Introduction to Accelerator Physics

Bernhard Holzer
CERN-ABP

A Short Introduction ...

In the end and after all ...: We try to exp[lain the structure of "hadronic matter" in the universe.

In short words: "What is going on, up there???"

 $E = mc^{2}$, $\lambda = h/p$

the beta function is usually obtained via the matrix element "m12", which is in Twiss form for the undistorted case

and including the error:

$$m_{12} = \beta_0 \sin 2\pi Q$$

(1)
$$m_{12}^* = \beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds$$

$$m_{12}^* = b_{11}a_{12} + b_{12}a_{22} - b_{12}a_{12}\Delta kds$$

$$m_{12} = \beta_0 \sin 2\pi Q$$

As M* is still a matrix for one complete turn we still can express the element m₁₂ in twiss form:

(2)
$$m_{12}^* = (\beta_0 + d\beta) * \sin 2\pi (Q + dQ)$$

$$-a_{12}b_{12}\Delta kds = \beta_0 2\pi dQ \cos 2\pi Q + d\beta_0 \sin 2\pi Q$$

Equalising (1) and (2) and assuming a small error

$$dQ = \frac{\Delta k \beta_1 ds}{4\pi}$$

$$\beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds = (\beta_0 + d\beta) * \sin 2\pi (Q + dQ) 0$$

(2) and error
$$dQ = \frac{\Delta k \beta_1 ds}{4\pi}$$

$$\beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds = (\beta_0 + d\beta) * \sin 2\pi (\beta + d\beta)$$

$$\beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds = (\beta_0 + d\beta) * \sin 2\pi Q \cos 2\pi dQ + \cos 2\pi Q \sin 2\pi dQ$$

$$\approx 1$$

$$\approx 1$$

$$\approx 2\pi dQ$$

$$-a_{12}b_{12}\Delta k ds = \frac{\beta_0 \Delta k \beta_1 ds}{2} \cos 2\pi Q + d\beta_0 \sin 2\pi Q$$

$$\beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds = \beta_0 \sin 2\pi Q + \beta_0 2\pi dQ \cos 2\pi Q + d\beta_0 \sin 2\pi Q + d\beta_0 2\pi dQ \cos 2\pi Q$$
$$d\beta_0 = \frac{-1}{2\sin 2\pi Q} \left\{ 2a_{12}b_{12} + \beta_0\beta_1 \cos 2\pi Q \right\} \Delta k ds$$

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos\psi_s + \alpha_0 \sin\psi_s \right) & \sqrt{\beta_s \beta_0} \sin\psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos\psi_s - \alpha_s \sin\psi_s \right) \end{pmatrix}$$

I.) A Bit of History

$$N(\theta) = \frac{N_i nt Z^2 e^4}{(8\pi\epsilon_0)^2 r^2 K^2} * \frac{1}{\sin^4(\theta/2)}$$

θ

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube

on 400 kV level

Accelerator: evacuated glas tube

Target: Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem:

DC Voltage can only be used once

2.) Electrostatic Machines: (Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12 \dots 28 \ MV$ using high pressure gas to suppress discharge (SF_6)

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The "Tandem principle": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H-) and
stripping the electrons in the centre of the
structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

Gretchen Frage (J.W. Goethe, Faust)

Fallen die Dinger eigentlich runter?

$$l_{vdG} = 30m$$

 $v \approx 10 \% c \approx 3 * 10^7 m/s$
 $\Delta t = 1 \mu s$

Free Fall in Vacuum:

$$s = \frac{1}{2}gt^2$$

$$s = \frac{1}{2} \cdot 10 \frac{m}{s^2} \cdot (1\mu s)^2$$

$$s = 5 \cdot 10^{-12}m = 5pm$$

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n \cdot q \cdot U_0 \cdot \sin \psi_s$$

n number of gaps between the drift tubes q charge of the particle U_0 Peak voltage of the RF System Ψ_S synchronous phase of the particle

