^{\prime}-\frac{\hbar}{2} \underline{q}, p_{2}=\bar{p}_{2}-\frac{\hbar}{2} \underline{q}, p_{2}^{\prime}=\bar{p}_{2}^{\prime}+\frac{\hbar}{2} \underline{q} \\
\\
\\
\times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\overline{p_{1}} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}\right) \\
\text { Can be seen to be cancelled in } \quad \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\underline{\vec{q}}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\underline{\vec{q}}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{array} \\
& \begin{array}{l}
\text { subtractions }
\end{array}
\end{aligned}
$$

$$
I_{\square}=I_{\square}^{1-\mathrm{cut}}+\frac{|\vec{q}|^{D-5}}{16 \hbar} \int \frac{d^{D} l}{(2 \pi)^{D-1}} \frac{1}{\ell^{2}\left(\ell+u_{q}\right)^{2}}\left(\frac{\delta\left(\bar{p}_{2} \cdot l\right)}{\left(\bar{p}_{1} \cdot \ell\right)^{2}}+\frac{\delta\left(\bar{p}_{1} \cdot l\right)}{\left(\bar{p}_{2} \cdot \ell\right)^{2}}\right)+\mathcal{O}\left(|q|^{D-4}\right)
$$

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& \qquad \begin{array}{l}
I_{\square}=-\frac{|\vec{q}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \quad \ell=\hbar|\underline{q}| l \quad p_{1}=\bar{p}_{1}+\frac{\hbar}{2} \underline{q}, p_{1}^{\prime}=\bar{p}_{1}^{\prime}-\frac{\hbar}{2} \underline{q}, p_{2}=\bar{p}_{2}-\frac{\hbar}{2} \underline{q}, p_{2}^{\prime}=\bar{p}_{2}^{\prime}+\frac{\hbar}{2} \underline{q} \\
\\
\\
\times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\bar{p}_{1} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}\right) \\
\text { Can be seen to be cancelled in } \quad \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{array} \\
& \text { subtractions }
\end{aligned}
$$

$$
\begin{aligned}
I_{\square}= & I_{\square}^{1-\mathrm{cut}}+\frac{|\vec{q}|^{D-5}}{16 \hbar} \int \frac{d^{D} l}{(2 \pi)^{D-1}} \frac{1}{\ell^{2}\left(\ell+u_{q}\right)^{2}}\left(\frac{\delta\left(\bar{p}_{2} \cdot l\right)}{\left(\bar{p}_{1} \cdot \ell\right)^{2}}+\frac{\delta\left(\bar{p}_{1} \cdot l\right)}{\left(\bar{p}_{2} \cdot \ell\right)^{2}}\right)+\mathcal{O}\left(|\underline{q}|^{D-4}\right) \\
& I_{\square}^{1-\mathrm{cut}}=\frac{|\overrightarrow{\vec{q}}|^{D-6}}{4 \hbar^{2}}\left(1+\frac{\hbar^{2}|\vec{q}|^{2} \mathcal{E}_{\mathrm{C} . \mathrm{M} .}^{2}}{4 m_{1}^{2} m_{2}^{2}\left(\gamma^{2}-1-\frac{\hbar^{2}|\overrightarrow{\underline{q}}|^{2} \mathcal{E}_{\mathrm{CM} . \mathrm{M}}^{2}}{4 m_{1}^{2} m_{2}^{2}}\right.}\right)^{\frac{D-5}{2}} \int \frac{d^{D} k}{(2 \pi)^{D-2}} \frac{\delta\left(\bar{p}_{1} \cdot k\right) \delta\left(\bar{p}_{2} \cdot k\right)}{k^{2}\left(k+u_{q}\right)^{2}}
\end{aligned}
$$

