Introduction to Accelerator Physics
 Bemhard Holzer

 CERN-ABPIn the end and after all ... : We try to exp/lain the structure of "hadronic matter" in the universe.

In short words: "What is going on, up there ???"

1869 PERIODENSYSTEM DER ELEMENTE

$$
E=m c^{2}, \lambda=\boldsymbol{h} / \boldsymbol{p}
$$

1969
the beta function is usually obtained via the matrix
element ",m12", which is in
Twiss form for the undistorted case

$$
\begin{aligned}
m_{12} & =\beta_{0} \sin 2 \pi Q & \underbrace{m_{12}^{*}}=b_{11} a_{12}+b_{12} a_{22}-b_{12} \Delta k d s \\
\text { (1) } m_{12}^{*} & =\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s & m_{12}=\beta_{0} \sin 2 \pi Q
\end{aligned}
$$

and including
the error:

As M^{*} is still a matrix for one complete turn we still can express the element m_{12}
in twiss form:

$$
\text { (2) } m_{12}^{*}=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q) \quad-a_{12} b_{12} \Delta k d s=\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

Equalising (1) and (2) and assuming a small error

$$
\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi\left(\Omega 4 d Q 40^{4 \pi} \cdot \bullet^{\bullet \bullet}\right.
$$

$$
\left.\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=(\beta) \mathcal{N Q}_{d \beta}\right)^{*} \sin \underbrace{2 \pi Q \cos 2 \pi d Q+\cos 2 \pi Q \sin 2 \pi d Q}_{\approx 1}
$$

$$
\approx 1
$$

$$
-a_{12} b_{12} \Delta k d s=\frac{\beta_{0} \Delta k \beta_{1} d s}{2} \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

$$
\begin{gathered}
\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\beta_{0} \sin 2 \pi Q+\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q+d \beta_{0} 2 \pi d Q \cos 2 \pi Q \\
d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s
\end{gathered}
$$

$M=\left(\begin{array}{cc}\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\ \frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)\end{array}\right)$

I.) A Bit of History

Rutherford Scattering, 1911 Using radioactive particle sources: α-particles of some MeV energy

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2}} * \frac{1}{\sin ^{4}(\theta / 2)}
$$

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design \& construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Particle source: Hydrogen discharge tube on 400 kV level
Accelerator: evacuated glas tube Target: Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem:

DC Voltage can only be used once

2.) Electrostatic Machines: (Tandem -) van de Graaff Accelerator (1930 ...)

creating high voltages by mechanical transport of charges

* Terminal Potential: $U \approx 12$... 28 MV using high pressure gas to suppress discharge ($S F_{6}$)

Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle or twice?

The ,,Tandem principle": Apply the accelerating voltage twice
... by working with negative ions (e.g. $H-$) and stripping the electrons in the centre of the structure

Example for such a „steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

Gretchen Frage (J.W. Goethe, Faust)
Fallen die Dinger eigentlich runter ?

$$
\begin{aligned}
& l_{v d G}=30 \mathrm{~m} \\
& v \approx 10 \% c \approx 3 * 10^{7} \mathrm{~m} / \mathrm{s} \\
& \Delta t=1 \mu \mathrm{~s}
\end{aligned}
$$

Free Fall in Vacuum:

$$
\begin{aligned}
& s=\frac{1}{2} g t^{2} \\
& s=\frac{1}{2} \cdot 10 \frac{m}{s^{2}} \cdot(1 \mu s)^{2} \\
& s=5 \cdot 10^{-12} m=5 p m
\end{aligned}
$$

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam
schematic Layout:

Energy gained after n acceleration gaps

$$
E_{n}=n \cdot q \cdot U_{0} \cdot \sin \psi_{s}
$$

n number of gaps between the drift tubes q charge of the particle
$\boldsymbol{U}_{\boldsymbol{0}}$ Peak voltage of the RF System
$\boldsymbol{\Psi}_{S}$ synchronous phase of the particle

* acceleration of the proton in the first gap
* voltage has to be ,,flipped" to get the right sign in the second gap $\rightarrow \quad$ RF voltage
\rightarrow shield the particle in drift tubes during the negative half wave of the RF voltage
shielding of the particles during the negative half wave of the RF

Time span of the negative half wave: $\quad \tau_{r f} / 2$

$$
v_{n}=\sqrt{2 E_{n} / m}
$$

Length of the Drift Tube:

Kinetic Energy of the Particles

$$
\left.\begin{array}{l}
\tau_{r f} / 2 \\
l_{n}=v_{n} \cdot \frac{\tau_{r f}}{2}
\end{array}\right]
$$

$$
l_{n}=\frac{1}{f_{r f}} \cdot \sqrt{\frac{n \cdot q \cdot U_{0} \cdot \sin \psi_{s}}{2 m}}
$$

valid for non relativistic particles ...