* acceleration of the proton in the first gap

* voltage has to be "flipped" to get the right sign in the second gap \rightarrow RF voltage

→ shield the particle in drift tubes during the negative half wave of the RF voltage

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Time span of the negative half wave:

$$au_{rf}$$

$$l_n = v_n \cdot \frac{\tau_{rf}}{2}$$

$$E_n = \frac{1}{2}mv^2$$

$$v_n = \sqrt{2E_n/m}$$

$$l_n = \frac{1}{f_{rf}} \cdot \sqrt{\frac{n \cdot q \cdot U_0 \cdot \sin\psi_s}{2m}}$$

valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Accelerating structure of a Proton Linac (DESY Linac III)

$$E_{total} = 988 \; MeV$$

$$m_0 c^2 = 938 \; MeV$$

$$E_{kin} = 50 \; MeV$$

$$p = 310 MeV/c$$

Beam energies

Energy Gain per "Gap":

$$\boldsymbol{W} = \boldsymbol{q} \; \boldsymbol{U}_0 \; \sin \omega_{RF} \boldsymbol{t}$$

1.) reminder of some relativistic formula

rest energy
$$E_0 = m_0 c^2$$

total energy
$$E = \gamma \cdot E_0 = \gamma \cdot m_0 c^2$$

kinetic energy
$$E_{kin} = E_{total} - m_0 c^2$$

momentum
$$E^2 = p^2 c^2 + m_0^2 c^4$$

3.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: B = const, RF = constSynchronisation particle / RF via orbit

Lorentz force

$$\vec{F} = q * (\vec{v} \times \vec{B}) = q * v * B$$

circular orbit

$$q*v*B = \frac{m*v^2}{R} \rightarrow B*R = p/q$$

increasing radius forincreasing momentum→ Spiral Trajectory

beschleunig-

revolution frequency

$$\omega_z = \frac{v}{R} = \frac{q}{m} * B_z$$

the cyclotron (rf-) frequency is independent of the momentum

rf-frequency = h* revolution frequency, h = "harmonic number"

Cyclotron:

exact equation for revolution frequency:

$$\omega_z = \frac{V}{R} = \frac{q}{\gamma * m} * B_z$$

1.) if
$$v \ll c \Rightarrow \gamma \cong 1$$

2.) γ increases with the energy

via the spiraling orbit length

Cyclotron SPIRAL at GANIL

$$B = constant$$

 $\gamma \omega_{RF} = constant$
 ω_{RF} decreases with time

$$\omega_s(t) = \omega_{rf}(t) = \frac{q}{\gamma(t) \cdot m_0} B$$

keep the synchronisation condition by varying the rf frequency

Fixed target experiments:

HARP Detector, CERN

high event rate
easy track identification
asymmetric detector
limited energy reach

Collider experiments: E=mc²

$$E_{lab} = E_{cm}$$

 Z_0 boson discovery at the UA2 experiment (CERN). The Z_0 boson decays into a e+e- pair, shown as white dashed lines.

Particle Density in matter

Atomic Distance in Hydrogen Molecule

$$R_B \approx 0.5 \, \text{Å}$$

in solids / fluids $\lambda \approx 1 \dots 3 \text{ Å}$

in gases $\lambda \approx 35 \text{ Å} = 3.5 \text{ nm}$

Particle Distance in Accelerators: $\lambda \approx 600 \text{ nm (Arc)} \dots 300 \text{nm (IP LEP)}$ = 3000 Å

Problem: Our particles are VERY small!!