We can see this in the organisation of the one-loop

$$
\begin{aligned}
& I_{\square}=-\frac{|\vec{q}|^{D-6}}{8 \hbar^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}\left(k+u_{q}\right)^{2}} \quad \ell=\hbar|\underline{q}| l \quad p_{1}=\bar{p}_{1}+\frac{\hbar}{2} \underline{q}, p_{1}^{\prime}=\bar{p}_{1}^{\prime}-\frac{\hbar}{2} \underline{q}, p_{2}=\bar{p}_{2}-\frac{\hbar}{2} \underline{q}, \left.p_{2}^{\prime}=\bar{p}_{2}^{\prime}+\frac{\hbar}{2} \underline{q} \right\rvert\, u_{q} \\
& \\
& \times\left(\frac{1}{\bar{p}_{1} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}-\frac{1}{\left.\overline{p_{1} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}\right)}\right. \\
& \\
& \text { Can be seen to be cancelled in } \quad \times\left(\frac{1}{\bar{p}_{2} \cdot k-\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}-i \varepsilon}-\frac{1}{\bar{p}_{2} \cdot k+\frac{\hbar|\vec{q}| u_{q} \cdot k}{2}+i \varepsilon}\right)
\end{aligned}
$$

$$
\begin{aligned}
I_{\square}= & I_{\square}^{1-c u t}+\frac{|\vec{q}|^{D-5}}{16 \hbar} \int \frac{d^{D} l}{(2 \pi)^{D-1}} \frac{1}{\ell^{2}\left(\ell+u_{q}\right)^{2}}\left(\frac{\delta\left(\bar{p}_{2} \cdot l\right)}{\left(\bar{p}_{1} \cdot \ell\right)^{2}}+\frac{\delta\left(\bar{p}_{1} \cdot l\right)}{\left(\bar{p}_{2} \cdot \ell\right)^{2}}\right)+\mathcal{O}\left(|\underline{q}|^{D-4}\right) \\
& I_{\square}^{1-\mathrm{cut}}=\frac{|\vec{q}|^{D-6}}{4 \hbar^{2}}\left(1+\frac{\hbar^{2}|\underline{q}|^{2} \mathcal{E}_{\mathrm{C} . \mathrm{M} .}^{2}}{4 m_{1}^{2} m_{2}^{2}\left(\gamma^{2}-1-\frac{\hbar^{2}|\overrightarrow{\underline{q}}|^{2} \mathcal{E}_{\mathrm{CM.}}^{2} .}{4 m_{1}^{2} m_{2}^{2}}\right.}\right)^{\frac{D-5}{2}} \int \frac{d^{D} k}{(2 \pi)^{D-2}} \frac{\delta\left(\bar{p}_{1} \cdot k\right) \delta\left(\bar{p}_{2} \cdot k\right)}{k^{2}\left(k+u_{q}\right)^{2}}
\end{aligned}
$$

Another is 'stringy' inspiration for efficient trees

Different form for amplitude

Another is 'stringy' inspiration for efficient trees

Different form for amplitude
Feynman diagrams
sums separate kinematic poles

Another is 'stringy' inspiration for efficient trees

Different form for amplitude
Feynman diagrams sums separate kinematic poles

Another is 'stringy' inspiration for efficient trees

Different form for amplitude

String theory
add channels up..

Feynman diagrams sums separate kinematic poles

Another is 'stringy' inspiration for efficient trees

Different form for amplitude

String theory add channels up..

Feynman diagrams sums separate kinematic poles

Compact massive tree amplitudes

Compact massive tree amplitudes

Find 'stringy' structure in the scattering equation prescription (CHY)
(NEJB, Damgaard, Tourkine, Vanhove)

Compact massive tree amplitudes

Find 'stringy' structure in the scattering equation prescription (CHY)
(NEJB, Damgaard, Tourkine, Vanhove)

$$
\begin{aligned}
A_{n-2}(1,\{2, \ldots, n-1\}, n)= & \int \frac{\prod_{i=1}^{n} d z_{i}}{\operatorname{vol}(\operatorname{SL}(2, \mathbb{C}))} \prod_{i=1}^{n} \delta^{\prime}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{k_{i} \cdot k_{j}}{z_{i j}}\right) \frac{1}{z_{12} \cdots z_{n-1 n}} \\
& \times \sum_{\beta \in \mathfrak{S}_{n-2}} \frac{N_{n-2}(1, \beta(2, \ldots, n-1), n)}{z_{1 \beta(2)} z_{\beta(2) \beta(3)} \cdots z_{\beta(n-1) n}},
\end{aligned}
$$

