NeXT Southampton

2HDMs

- Many reasons to introduce a second Higgs doublet
 - EW Baryogenesis
 - g-2
 - Diffuse gamma ray excess
- •Produce 4 more scalars H⁺H⁻,H,A
- But risk of flavour changing neutral currents
 - Avoided if all same-charge fermions get mass from only 1 doublet
 - 4 classes of couplings normally considered:

45/545/54	Model	Type I	Type II	Lepton-specific	Flipped
SUSY	Φ_1	_	d,ℓ	ℓ	d
	Φ_2	u,d,ℓ	u	u, d	u,ℓ

We only looked at I and II

2HDMs

- In general 4 masses free m_A, m_{H+}, m_H, m_h
- •Also $tan\beta$ and α mixing of fields and scalars
 - Plus m_{12}^2 , λ_6 and λ_7 but a Z_2 symmetry is often invoked
 - Forces them to 0, but can be softly broken
- Type II: Much studied as it includes SUSY
 - but b \rightarrow sy rate bounds m_{H+}> ~750 GeV
 - Can be cancelled with SUSY loops
 - But then H⁺ → WA hard to get
- •Type I: All fermion couplings 1/tanβ
 - m_{H+} > 80 GeV from $b \rightarrow sy$
 - Much more freedom!

ATLAS CONF 2021-047

- Moretti et al proposed H⁺ → WA in Type I
 - Using tt production, t → H⁺b
 - And A decay to bb or TT
- •CMS published this in A → µµ with 36fb⁻¹
- •ATLAS followed CMS strategy with 139fb⁻¹

	Event selection							
Trigger	single muon	di-muon						
	$p_{\rm T}^{\rm leading} > 27 \text{ GeV}, p_{\rm T}^{\rm subleading} > 5 \text{ GeV}$	$p_{\rm T}^{\rm leading} > 15 \text{ GeV}, p_{\rm T}^{\rm subleading} > 15 \text{ GeV}$						
Muons	exactly 2, opposite sign							
	$12 < m_{\mu\mu} [\text{GeV}] < 77$							
	$p_{\rm T}(\mu^{\rm SS})/p_{\rm T}(\mu^{\rm OS}) > 0.2$							
Electrons	exactly 1, $p_T > 20 \text{ GeV}$							
Jets	$\geq 3, p_{\rm T} > 20 {\rm GeV}$							
	$\geq 1 b$ -tagged jet							

Sample composition

- No explicit H+ reconstruction
- Biggest background is tt with a fake lepton
 - Muon p_T cut lower, so fake is often that
 - Despite cut on same-sign muon pT
- Final background well modeled:

Analysis method

- Sliding window across 15-75 GeV
 - Width increases from 1.5 GeV to 4GeV
 - Count events and look for excess
- Background predicted from MC
 - But tt, ttZ and Z+HF scaled to match control regions
 ttZ scaled up

Limits set

- Grid in m(H⁺,m_A) sampled
- •m_A is stepped through in 1GeV steps 15-75
- But H+ only enters via efficiency
 - See correlated limits
 - Poor eff at low m_{H+}

2HDMC

- •Analysis set limits on Br t \rightarrow H⁺, H⁺ \rightarrow WA, A \rightarrow $\mu\mu$
- Also interpreted via 2HDMC
 - Its easy! Download, make and run that's it
 - It predicts these 3 BRs and many other things
 - But needs: m_A , m_{H+} , m_H , m_h , $\tan \beta$, α , m_{12}^2 , λ_6 and λ_7
- Found arXiv:1312.5571 (Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model)
 - defines 3 scenarios, fixing all parameters
 - Extend them making 3D scan over m_{H+}, m_A and tanβ
 - Found α has no impact on Brs in question
 - Provided h → AA is removed.
 - m_H neither if decays to it are kinematically forbidden
 - and m₁₂² only affects 4th decimal place
- •So can scan using only m_{H+}, m_A!