Overall cross section of the Higgs:

$$1b = 10^{-24}cm^2 = \frac{1}{mio} \cdot \frac{1}{mio} \cdot \frac{1}{mio} \cdot \frac{1}{10000} \quad mm^2 \qquad 1pb = 10^{-12}b \approx ZERO$$

The particles are "very small"

The only chance we have: compress the transverse beam size ... at the IP

LHC typical:

$$\sigma = 0.1 \text{ mm} \rightarrow 16 \mu\text{m}$$

II.) A Bit of Theory The big storage rings: "Synchrotrons"

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun

1AE ≈ 150 *106 km

Distance Pluto-Sun ≈ 40 AE

1.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine"

→ need transverse deflecting force

Lorentz force

$$\vec{F} = q * (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines:

$$v \approx c \approx 3*10^8 \, \text{m/s}$$

Example:

$$B = 1T \longrightarrow F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$

equivalent E electrical field:

Technical limit for electrical fields:

$$E \le 1 \frac{MV}{m}$$

Pearl of Wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

Lorentz force

$$F_L = e v B$$

$$F_{centr} = \frac{\gamma \ m_0 \ v^2}{\rho}$$

$$\frac{\gamma m_0 v^2}{\rho} = e v B$$

$$\frac{p}{e} = B \rho$$

$$B \rho = "beam rigidity"$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.8 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}$$
$$\approx 66\%$$

$$B \approx 1...8 \ T$$
nota bene: $\frac{\Delta B}{B} \approx 10^{-4}$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

2.) Focusing Forces: Hook's law

... keeping the flocs together: In addition to the pure bending of the beam we have to keep 10¹¹ particles close together

And here we borrow the idea from classical mechanics: The pendulum

there is a restoring force, proportional

to the elongation x:

$$F = m * a = -const * x$$

$$F = m * \frac{d^2x}{dt^2} = -const * x$$

general solution: free harmonic oscillation

$$x(t) = A * \cos(\omega t + \varphi)$$

...this is how grandma's Kuckuck's clock is working!!!

2.) Focusing Forces: Quadrupole Fields

Apply this concept to magnetic forces: we need a Lorentz force that rises as a function of the distance to the design orbit

$$F(x) = q * v * B(x)$$

Dipoles: Create a constant field

$$B_{y} = const$$

Quadrupoles: Create a linear increasing magnetic field:

$$B_{y} = g \cdot x, \quad B_{x} = g \cdot y$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B*\rho = p/q$)

Dipole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

Quadrupole Magnet

$$k := \frac{g}{p/q}$$

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!} m x^2 + \frac{1}{3!} m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

* Equation for the horizontal motion:

$$x'' + x \cdot (\frac{1}{\rho^2} + k) = 0$$

x = particle amplitude
x' = angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \leftrightarrow -k$ quadrupole field changes sign

$$y'' - k \cdot y = 0$$

4.) Solution of Trajectory Equations

Define ... hor. plane:
$$K = 1/\rho^2 + k$$

... vert. Plane:
$$K = -k$$

$$x'' + K x = 0$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l) \\ -\sqrt{|K|}\sin(\sqrt{|K|}l) & \cos(\sqrt{|K|}l) \end{pmatrix}$$

hor. defocusing quadrupole:

$$x'' - K x = 0$$

Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh \sqrt{|K|}l \\ \sqrt{|K|}\sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

drift space:

$$K = 0$$

$$x(s) = x_0' \cdot s$$

$$M_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent "... the particle motion in x & y is uncoupled"

Ok ... ok ... it's a bit complicated and cosh and sinh and all that is a pain. BUT ... compare ...

Weak Focusing / Strong Focusing

weak focusing term = $1/\rho^2$

$$\mathbf{X}'' + \mathbf{X}(\frac{1}{\rho^2} + \mathbf{X}) = 0$$

Problem: the higher the energy, the larger the machine

The last weak focusing high energy machine ... BEVATRON

- → large apertures needed
- → very expensive magnets

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

$$M_{total} = M_{QF} * M_{D} * M_{QD} * M_{Bend} * M_{D} * \dots$$

$$\begin{pmatrix} X \\ X' \end{pmatrix}_{S2} = M(S_{2}, S_{1}) * \begin{pmatrix} X \\ X' \end{pmatrix}_{S1}$$
focusing lens
dipole magnet
$$\begin{pmatrix} X \\ X' \end{pmatrix}_{S2} = M(S_{2}, S_{1}) * \begin{pmatrix} X \\ X' \end{pmatrix}_{S2}$$
focusing lens
$$\begin{pmatrix} X \\ X' \end{pmatrix}_{S2} = M(S_{2}, S_{1}) * \begin{pmatrix} X \\ X' \end{pmatrix}_{S2}$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator,