Compact massive tree amplitudes

Find 'stringy' structure in the scattering equation prescription (CHY)

$$
\begin{aligned}
& \text { (NEJB, Damgaard, Tourkine, Vanhove) } \\
& \begin{aligned}
A_{n-2}(1,\{2, \ldots, n-1\}, n)= & \int \frac{\prod_{i=1}^{n} d z_{i}}{\operatorname{vol}(\operatorname{SL}(2, \mathbb{C}))} \prod_{i=1}^{n} \delta^{\prime}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{k_{i} \cdot k_{j}}{z_{i j}}\right) \frac{1}{z_{12} \cdots z_{n-1 n}} \\
& \times \sum_{\beta \in \mathfrak{S}_{n-2}} \frac{N_{n-2}(1, \beta(2, \ldots, n-1), n)}{z_{1 \beta(2)} z_{\beta(2) \beta(3)} \cdots z_{\beta(n-1) n}},
\end{aligned}
\end{aligned}
$$

We can generate gravity amplitudes in the following way

Compact massive tree amplitudes

Find 'stringy' structure in the scattering equation prescription (CHY)

$$
\begin{aligned}
& \text { (NEJB, Damgaard, Tourkine, Vanhove) } \\
& \begin{aligned}
A_{n-2}(1,\{2, \ldots, n-1\}, n)= & \int \frac{\prod_{i=1}^{n} d z_{i}}{\operatorname{vol}(\operatorname{SL}(2, \mathbb{C}))} \prod_{i=1}^{n} \delta^{\prime}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{k_{i} \cdot k_{j}}{z_{i j}}\right) \frac{1}{z_{12} \cdots z_{n-1 n}} \\
& \times \sum_{\beta \in \mathfrak{S}_{n-2}} \frac{N_{n-2}(1, \beta(2, \ldots, n-1), n)}{z_{1 \beta(2)} z_{\beta(2) \beta(3)} \cdots z_{\beta(n-1) n}},
\end{aligned}
\end{aligned}
$$

We can generate gravity amplitudes in the following way

$$
M_{n-2}^{\text {tree }}(1,2, \ldots, n)=i \sum_{\beta \in \mathfrak{S}_{n-2}} N_{n-2}(1, \beta(2, \cdots, n-1), n) A_{n-2}(1, \beta(2, \ldots, n-1), n)
$$

Compact massive tree amplitudes

Compact massive tree amplitudes

CHY formalism leads to the following very compact amplitudes

$$
M_{1}^{\text {tree }}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right) A_{1}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right)^{2}
$$

Compact massive tree amplitudes

CHY formalism leads to the following very compact amplitudes

$$
\begin{aligned}
M_{1}^{\text {tree }}\left(p, \ell_{2},-p^{\prime}\right) & =i N_{1}\left(p, \ell_{2},-p^{\prime}\right) A_{1}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right)^{2}: \\
M_{2}^{\text {tree }}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right) & =i N_{2}\left(p, 2,3,-p^{\prime}\right) A_{2}\left(p, 2,3,-p^{\prime}\right)+\text { perm. }\{2,3\} \\
& =\frac{i N_{2}\left(p, 2,3,-p^{\prime}\right)^{2}}{\left(\ell_{2}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i N_{2}\left(p, 3,2,-p^{\prime}\right)^{2}}{\left(\ell_{3}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i\left(N_{2}[2,3]\right)^{2}}{\left(\ell_{2}+\ell_{3}\right)^{2}+i \varepsilon}
\end{aligned}
$$

