Novel Bootstraps via
Duality btw Color : Kinematics
Bosch on ongoing Worth with May Early Comer pergerchers,

Introduction
double copy invites us to construct \& combine our facrorite theories using building blocks

$$
\begin{aligned}
& \text { sum }=\text { color } \otimes \text { vector }+ \text { suse } \\
& \text { NLSM }=\text { color } \circledast \pi \\
& \text { SDBIVA }=\pi \otimes \text { vector + suse } \\
& S G=\operatorname{vector}+\operatorname{sus}, \pm \text { vector }+ \text { Sst } \\
& \text { Q } \equiv(K L T=B C D=\underset{\text { (ore levi) }}{B C} H T) \\
& \text { crop Revels }
\end{aligned}
$$

Indeed mich of this talk: $\mathbb{L}<2$ loops
but borrowing insights: approaches from
Multi \mathcal{L} op Level.
Bootstrap: Legs ¿ Loops
$\underline{M \cos \text { Dim? }}$

Will refine language around double copy w/ Something New: alg composítoin

EFT

- Higher derivatía operators (or conterterns) let you parameterize your I gnornce of neal plysils with available fields

$$
\mathcal{L}=\partial^{2} \varphi+g \varphi^{3}+c_{2} \frac{\left(\partial^{2} \varphi^{2}\right)}{\Lambda}+c_{4} \frac{\partial^{4} \varphi^{4}}{\Lambda^{2}}+\cdots
$$

Goal: $\partial^{n} F^{m}, \partial^{n} R^{m}$

Summary:

- color-hinematics lets us bootstrap 2010.1345 [cGI.].
- Composition lets us build \& ${ }^{2112.05178}$ classify EFT operators for gauge $\dot{\dot{c}}$ gravity theories 1910.12850 with. SMALL set of Building Blocks
- $N=4 S G$ may have a 2203.03592 non-local color-dval fate: - Beckouik witter CS

How we calculate at loops
Not Feynman diagrams

- off shell unweildy
- factorial \# of diagrams
- But Graph Organized
- Unitritg methods efficient for VERIFICATION \& Cut construction
- Virtual inkgration wants local reps.

(Gayge)
Loop Integrand Map
Mapping from labeled topology

to

propagah weights $\left(\xrightarrow{l}=\frac{1}{l^{2}-\mu^{2}}\right)$
numerator weight ($h_{a} \ldots k_{e}, \varepsilon_{c}, l_{1} \cdots l_{4}$)

Weights should obey
symmetries of topology

$$
\begin{array}{ll}
a \rightarrow l_{1} & a \rightarrow k_{4} \\
b \rightarrow k_{4} & \text { or } \\
e \rightarrow k_{1} \\
e \rightarrow l_{3} & e \rightarrow l_{3}
\end{array}
$$

¿ unitarily cuts

Recipe for Calculation

- Give Ansätze to topologies
- Fix on Symmetries \& Cuts
- Duality between color i kirometrís con help!

Adjoint-type color veights

C

Demand this holds for η as vil!
n

All of 3 -loop $4 \neq N=4$ SYM in ore topples!

$$
\begin{aligned}
& \text { Bern, } \\
& \text { JIm }^{2} C \\
& \text { Johns } 50 n \\
& 2010
\end{aligned}
$$

Note feed back constraints:

Jacobi relakom are functronch at Loop Level so Ansätze are nadual. (but con get expensive)

This cir tale you

$$
\begin{array}{r}
\text { for - multiplicif } \\
\text { - loop level }
\end{array}
$$

- Even awry from adjoint

Inarid Vazquez - Hokm

$$
2010.1345
$$

$$
2108.06748
$$

- Bartstap massine scalos in arb $e \mathrm{ep}$ to 1-lap 5 pt
© $c / K=G I$
- trivialize extrakia ol Eirglein
- Judicioús choices \Rightarrow uníversal Kinomatícs

(to appeer)
- Massine formions, arb rpi? No problem!
- Color-claial D-dim bootstrap gines all D - dim cot corstaliale info?