> Alvarez-Structure: 1946, surround the whole structure by a rf vessel

Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions

Accelerating structure of a Proton Linac (DESY Linac III)

$$
\begin{aligned}
& E_{\text {total }}=988 \mathrm{MeV} \\
& m_{0} c^{2}=938 \mathrm{MeV} \\
& E_{\text {kin }}=50 \mathrm{MeV} \\
& p=310 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

Beam energies

Energy Gain per „Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{R F} t
$$

1.) reminder of some relativistic formula
rest energy

$$
E_{0}=m_{0} c^{2}
$$

total energy

$$
E=\gamma \cdot E_{0}=\gamma \cdot m_{0} c^{2}
$$

kinetic energy $\quad E_{k i n}=E_{\text {total }}-m_{0} c^{2}$

3.) The Cyclotron: (Livingston / Lawrence ~1930)

Idea: $B=$ const, $R F=$ const
Synchronisation particle / RF via orbit

Lorentzforce

$$
\vec{F}=q *(\vec{v} \times \vec{B})=q * v * B
$$

increasing radius for increasing momentum
$\rightarrow \quad$ Spiral Trajectory
revolution frequency
$\omega_{z}=\frac{v}{R}=\frac{q}{m} * B_{z} \quad \begin{aligned} & \text { the cyclotron (rf-) frequency } \\ & \text { is independent of the momentum }\end{aligned}$
$r f$-frequency $=h$ * revolution frequency, $\quad h=$ "harmonic number"

Cyclotron:

exact equation for revolution frequency:
$\omega_{z}=\frac{v}{R}=\frac{q}{\gamma * m} * B_{z}$
1.) if $v \ll c \Rightarrow \gamma \cong 1$
2.) γ increases with the energy

$$
\Rightarrow \text { no exact synchronism }
$$

Cyclotron SPIRAL at GANIL

$$
\omega_{s}(t)=\omega_{r f}(t)=\frac{q}{\gamma(t) \cdot m_{0}} B
$$

keep the synchronisation condition by varying the rf frequency

Fixed target experiments:

high event rate easy track identification asymmetric detector limited energy reach

Collider experiments:

$$
E=m c^{2}
$$

Z_{0} boson discovery at the UA2 experiment (CERN).
The Z_{0} boson decays
into a $\mathrm{e}+\mathrm{e}-$ pair, shown as white dashed lines.

Particle Density in matter

$\underset{H}{ }$

Atomic Distance in Hydrogen Molecule

$$
\begin{array}{ll}
& R_{B} \approx 0.5 A \\
\text { in solids } / \text { fluids } & \lambda \approx 1 \ldots 3 A \\
\text { in gases } & \lambda \approx 35 A=3.5 \mathrm{~nm}
\end{array}
$$

Particle Distance in Accelerators: $\quad \lambda \approx 600 \mathrm{~nm}$ (Arc) ... 300nm (IP LEP) $=3000 \AA$

Problem: Our particles are VERY small !!

Overall cross section of the Higgs:

$$
1 b=10^{-24} \mathrm{~cm}^{2}=\frac{1}{\text { mio }} \cdot \frac{1}{\text { mio }} \cdot \frac{1}{\text { mio }} \cdot \frac{1}{10000} \mathrm{~mm}^{2} \longrightarrow 1 \mathrm{pb}=10^{-12} \mathrm{~b} \approx Z E R O
$$

The particles are "very small"
The only chance we have: compress the transverse beam size ... at the IP

LHC typical:

$$
\sigma=0.1 \mathrm{~mm} \quad \rightarrow \quad 16 \mu \mathrm{~m}
$$

II.) A Bit of Theory

The big storage rings: „Synchrotrons"