Compact massive tree amplitudes

CHY formalism leads to the following very compact amplitudes

$$
\begin{aligned}
M_{1}^{\text {tree }}\left(p, \ell_{2},-p^{\prime}\right) & =i N_{1}\left(p, \ell_{2},-p^{\prime}\right) A_{1}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right)^{2}: \\
M_{2}^{\text {tree }}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right) & =i N_{2}\left(p, 2,3,-p^{\prime}\right) A_{2}\left(p, 2,3,-p^{\prime}\right)+\text { perm. }\{2,3\} \\
& =\frac{i N_{2}\left(p, 2,3,-p^{\prime}\right)^{2}}{\left(\ell_{2}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i N_{2}\left(p, 3,2,-p^{\prime}\right)^{2}}{\left(\ell_{3}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i\left(N_{2}{ }^{[2,3]}\right)^{2}}{\left(\ell_{2}+\ell_{3}\right)^{2}+i \varepsilon}
\end{aligned}
$$

$$
N_{1}\left(p, \ell_{2},-p^{\prime}\right)=i \sqrt{2} \zeta_{2} \cdot p, \quad A_{1}\left(p, \ell_{2},-p^{\prime}\right)=N_{1}\left(p, \ell_{2},-p^{\prime}\right)
$$

Compact massive tree amplitudes

CHY formalism leads to the following very compact amplitudes

$$
\begin{aligned}
M_{1}^{\text {tree }}\left(p, \ell_{2},-p^{\prime}\right) & =i N_{1}\left(p, \ell_{2},-p^{\prime}\right) A_{1}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right)^{2}: \\
M_{2}^{\text {tree }}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right) & =i N_{2}\left(p, 2,3,-p^{\prime}\right) A_{2}\left(p, 2,3,-p^{\prime}\right)+\text { perm. }\{2,3\} \\
& =\frac{i N_{2}\left(p, 2,3,-p^{\prime}\right)^{2}}{\left(\ell_{2}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i N_{2}\left(p, 3,2,-p^{\prime}\right)^{2}}{\left(\ell_{3}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i\left(N_{2}[2,3]\right)^{2}}{\left(\ell_{2}+\ell_{3}\right)^{2}+i \varepsilon}
\end{aligned}
$$

$$
N_{1}\left(p, \ell_{2},-p^{\prime}\right)=i \sqrt{2} \zeta_{2} \cdot p, \quad A_{1}\left(p, \ell_{2},-p^{\prime}\right)=N_{1}\left(p, \ell_{2},-p^{\prime}\right)
$$

$$
N_{2}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right)=\frac{i}{2}\left(s_{2 p}\left(\zeta_{2} \cdot \zeta_{3}\right)-4\left(\zeta_{2} \cdot p\right) \zeta_{3} \cdot\left(p+\ell_{2}\right)\right)
$$

Compact massive tree amplitudes

CHY formalism leads to the following very compact amplitudes

$$
\begin{aligned}
M_{1}^{\text {tree }}\left(p, \ell_{2},-p^{\prime}\right) & =i N_{1}\left(p, \ell_{2},-p^{\prime}\right) A_{1}\left(p, \ell_{2},-p^{\prime}\right)=i N_{1}\left(p, \ell_{2},-p^{\prime}\right)^{2}: \\
M_{2}^{\text {tree }}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right) & =i N_{2}\left(p, 2,3,-p^{\prime}\right) A_{2}\left(p, 2,3,-p^{\prime}\right)+\text { perm. }\{2,3\} \\
& =\frac{i N_{2}\left(p, 2,3,-p^{\prime}\right)^{2}}{\left(\ell_{2}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i N_{2}\left(p, 3,2,-p^{\prime}\right)^{2}}{\left(\ell_{3}+p\right)^{2}-m^{2}+i \varepsilon}+\frac{i\left(N_{2}^{[2,3]}\right)^{2}}{\left(\ell_{2}+\ell_{3}\right)^{2}+i \varepsilon}-
\end{aligned}
$$

Straightforward to compute any tree
order needed with manifest color-kinematic numerators
no double poles (from KLT)
$N_{1}\left(p, \ell_{2},-p^{\prime}\right)=i \sqrt{2} \zeta_{2} \cdot p, \quad A_{1}\left(p, \ell_{2},-p^{\prime}\right)=N_{1}\left(p, \ell_{2},-p^{\prime}\right):$

- Spin-0,
$N_{2}\left(p, \ell_{2}, \ell_{3},-p^{\prime}\right)=\frac{i}{2}\left(s_{2 p}\left(\zeta_{2} \cdot \zeta_{3}\right)-4\left(\zeta_{2} \cdot p\right) \zeta_{3} \cdot\left(p+\ell_{2}\right)\right)$