... just as Big Ben

... and just as any harmonic pendulum

LHC Operation: Beam Commissioning

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"

POINT 4

POINT 2

POINT 3

Momentum

Cleaning

POINT 6

POINT 7

Betatron

Cleaning

"Once more unto the breach, dear friends, once more" (W. Shakespeare, Henry 5)

"Do they actually drop?"

Answer: No

19th century:

Ludwig van Beethoven: "Mondschein Sonate"

Sonate Nr. 14 in cis-Moll (op. 27/II, 1801)

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force \neq const, k(s) = depending on the position sk(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

Amplitude of a particle trajectory:

Maximum size of a particle amplitude

$$X(S) = \sqrt{\varepsilon} * \sqrt{\beta(S)} * \cos(\psi(S) + \varphi)$$

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

Emittance of the Particle Ensemble:

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi)$$

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

single particle trajectories, $N \approx 10^{11}$ per bunch

LHC:
$$\beta = 180 \, m$$

$$\varepsilon = 5 * 10^{-10} mrad$$

$$\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5*10^{-10} m*180 m} = 0.3 mm$$

Gauß
Particle Distribution:

$$\rho(x) = \frac{N \cdot e}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}}$$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

aperture requirements: $r_0 = 17 * \sigma$

Beam Emittance and Phase Space Ellipse

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x' for each accelerator element according to matrix formalism and plot x, x' at a given position "s" in the phase space diagram

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

A beam of 4 particles - each having a slightly different emittance:

5.) Luminosity

Ereignis Rate: "Physik" pro Sekunde

$$R = L \cdot \Sigma_{react}$$

Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 \, m$$

$$f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5*10^{-10} \ rad \ m \qquad n_b = 2808$$

$$n_h = 2808$$

$$\sigma_{x,y} = 17 \, \mu m$$

$$\boldsymbol{L} = \frac{1}{4\pi e^2 f_0 \boldsymbol{n_b}} * \frac{\boldsymbol{I_{p1}} \boldsymbol{I_{p2}}}{\sigma_x \sigma_y}$$

$$I_p = 584 \, mA$$

$$L = 1.0 * 10^{34} \frac{1}{cm^2 s}$$

beam sizes in the order of my cat's hair!!

The LHC Mini-Beta-Insertions

mini \(\beta \) optics

The Beta Function: Lattice Design & Beam Ontics

The beta function determines the maximum amplitude a single particle trajectory can reach at a given position in the ring.

It is determined by the focusing properties of the lattice and follows the periodicity of the machine.

Mini-Beta-Insertions in phase space

A mini-\beta insertion is always a kind of special symmetric drift space.

→ greetings from Liouville

the smaller the beam size the larger the bam divergence

Liouville: im Falle konservativer Kraefte bleibt die Phasenraum-Flaeche erhalten.

$$A = \pi * \varepsilon = const$$

III. The Acceleration

Where is the acceleration?

Install an RF accelerating structure in the ring:

B. Salvant
N. Biancacci

A real (!) Particle Accelerator
E=10 ²⁰ eV

→ 100*1Mio*LHC

crab nebula, burst of charged particles

The Acceleration & "Phase Focusing"

Δp/p≠0 below transition

ideal particle •

particle with $\Delta p/p > 0$ • faster

particle with $\Delta p/p < 0$ • slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

oscillation frequency:
$$f_s = f_{rev} \sqrt{-\frac{h\alpha_s}{2\pi} * \frac{qU_0 \cos\phi_s}{E_s}} \approx some Hz$$

... so sorry, here we need help from Albert:

$$\gamma = \frac{E_{total}}{mc^2} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \longrightarrow \frac{v}{c} = \sqrt{1 - \frac{mc^2}{E^2}}$$

v/c

... some when the particles do not get faster anymore

.... but heavier!