2HDMC scan Br t→ H⁺b

- Type I
- Br Decreases with tan β
- Also with m_{H+}
- Independent of m_A
- In Type II would start to rise again at high tan β

2HDMC scan Br H⁺→WA

- If kinematically allowed it dominates!
- Even if W must be off-shell it still dominates at large tanβ
 - Though analysis sticks to onshell
- This would not be true in type II

2HDMC scan Br A→ μμ

- •2.5x10⁻³ for most param space
- •Rises when A → bb kinematically forbidden
 - But we do not test there
- There is a little more variation in type II

2HDMC product of BRs

- What actually matters for the search
- Br always decreases with tanβ
- Use this 3D map to read off a tanβ lower limit from a Br limit at m_A,m_{H+}
 - Interpolate for better precision

The Br limits in the CONF

- Only using interpolations of simulated points
- Expected results (fairly) smooth
- Observed wiggle with m_A as the data wiggles

The tanß limits in the CONF

- •Give limits on type I tan β in this parameter area
 - Range from 1.1 to 7
 - Right in the region of interest..great!
- Type II limits would always be tighter
 - but less interesting

Conclusions & Next steps

- CONF note give 2HDM limits.
 - Should we do a paper?
- If so possible additions?
 - Add µµµ channel
 - double statistics (nearly..some confusion loss)
 - Move to a functional form fit
 - I estimate bigger gain than the three muon addition
 - Add electron trigger
 - Would benefit especially low m_{H+}, to some extent low m_A
 - Increase upper mass range towards 125
 - There is the CMS (γγ)/LEP(bb) 96 GeV bump...
 - ightharpoonup A lot of ttZ background though..could compare Z
 ightharpoonup ee/ $\mu\mu$
 - Decrease lower range: currently 15GeV, add 4-8GeV
 - Here absence of b decays increases BR a lot..
 - Include off shell H+ → WA?
 - Type I BRs remain high far off shell

Regi	ions	(CRZ	($\mathbb{C}\mathbf{R}tar{t}$	($\mathbb{C}\mathbf{R}tar{t}Z$		VR	SRIn	clusive	
Observed events		803		190		<u> </u>	635		529		465	
				l		1 625						
	Total	803	±28	190	±14	635	±25	541	±43	470	±37	
	$ t\bar{t} $	136	± 21	170	±14	97	±19	388	±46	320	±39	
Fitted	Z+HF	491	±49	0.72	± 0.16	43	± 8	18	± 6	29	± 6	
background	Z+LF	84	±29	0.41	± 0.14	12	± 4	2.82	2 ± 0.98	13	± 4	
events	$t\bar{t}Z$	52	±14	6.40	± 1.64	327	± 83	76	±19	64	±16	
	Diboson	34	±17	0.58	5 ± 0.29	147	± 73	32	±16	22	±11	
	W+jets	0.01	± 0.01	0.40	± 0.39	0	± 0	0.08	8 ± 0.07	0.49	0.48	
	Single top	4.13	4.13 ± 0.29		4.38 ± 0.23 2.39 ± 0.12		9.00 ± 0.46		6.17 ± 0.33			
	$t\bar{t}W$	1.06	6 ± 0.15	7.43	± 0.97	6.4	2 ± 0.83	14	± 2	16	± 2	
	Total	762	±93	181	± 9	505	±76	497	±31	433	±23	
	$\overline{t\bar{t}}$	131	±15	163	± 9	93	±14	373	±22	308	±18	
Pre-Fit	Z+ HF	475	±79	0.69	± 0.08	42	± 6	18	± 7	28	± 3	
background	Z+ LF	84	±30	0.41	± 0.14	12	± 4	2.82	2 ± 0.99	13	± 4	
events	$t \bar{t} Z$	32	± 2	3.97	± 0.12	202	± 3	47	± 1	40	± 1	
	Diboson	34	±17	0.58	5 ± 0.29	147	±74	32	±16	23	±11	
	W+jets	0.01	± 0.01	0.40	± 0.40	0	± 0	0.08	8 ± 0.07	0.49	0.49	
	Single top	4.13			± 0.23	2.3		9.00	0.47	6.17	$t \pm 0.33$	
	$t\bar{t}W$	1.06	6 ± 0.15	7.43	± 0.97	6.4	2 ± 0.84	14	± 2	16	± 2	