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order

- classification of subtraction terms and classical contributions

(NEJBB, Damgaard, Plante, Vanhove; NEJBB, Plante, Vanhove)

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order, e.g. subtraction term

Velocity cuts and relation to world lines

Can open up massive propagators - direct connection to world-line formulation direct computation of probe amplitude to four-loop order, e.g. subtraction term

Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action. Considering the following representation of the exponentiated amplitude, one has

Damgaard, Plante, Vanhove

Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action. Considering the following representation of the exponentiated amplitude, one has

$$
\widehat{S}=\mathbb{I}+\frac{i}{\hbar} \widehat{T}=\exp \left(\frac{i \widehat{N}}{\hbar}\right)
$$

Damgaard, Plante, Vanhove

Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action. Considering the following representation of the exponentiated amplitude, one has

$$
\widehat{S}=\mathbb{I}+\frac{i}{\hbar} \widehat{T}=\exp \left(\frac{i \widehat{N}}{\hbar}\right) \begin{aligned}
& \hat{N}_{0}=\hat{T}_{0}, \quad \hat{N}_{0}^{\mathrm{rad}}=\hat{T}_{0}^{\mathrm{rad}}, \\
& \hat{N}_{1}=\hat{T}_{1}-\frac{i}{2 \hbar} \hat{T}_{0}^{2}, \quad \hat{N}_{1}^{\mathrm{rad}}=\hat{T}_{1}^{\mathrm{rad}}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{0}^{\mathrm{rad}}+\hat{T}_{0}^{\mathrm{rad}} \hat{T}_{0}\right), \\
& \hat{N}_{2}=\hat{T}_{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0}^{\mathrm{rad}}\right)^{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{1}+\hat{T}_{1} \hat{T}_{0}\right)-\frac{1}{3 \hbar^{2}} \hat{T}_{0}^{3},
\end{aligned}
$$

Damgaard, Plante, Vanhove

Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action. Considering the following representation of the exponentiated amplitude, one has

$$
\widehat{S}=\mathbb{I}+\frac{i}{\hbar} \widehat{T}=\exp \left(\frac{i \widehat{N}}{\hbar}\right) \begin{aligned}
& \hat{N}_{0}=\hat{T}_{0}, \quad \hat{N}_{0}^{\mathrm{rad}}=\hat{T}_{0}^{\mathrm{rad}}, \\
& \hat{N}_{1}=\hat{T}_{1}-\frac{i}{2 \hbar} \hat{T}_{0}^{2}, \quad \hat{N}_{1}^{\mathrm{rad}}=\hat{T}_{1}^{\mathrm{rad}}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{0}^{\mathrm{rad}}+\hat{T}_{0}^{\mathrm{rad}} \hat{T}_{0}\right), \\
& \hat{N}_{2}=\hat{T}_{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0}^{\mathrm{rad}}\right)^{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{1}+\hat{T}_{1} \hat{T}_{0}\right)-\frac{1}{3 \hbar^{2}} \hat{T}_{0}^{3},
\end{aligned}
$$

Bern et al Damgaard, Plante, Vanhove

Lessons from exponentiation of the S-matrix

This can be further refined via the direct identification of the radial action. Considering the following representation of the exponentiated amplitude, one has

$$
\widehat{S}=\mathbb{I}+\frac{i}{\hbar} \widehat{T}=\exp \left(\frac{i \widehat{N}}{\hbar}\right) \begin{aligned}
& \hat{N}_{0}=\hat{T}_{0}, \quad \hat{N}_{0}^{\mathrm{rad}}=\hat{T}_{0}^{\mathrm{rad}}, \\
& \hat{N}_{1}=\hat{T}_{1}-\frac{i}{2 \hbar} \hat{T}_{0}^{2}, \quad \hat{N}_{1}^{\mathrm{rad}}=\hat{T}_{1}^{\mathrm{rad}}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{0}^{\mathrm{rad}}+\hat{T}_{0}^{\mathrm{rad}} \hat{T}_{0}\right), \\
& \hat{N}_{2}=\hat{T}_{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0}^{\mathrm{rad}}\right)^{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{1}+\hat{T}_{1} \hat{T}_{0}\right)-\frac{1}{3 \hbar^{2}} \hat{T}_{0}^{3}
\end{aligned}
$$