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
$1 \mathrm{AE} \approx 150$ * $10^{6} \mathrm{~km}$
Distance Pluto-Sun $\approx 40 \mathrm{AE}$

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q^{*}(*+\vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
\\
F=q * \underbrace{300 \frac{\mathrm{MV}}{\mathrm{~m}}}_{\begin{array}{l}
\text { equivalent } E \\
\text { electrical field: }
\end{array}}
\end{gathered}
$$

Technical limit for electrical fields:

$$
E \leq 1 \frac{M V}{m}
$$

Pearl of Wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

Lorentz force
centrifugal force

$$
\begin{aligned}
& \boldsymbol{F}_{L}=\boldsymbol{e} \boldsymbol{v} \boldsymbol{B} \\
& \boldsymbol{F}_{\text {centr }}=\frac{\gamma m_{0} v^{2}}{\rho} \\
& \left.\frac{\gamma m_{0} v^{\prime}}{\rho}=\boldsymbol{e}\right\rangle \boldsymbol{B}
\end{aligned}
$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$
\begin{aligned}
\rho=2.8 \mathrm{~km} \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx \mathbf{6 6 \%}
\end{aligned}
$$

$$
B \approx 1 \ldots 8 T
$$

nota bene: $\frac{\Delta B}{B} \approx 10^{-4}$
rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]} \quad$ "normalised bending strength"

2.)Focusing Forces: Hook's law

... keeping the flocs together:
In addition to the pure bending of the beam we have to keep 10^{11} particles close together

And here we borrow the idea from classical mechanics:
The pendulum

there is a restoring force, proportional to the elongation x :

$$
\begin{aligned}
& F=m^{*} a=- \text { const }^{*} x \\
& F=m * \frac{d^{2} x}{d t^{2}}=- \text { const }^{*} x
\end{aligned}
$$

general solution:
free harmonic oscillation

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

this is how grandma's Kuckuck's clock is working!!!

2.)Focusing Forces: Quadrupole Fields

Apply this concept to magnetic forces: we need a Lorentz force that rises as a function of the distance to \qquad the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

```
dipole
```


$$
n=1
$$

$$
n=2
$$

Dipoles: Create a constant field

$$
B_{y}=\text { const }
$$

Quadrupoles: Create a linear increasing magnetic field:

$$
B_{y}=g \cdot x, \quad B_{x}=g \cdot y
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} \operatorname{m} / x^{2}+\frac{1}{3!} n / x^{3}+\ldots
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:
Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR

The Equation of Motion:

$$
x^{\prime \prime}+x \cdot\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
x ' = angle of particle trajectory (wrt ideal path line)
$*$
Equation for the vertical motion:

$$
\begin{aligned}
& \frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
& k \leftrightarrow-k \quad \text { quadrupole field changes sign } \\
& y^{\prime \prime}-k \cdot y=0
\end{aligned}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|}) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} \quad x=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s) \quad M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
\begin{aligned}
& K=0 \\
& x(s)=x_{0}^{\prime} \cdot s \\
& M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
\end{aligned}
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent ,,.. the particle motion in $x \& y$ is uncoupled"

Ok ... ok ... it's a bit complicated and cosh and sinh and all that is a pain. BUT ... compare ...

Weak Focusing / Strong Focusing

weak focusing term $=1 / \rho^{2}$

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+\nless k\right)=0
$$

Problem: the higher the energy, the larger the machine

The last weak focusing high energy machine ... BEVATRON
\rightarrow large apertures needed
\rightarrow very expensive magnets

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

$$
\begin{gathered}
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} .} \\
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s\right) *\binom{x}{x^{\prime}}_{s 1}
\end{gathered}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ,
typical values in a strong foc. machine:

... just as Big Ben

... and just as any harmonic pendulum

LHC Operation: Beam Commissioning

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"

"Once more unto the breach, dear friends, once more" (W. Shakespeare, Henry 5)
"Do they actually drop ?"
Answer: No

Question: what will happen, if the particle performs a second turn?
... or a third one or ... 10^{10} turns $\quad \sigma=\sqrt{\varepsilon \beta}$

19th century:

Ludwig van Beethoven: „Mondschein Sonate"