Bootstrop:
Hees $\rightarrow m+1$
loops $\rightarrow \mathcal{Z}+1$

EFT? ?

Higher Denírativé Operators

- ∂_{i} in $\mathcal{L} \rightarrow h_{i}$ in A
- Game is to figure oct all dirtirect ways of sprinkling in some order in MD \& into your scatter amplitude. what messing wa symmatrics.
- Easy: scalar permutation invariants

Suna Zehioğlu

Laventiu Rodine

4 pt thee level adjoint type

$$
\begin{aligned}
& \left.\right|_{a} ^{b} \mid=g\left(s_{a b}, s_{a d}, s_{a c}\right) \\
& \left.\left.\right|_{1} ^{c}\right|_{4} ^{3}=\left.g(s, t, u)\right|_{3} ^{3} g(s, u, t)
\end{aligned}
$$

Adjoint conditcons

$$
n_{a}(s, t, u)=n_{a}(t, s, u)+n_{a}(u, t, s)
$$

ε

$$
\begin{aligned}
& \left.\left.{ }_{1}^{2}\right|_{4} ^{3}=-{ }_{1}^{2}\right)_{4}^{3}=-\left.1_{1}^{2}\right|_{3} ^{4} \\
& n_{a}(s, t, u)=-n_{a}(s, u, t)
\end{aligned}
$$

$$
\begin{aligned}
& y m \\
& n^{55}(a, b, c)=t-u \\
& \text { Adjoint type? }[t-x \stackrel{?}{=}(\delta-x)+(t-s) \\
& =t-n]
\end{aligned}
$$

Permutation Inut Condition's

Py doosn't care obolt leg order inat unds S_{y}.

$$
\begin{aligned}
& c\left({ }_{a}^{b}<_{d}^{c}\right)=d^{a b c d} \\
& n^{b}\left(>_{d}^{c}\right)=\operatorname{sta}(s, t)
\end{aligned}
$$

Note, no liner perm inut for massless

$$
s+t+u=0
$$

But can compose adjoint n to get perm invt.

$$
\begin{aligned}
n^{a d j} & \oplus \tilde{n}^{a d j}
\end{aligned}=n_{s} \tilde{n}_{s}+n_{t} \tilde{n}_{t}+n_{n} \tilde{n}_{n} .
$$

Note also, trivially

$$
n_{s}=\tilde{n}^{\alpha j} @ s=p @_{s} \tilde{n}^{4}=p \widetilde{n}_{s}^{d j}
$$

Adjoint Comp at ypt ?

$$
\begin{aligned}
& \eta_{s}=\tilde{n}^{\operatorname{djj}}(a)_{s} \tilde{n}^{\text {adj }}=\tilde{n}_{t} \stackrel{V}{n}_{t}-\tilde{\eta}_{u} \stackrel{V}{n}_{u}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{s}=n^{s s} a_{s} n^{s s} \alpha s(t-u) \\
& P_{3}=\underbrace{n^{s s}}_{1} P \underbrace{\pi}_{2} \alpha s t u=\sigma_{3} \\
& P_{4}=\pi \Phi \pi \alpha \sigma_{2}\left(P \sigma_{2}=\left(s^{2}+t^{2}+n^{2}\right)^{2}\right.
\end{aligned}
$$

Composition / Double Copy

Simple Coveriatized Scalar spans all scalar adjoint type BB under composition

- Climbs a ladder MD by MD
- Closes after and rung under pets invorionls.

$$
\begin{aligned}
n_{s}^{m D}= & \sum_{x, y}^{3 y+2 x=m D-1} c_{x}^{s \frac{s}{x}} \sigma_{2}^{x} \sigma_{3}^{\top} n_{s}^{s s} \\
& +\sum_{x, y}^{3 \varphi+2 x=m D-2} c_{x y}^{\pi} \sigma_{2}^{x} \sigma_{3}^{4} \overline{d l_{s}}
\end{aligned}
$$