Bern et al Damgaard, Plante, Vanhove

It is easy to see which terms needs to be computed and identify the classical contributions to the radial action new radiation terms allow 'radiation reaction' to be automatically correctly accounted for

Example: Einstein gravity at two-loop order

$$
\begin{aligned}
& \mathcal{M}_{2}^{3-\mathrm{cut}}\left(\sigma, q^{2}\right)=\int \frac{d^{D} l_{1} d^{D} l_{2} d^{D} l_{3}}{(2 \pi)^{3 D}}(2 \pi)^{D} \delta^{(D)}\left(l_{1}+l_{2}+l_{3}+q\right) \frac{i^{3}}{l_{1}^{2} l_{2}^{2} l_{3}^{2}} \\
& \quad \times \frac{1}{3!} \sum_{\substack{\text { Perm }\left(l_{1}, l_{2}, l_{3}\right) \\
\lambda_{1}= \pm, \lambda_{2}= \pm, \lambda_{3}= \pm}} \mathcal{M}_{0}\left(p_{1}, p_{1}^{\prime}, l_{1}^{\lambda_{1}}, l_{2}^{\lambda_{2}}, l_{3}^{\lambda_{3}}\right)\left(\mathcal{M}_{0}\left(p_{2}, p_{2}^{\prime},-l_{1}^{\lambda_{1}},-l_{2}^{\lambda_{2}},-l_{3}^{\lambda_{3}}\right)\right)^{*}
\end{aligned}
$$

Simplifications from the

 exponentiation of the S-matrix
Simplifications from the exponentiation of the S-matrix

Now it is clear how 'unitarity' removes certain terms when computing the radial action N

Simplifications from the exponentiation of the S-matrix

Now it is clear how 'unitarity' removes certain terms when computing the radial action N

$$
\mathcal{M}_{1} \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{T}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{N}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle+\frac{i}{2 \hbar^{2}}\left\langle p_{1}, p_{2}\right| \hat{T}_{0}^{2}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle
$$

Simplifications from the exponentiation of the S-matrix

Now it is clear how 'unitarity' removes certain terms when computing the radial action N

$$
\mathcal{M}_{1} \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{T}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{N}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle+\frac{i}{2 \hbar^{2}}\left\langle p_{1}, p_{2}\right| \hat{T}_{0}^{2}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle
$$

Cancelled in subtractions

Simplifications from the exponentiation of the S-matrix

Now it is clear how 'unitarity' removes certain terms when computing the radial action N

$$
\mathcal{M}_{1} \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{T}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{N}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle+\frac{i}{2 \hbar^{2}}\left\langle p_{1}, p_{2}\right| \hat{T}_{0}^{2}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle
$$

Cancelled in subtractions

$$
\mathcal{M}_{1}(|\underline{\vec{q}}|, \gamma, \hbar)=\frac{i \hbar}{2}\left(16 \pi G_{N} m_{1}^{2} m_{2}^{2}\left(2 \gamma^{2}-1\right)\right)^{2} I_{\square}^{1-\mathrm{cut}}+N_{1}(|\underline{\vec{q}}|, \gamma)+\mathcal{O}(\hbar)
$$

Simplifications from the exponentiation of the S-matrix

Now it is clear how 'unitarity' removes certain terms when computing the radial action N

$$
\mathcal{M}_{1} \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{T}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle \propto \frac{1}{\hbar}\left\langle p_{1}, p_{2}\right| \hat{N}_{1}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle+\frac{i}{2 \hbar^{2}}\left\langle p_{1}, p_{2}\right| \hat{T}_{0}^{2}\left|p_{1}^{\prime}, p_{2}^{\prime}\right\rangle
$$