The Acceleration above transition

ideal particle • heavier particle with $\Delta p/p > 0$ • particle with $\Delta p/p < 0$ • lighter Stable synchr, particle

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now???
with the dipole magnets!

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2)
Beam pipe diam.=300mm

Bunch length (4σ)	ns	1.06
Energy spread (2σ)	10-3	0.22
Synchr. rad. loss/ turn	keV	7
	kW	3.6
Synchr. rad. power		
RF frequency	MH	400
	Z	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron frequency	Hz	23.0

1.) Where are we?

- * Standard Model of HEP
- * Higgs discovery

And still... The LHC Performance in Run 1

Design2012Momentum at collision7 TeV/c4 TeV/cLuminosity $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ $7.7*10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Protons per bunch 1.15×10^{11} 1.50×10^{11}

Number of bunches/beam 2808 1380

Nominal bunch spacing 25 ns 50ns

beta * 55 cm 60 cm

rms beam size IP 17 µm 20 µm

The High light of the year

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

$$1b = 10^{-24}cm^2 = \frac{1}{mio} \cdot \frac{1}{mio} \cdot \frac{1}{mio} \cdot \frac{1}{10000} \quad mm^2$$

The particles are "very small"

$$R = \Sigma_{react} \cdot L \approx 10^{-12} b \cdot L \approx some \ 1000 \ H$$

During collider run we had in Run 1 ...

1400 bunches circulating,

with 800 Mio proton collisions per second in the experiments

and collected only 450 Higgs particles in three years.

... and why all that ?? High Light of the HEP-Year 2012 / 13 naturally the HIGGS

ATLAS event display: Higgs => two electrons & two muons

$$E = m_0 c^2 = m_{e1} + m_{e2} + m_{\mu 1} + m_{\mu 2} = 125.4 \text{ GeV}$$

Boooooom

LHC Operation:

Machine Protection & Safety

Energy stored in magnet system	10	GJ
Energy stored in one main dipole circuit	1.1	GJ
Energy stored in one beam	362	MJ

Enough to melt 500 kg of copper /

2·10¹² 4·10¹² 8·10¹² 6·10¹² 450 GeV p Strahl

LHC Aperture and Collimation

LHC Operation:

Machine Protection & Safety

... Komponenten des Machine Protection Systems:

beam loss monitors
QPS
permit server
orbit control
power supply control
collimators
online on beam check of all (?)
hardware components
a fast dump
the gaussian beam profile

LHC Operation: Machine Protection & Safety

What will happen in case of Hardware Failure

Phase space deformation in case of failure of RQ4.LR7 (A. Gómez)

Short Summary of the studies:

quench in sc. arc dipoles: $\tau_{loss} = 20 - 30 \text{ ms}$

BLM system reacts in time, QPS is not fast enough

quench in sc. arc quadrupoles: τ_{loss} =200 ms

BLM & QPS react in time

failure of nc. quadrupoles:
$$\tau_{det} = 6 \text{ ms}$$

$$\tau_{damage} = 6.4 \text{ ms}$$

→ FMCM installed

failure of nc. dipole:

$$au_{damage} = 2 \ ms$$

Energy stored in the magnets: quench

LHC Interconnects (... splices / ... Loetverbindungen / ... silent killers)

Quench in a bus bar (19 Sep 2008)

Electrical arc between C24 and Q24

LHC Operation:

X [mm]

Physics Beyond the Standard Model (BSM)

Example: Dark Matter

Corbelli & Salucci (2000); Bergstrom (2000)

The outer region of galaxies rotate faster than expected from visible matter

$$\frac{mv}{r} = \frac{m^* M * G}{r^2}$$

$$V_{circ} = \sqrt{\frac{M(r) * G}{r}}$$

Dark matter would explain this

Other observations exist ... (grav. lens effects) but all through gravity

What is it?

(One explanation is super-symmetry)