Can add color: $c_{s}^{a d s}=f^{a b e} f^{e c d}$
$\varepsilon \quad d^{a b c d}$

to n 's using
composition in relcunt ways.
eg:

$$
\Pi_{s}^{a b c d}=d^{a b c d} \Pi_{s}
$$

Note: $\mathrm{t}^{\operatorname{tr}\left(F^{\prime \prime}\right)}=d^{a b c d} \operatorname{st} A^{\text {act }(1234)}$
$=\pi^{a b c d} \otimes$ Vector
Its ordered amplitules don't satisfy $(n-3)$! BCS aplitudar relckes (they're perm inut')
Rathur it is a double copy

This allows us to recover Open ic closed Superstrings at Tres lever As

Field THeory Double Copies
from scalar perm invariants $\left(\sigma_{2}, \sigma_{3}\right)$ scalar adjoint numesters $\left(n^{s s}, \pi\right)$ single trace color weights ($\left.f^{a l c}, d^{a b c d}\right)$
ξ Sym numerator $\left(n^{(s) m}\right)$

$$
\begin{aligned}
& O S S=2 \otimes \operatorname{LM} \\
& C S S=\operatorname{sYM} \otimes \operatorname{sim}{ }^{(s)} \\
& \begin{aligned}
Z_{s}= & (\underbrace{\left(c^{\operatorname{adj} j} \theta n^{s s}\right.})_{s} \sigma_{2}^{x} \sigma_{3}^{4} C_{x, Y}^{s s} \\
& +\sigma_{2}^{x} \sigma_{3}^{4} C_{x, 4}^{\pi}
\end{aligned} \\
& +(\underbrace{d^{a b c d}} \pi)_{s} \sigma_{2}^{x} \sigma_{3}^{4} C_{x, 4}^{d} \\
& \operatorname{syM}_{s}^{(s u)}=n_{s}^{y, M} \sigma_{2}^{x} \sigma_{3}^{4} C_{x, 4}^{s \nu}
\end{aligned}
$$

Composition Very Power fol

- Could verify up to insanely high mD $\partial^{55 F^{4}}\left(\alpha^{\prime}\right)^{25} \sim(s i j)^{25}$ before finds the right way to express this in tens of OSS directly in coed $\Gamma()$ form at $4 / \frac{1}{p}$.
- Check out paper for Examples: iP Proofs

Whyno(cs@ $\left.n^{\text {MM }}\right)$ or

$$
\left(c^{\pi} @ n^{y M}\right) ?
$$

Resulting numerators satisfy adjoint constraints but NOT Gage Ins.

What about eg other tensor struchas? tors out $\exists 8$ spanning. building blocks at pts.

+2 more

$$
\left(\alpha^{\prime}\right)^{3} \mid=\partial^{2} F^{4}
$$

$n^{5 s}, f^{7 j^{3}}, d^{\text {atced }}$
$\Delta 1 d$
Eg Booonic string: $Z \otimes(D F)^{2}+Y M$

$$
\frac{n^{D P^{2}+i m}=n_{y m}+\left[\alpha ^ { \prime } \left(n^{F^{3}}+\alpha^{\prime}\left(n^{2 F^{3}+F^{4}}+\alpha^{\prime}\left(n^{\partial^{2} F^{4}}+\alpha^{\prime} n^{\Phi A^{4}}\right)\right]\right.\right.}{1-\alpha^{\prime 2} \sigma_{z}-\alpha^{\prime 3} \sigma_{3}}
$$

Fink
But can these be algeloreinill construlel?

$$
=S T A Y T U N E D=\begin{aligned}
& \text { JJMC } \\
& Z R, S \breve{Z}
\end{aligned}
$$

Is this just a feature of $4 p t$? No! S pt even richer s:
a fascinating surprise
No adjoint linear building block

$\frac{5 \text { pt Algebraic Structures }}{P_{5} d^{5}}$

Hybrid $d^{\prime \prime} f^{3}$

Adj $f^{3} f^{3} f^{3}$
Relaxed Adj
Sanduhich $f^{3} d^{3} f^{3}$

Lesson from fire points.