Cancelled in subtractions

$$
\begin{aligned}
& \mathcal{M}_{1}(|\underline{\vec{q}}|, \gamma, \hbar)=\frac{i \hbar}{2}\left(16 \pi G_{N} m_{1}^{2} m_{2}^{2}\left(2 \gamma^{2}-1\right)\right)^{2} I_{\square}^{1-\mathrm{cut}}+N_{1}(|\underline{\vec{q}}|, \gamma)+\mathcal{O}(\hbar) \\
& N_{1}(|\underline{\vec{q}}|, \gamma)=\frac{3 \pi^{2} G_{N}^{2} m_{1}^{2} m_{2}^{2}\left(m_{1}+m_{2}\right)\left(5 \gamma^{2}-1\right)\left(4 \pi e^{\left.-\gamma_{E}\right)^{\frac{4-D}{2}}}\right.}{|\underline{\underline{q}}|^{5-D}} \\
& -\frac{8 G_{N}^{2} m_{1}^{2} m_{2}^{2}\left(4 \pi e^{-\gamma_{E}}\right)^{\frac{4-D}{2}} \hbar}{(4-D) \mid \underline{\vec{q}} \underline{4}^{4-D}}\left(\frac{2\left(2 \gamma^{2}-1\right)\left(7-6 \gamma^{2}\right) \operatorname{arccosh}(\gamma)}{\left(\gamma^{2}-1\right)^{\frac{3}{2}}}+\frac{1-49 \gamma^{2}+18 \gamma^{4}}{15\left(\gamma^{2}-1\right)}\right) \\
& +\mathcal{O}\left(|\underline{q}|^{5-D}\right) .
\end{aligned}
$$

Simplifications from the

 exponentiation of the S-matrix
Simplifications from the exponentiation of the S-matrix

Two-loop radial action contribution

Simplifications from the exponentiation of the S-matrix

Two-loop radial action contribution

$$
\begin{aligned}
N_{2}(|\overrightarrow{\underline{q}}|, \gamma)= & \frac{4 \pi G_{N}^{3}\left(4 \pi e^{-\gamma_{E}}\right)^{4-D} m_{1}^{2} m_{2}^{2}}{(4-D)|\vec{q}|^{8-2 D}}\left(\frac{\mathcal{E}_{\mathrm{C.M.}}^{2}\left(64 \gamma^{6}-120 \gamma^{4}+60 \gamma^{2}-5\right)}{3\left(\gamma^{2}-1\right)^{2}}\right. \\
& -\frac{4}{3} m_{1} m_{2} \gamma\left(14 \gamma^{2}+25\right)+\frac{4 m_{1} m_{2}\left(3+12 \gamma^{2}-4 \gamma^{4}\right) \operatorname{arccosh}(\gamma)}{\sqrt{\gamma^{2}-1}} \\
& \left.+\frac{2 m_{1} m_{2}\left(2 \gamma^{2}-1\right)^{2}}{\sqrt{\gamma^{2}-1}}\left(-\frac{11}{3}+\frac{d}{d \gamma}\left(\frac{\left(2 \gamma^{2}-1\right) \operatorname{arccosh}(\gamma)}{\sqrt{\gamma^{2}-1}}\right)\right)\right)+\mathcal{O}(\hbar)
\end{aligned}
$$

Velocity cuts tree diagrams / soft expansion

Velocity cuts tree diagrams / soft expansion

Velocity cuts tree diagrams / soft expansion

Velocity cuts tree diagrams / soft expansion

$m_{1}^{4} m_{2}^{2} c_{3,1}(\gamma, D) \simeq$

Velocity cuts tree diagrams / soft expansion

$$
m_{1}^{4} m_{2}^{2} c_{3,1}(\gamma, D) \simeq
$$

$$
\begin{aligned}
& \mathcal{M}_{L+1}^{\text {tree }} \sim\left(\mathcal{M}_{1}^{\text {tree }(+)}\right)^{L+1} \prod_{i}^{L} \delta_{i}(\ldots)+\left(\mathcal{M}_{1}^{\text {tree }(+)}\right)^{L-1}\left(\mathcal{M}_{2}^{\text {tree }(+)}\right) \prod_{i}^{L-1} \delta_{i}(\ldots)+\cdots \\
&+\mathcal{M}_{1}^{\text {tree }(+)} \mathcal{M}_{L}^{\text {tree }(+)} \delta(\ldots)+\mathcal{M}_{L+1}^{\text {tree }(+)}
\end{aligned}
$$

Velocity cuts tree diagrams / soft expansion

$$
m_{1}^{4} m_{2}^{2} c_{3,1}(\gamma, D) \simeq
$$

$$
\begin{aligned}
& \mathcal{M}_{L+1}^{\text {tree }} \sim\left(\mathcal{M}_{1}^{\text {tree }(+)}\right)^{L+1} \prod_{i}^{L} \delta_{i}(\ldots)+\left(\mathcal{M}_{1}^{\text {tree }(+)}\right)^{L-1}\left(\mathcal{M}_{2}^{\text {tree }(+)}\right) \prod_{i}^{L-1} \delta_{i}(\ldots)+\cdots \\
&+\mathcal{M}_{1}^{\text {tree }(+)} \mathcal{M}_{L}^{\text {tree }(+)} \delta(\ldots)+\mathcal{M}_{L+1}^{\text {tree }(+)}
\end{aligned}
$$

(NEJBB, Plante, Vanhove)

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

Simpler integrand - velocity cuts tree topologies!

(Brandhuber, Chen,
Travaglini, Wen)

Simpler integrand - velocity cuts tree topologies!

(Brandhuber, Chen, \quad - heavy mass vs small |q| expansion?
Travaglini, Wen) - some similarities / some differences

Simpler integrand - velocity cuts tree topologies!

(Brandhuber, Chen, \quad - heavy mass vs small |q| expansion? Travaglini, Wen) - some similarities / some differences

Interesting stuff to investigate

Simpler integrand - velocity cuts tree topologies!

Conclusion

Conclusion

Conclusion

So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.

NB: different setup from QCD

Conclusion

- So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.

Conclusion

- So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.
-NB: different setup from QCD
- Gravity: New insights have been necessary to develop alongside brute-force computations

- We have efficient frameworks for computation but still much more to learn
- For GW community: automatic programs could be useful

Conclusion

- So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.
-NB: different setup from QCD
-Gravity: New insights have been necessary to develop alongside brute-force computations

- We have efficient frameworks for computation but still much more to learn
- For GW community: automatic programs could be useful
- We are still far from that... each new loop order brings new problems...

Conclusion

- So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.
-NB: different setup from QCD
-Gravity: New insights have been necessary to develop alongside brute-force computations

- We have efficient frameworks for computation but still much more to learn
- For GW community: automatic programs could be useful
- We are still far from that... each new loop order brings new problems...
Current bottlenecks: Solving the integral-system: identifying IBPrelations, solving the DE equations/integrals.

Conclusion

- So amplitude techniques are surprisingly efficient in PostMinkowskian gravity computations and bridging the gap to current data.
-NB: different setup from QCD
-Gravity: New insights have been necessary to develop alongside brute-force computations

- We have efficient frameworks for computation but still much more to learn
- For GW community: automatic programs could be useful
- We are still far from that... each new loop order brings new problems...
Current bottlenecks: Solving the integral-system: identifying IBPrelations, solving the DE equations/integrals.
-Better understanding of what the minimal computation is could lead to much simplified analysis.

Outlook

Amplitude toolbox for computations already provided many new efficient methods for computation

- Amplitude tools very useful for computations
- Double-copy/KLT
- Unitarity
- Spinor-helicity
- CHY formalism
- Low energy limits of string theory
- Identifying IBP-relations solving DE equations/ integral
- Recycling tools from QCD computations
- Numerical programs for amplitude computation

Conclusion

Endless tasks ahead
 Conclusion

- spin effects (a current hot topic, very recent papers)

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering

Endless tasks ahead
 Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms

Endless tasks ahead
 Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects
- String theory amplitudes useful?

Endless tasks ahead Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects
- String theory amplitudes useful?

Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects
- String theory amplitudes useful?

Clearly much more physics to learn....

Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects
- String theory amplitudes useful?

Clearly much more physics to learn....

Conclusion

- spin effects (a current hot topic, very recent papers)
- higher (classical) spin from amplitudes
- radiation reaction / validity of exponentiation / High energy scattering
- quantum terms?? and inclusion of high order curvature terms
- Finite size effects
- String theory amplitudes useful?

Clearly much more physics to learn....