- Odd multiplicity EFT linear building block: Relaxed
- Even multiplicity: Adjoint

$\left(h_{a}-h_{a-1)}\right)$
\# of Vector adjoint color-dual BB?
Oper Questión
- Cver Spt exhasting vía onsatz, motivating constructiv appooach!

STAY TUNED!

Color-dual Fate of $N=4 S G$

- Diverges in 4D at $4-$ loops

Bern, Daviés, Denen
Smirnou, Smirnos 13

- Seems tíed to anomalous hehavior JJMC, Kallosh at I - loop
- Countertem aelitel to tr F^{3}
- docs resolve 1-loop aronouls bhur.
- doesnt mess up UV at 1 s. 2 loops.
'17 Bern, Edison, Kosower, Parra-Marthez 1/9 Bern, Kosower, '17 Bern, Parra-Marfíiez, Roibon Parra-Martinez

Nic Pavao

앙

Anomalous Behavior

$$
\begin{aligned}
& A_{\text {tee }}^{s G}\left(\varphi \varphi h^{+} h^{+}\right)=0 \\
& A_{\text {emp }}^{N=4}\left(\varphi \varphi h^{+} h^{+}\right) \neq 0
\end{aligned}
$$

Con understand behavior via double-copy half max $_{\text {max }}=$ maximal SYM \otimes pure $Y M$

$$
\begin{aligned}
& \begin{array}{l}
\text { Anomalous Behavior } \\
A^{\text {SG }}\left(\varphi \varphi h^{+} \hbar^{+}\right)=
\end{array} \begin{array}{l}
g^{+} \otimes g^{+}=h^{+} \\
g^{+} \otimes g^{-}=\varphi \\
g \otimes g^{-}=h^{-}
\end{array} \\
& A^{S U M}\left(g^{-} g^{-} g^{+} g^{+}\right) \otimes A^{\varphi M}\left(g^{+} g^{+} g^{+} g^{+}\right) \\
& \text {B/C SUSY: ONLY } \\
& \text { VALID HEL STRULTURE } \\
& \text { zaro at tree level } \\
& \text { csecretty sosu } \\
& \text { of tree) } \\
& \text { NoD-ZERO AT I LOOPI }
\end{aligned}
$$

To conced anomaly reed counter TERM that admits $4 \mathrm{~g}^{+}$evea at theo level $\underbrace{\operatorname{tr}\left(\mathrm{F}^{3}\right)}$

So is $\operatorname{tr} F^{2}+\alpha^{\prime}+r F^{3}$ Double Copy Consistent? Lie color dual as factorizing for all multiplicity at fee level)

$$
y^{Y M}+\alpha^{\prime}
$$

4pt $\frac{\text { Color Dual? }}{(\text { ym })}$
α^{\prime}

(single insation)
α^{12}

(couble insection)

Needs ypt tr(F") ct.

So is $\left|+r F^{2}+\alpha^{\prime}+r F^{3}+\ldots\right|$ Double Copy Consistent with a finite \# of CT? Apparently not

Requiring C / K シ
Factorization even Between 4 \&. 5 point

Induces a tower
ALL THE WAY TO THE
$\underline{\underline{U V}}$

How can you tell?
Apt Ansatz:

$$
n^{4 p t}=\sum_{i \in 1}^{8} \sum_{x, i}^{2 x+3 i}<\begin{gathered}
\max \\
C_{x}^{i},
\end{gathered} \sigma_{2}^{x} \sigma_{3}^{i} n_{i}
$$

fix an cots to 3 points
Everyty. is either

preculded, get to α^{\prime} or ((gyM coup'), or free (could be set to \varnothing)

$$
\begin{aligned}
& n= n^{4 n}+\alpha^{1} n^{4 M+F^{3}}+\alpha^{\prime 2} n^{\left(F^{3}\right)^{2}+F^{4}}+ \\
& \alpha^{\prime 3}\left(C_{3}\left(n^{D^{2} F^{4}}+\sigma_{2} n^{Y M+F^{3}}\right)+\right. \\
&\left.\widetilde{C}_{3}\left(\sigma_{3} n^{4 m}\right)\right)+ \\
& \alpha^{\prime 4} {\left[C_{4}\left(n^{\left(\left(D F^{2}\right)^{2}\right.}+\sigma_{2} n^{\left(F^{3}\right)^{2}+F^{4}}\right)\right.} \\
&\left.+C_{4} n^{\left(D F^{2}\right)_{2}^{2}}+\widetilde{C}_{4} C_{3} n^{4 M+F^{-3}}\right]
\end{aligned}
$$

C unconstrained - could be zero unless prices pationtor values

Which it does!

$$
\begin{aligned}
C_{3} & =1 \\
\widetilde{C}_{4} & =1+\widetilde{C_{3}} \\
C_{4} & =\widetilde{C_{4}}=1 \\
& \Rightarrow \\
n= & n^{(D F)^{2}+4 m}+\theta\left(\alpha^{\prime 5}\right) \\
& +\widetilde{C_{3}} \alpha^{\prime 3} \sigma_{3}\left(n^{4 m}+\alpha^{\prime} n^{F^{3}}+\cdots\right)
\end{aligned}
$$

$$
\begin{aligned}
N=4 S G+c . t .= & N=4 \operatorname{ssiM} \otimes \int\left[\begin{array}{l}
\left(Y_{M}+\alpha^{\prime}+r\left(F^{3}\right)\right. \\
+\alpha^{2}+c\left(F^{\prime}\right)+\ldots
\end{array}\right. \\
& (\text { resums ?) } \\
& =\left[\begin{array}{l}
\left.D F^{2}+Y M\right] \\
\\
+\widetilde{C}_{3} \alpha^{\prime 3}\left(Y M+\alpha^{\prime}+r\left(F^{3}\right)+\right. \\
\cdots) \mathscr{G}_{3}+\cdots
\end{array}\right]
\end{aligned}
$$

- Berkouitz witten SG or Heterotic String

Calculated thogh $\alpha^{\prime 4}$ Proof \& Loop Level results awail)
(A few words about $D F^{2}$)

$$
D F^{2} \otimes S Y M=C S G
$$

Johanson, Nohle
$\left(D F^{2}+Y M\right) \otimes_{S Y M}=$ Weyl $-\varepsilon_{i s} \operatorname{ten}$ 117
Johonsson, Mogull, Teng '/8
(DF $\left.F^{2}+Y M\right) \otimes Z=$ Bosonic String
(D) $\left.F^{2}+Y M\right)^{S V} \otimes S Y M=$ kgravizons in Heterotic Sdring

$$
(X)_{c}^{s}=X_{a} \otimes^{a b} s V\left(Z_{b c}\right)
$$

\& Azvedo, Chiodaroli, Johansson, Schlofterer 118

Next Steps

- Composition to build vector BB?
- Proof that tr F^{3} close to $(D F)^{2}+Y M$
- Effect of tower on explicit
loop-level calculation in $N=\psi \delta G+\cdots$
- Loop-lever composition?
- KLT composition at Tree Level?

Lat's to Do ce

$$
\left[\begin{array}{ll}
\text { Gen } & \text { Chi, Clang } \\
\text { GLT } & \text { Hedersschece, } \\
\text { Panes, }
\end{array}\right]
$$

Summary:

- color-hinematics lets us bootstrap 2010.1345 $\equiv G I$.
- Composition lets us build $\varepsilon^{2112.05178}$ classify EFT operators for gauge $\dot{\varepsilon}$ grasit theories 1910.12850 with. SMALL set of Building Blocks
- $N=4 S G$ may have a 2203.03592 non-local color-dual fate: - Hecthourtic witter String