Sonate Nr. 14 in cis-Moll (op. 27/II, 1801)

Astronomer Hill:
differential equation for motions with periodic focusing properties „Hill's equation"

Example: particle motion with periodic coefficient
equation of motion:

$$
x^{\prime \prime}(s)-k(s) x(s)=0
$$

restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function
we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

Emittance of the Particle Ensemble:

$$
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\Psi(s)+\phi) \quad \hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

$\underset{\text { Particle Distribution: }}{\stackrel{\text { Gauß }}{ }} \quad \rho(x)=\frac{\boldsymbol{N} \cdot \boldsymbol{e}}{\sqrt{2 \pi} \sigma_{x}} \cdot \boldsymbol{e}^{-\frac{1}{2} \frac{x^{2}}{\sigma_{x}{ }^{2}}}$
particle at distance 1σ from centre
$\leftrightarrow 68.3 \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch

LHC:

$$
\begin{aligned}
& \beta=180 \mathrm{~m} \\
& \varepsilon=5 * 10^{-10} \mathrm{mrad} \\
& \sigma=\sqrt{\varepsilon * \beta}=\sqrt{5 * 10^{-10} \mathrm{~m} * 180 \mathrm{~m}}=0.3 \mathrm{~mm}
\end{aligned}
$$

aperture requirements: $r_{0}=17 * \sigma$

Beam Emittance and Phase Space Ellipse

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each accelerator element according to matrix formalism and plot x, x^{\prime} at a given position "s" in the phase space diagram

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=\boldsymbol{M}_{\text {turn }} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

A beam of 4 particles - each having a slightly different emittance:

5.) Luminosity

Ereignis Rate:"Physik" pro Sekunde

$$
R=L \cdot \Sigma_{\text {react }}
$$

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\beta_{x, y}=0.55 \mathrm{~m} & f_{0}=11.245 \mathrm{kHz} \\
\varepsilon_{x, y}=5 * 10^{-10} \mathrm{rad} \boldsymbol{m} & \boldsymbol{n}_{b}=2808 \\
\sigma_{x, y}=17 \mu \boldsymbol{m} & \\
L=\frac{1}{4 \pi \boldsymbol{e}^{2} \boldsymbol{f}_{0} \boldsymbol{n}_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{\boldsymbol{p} 2}}{\sigma_{x} \sigma_{y}}
\end{array}
$$

$$
\boldsymbol{I}_{p}=584 \boldsymbol{m} \boldsymbol{A}
$$

$$
\boldsymbol{L}=1.0 * 10^{34} \mathrm{l} / \mathrm{cm}^{2} \boldsymbol{s}
$$

beam sizes in the order of my cat's hair !!

The LHC Mini-Beta-Insertions

mini β optics

... clearly there is an
... unfortunately ... in general high energy detectors that are installed in that drift spaces

The Beta Function: Lattice Design \& Beam Ontics

The beta function determines the maximum amplitude a single particle trajectory can reach at a given position in the ring.
It is determined by the focusing properties of the lattice and follows the periodicity of the machine.

LIT mimt एeta optics at 7000 GeV

Mini-Beta-Insertions in phase space

A mini- β insertion is always a kind of special symmetric drift space.
\rightarrow greetings from Liouville
the smaller the beam size the larger the bam divergence

III. The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring:

B. Salvant
N. Biancacci

A real (!) Particle Accelerator

$$
\begin{aligned}
& E=10^{20} \mathrm{eV} \\
& \rightarrow \quad 100^{\star} 1 \mathrm{Mio} \text { *LHC }
\end{aligned}
$$

The Acceleration \& "Phase Focusing"

$\Delta p / p \neq 0$ below transition

```
ideal particle •
particle with }\Deltap/p>0 • faste
particle with }\Deltap/p<0. slower
```


Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"
oscillation frequency: $f_{s}=f_{\text {rev }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \quad \approx$ some Hz
... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

... some when the particles do not get faster anymore
.... but heavier !

The Acceleration above transition

ideal particle •
particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0$ • lighter

Focussing effect in the longitudinal direction
keeping the particles close together ... forming a"bunch"
... and how do we accelerate now ???
with the dipole magnets!

The RF system: IR4

Bunch length (4 0)	ns	1.06
Energy spread (2б)	10-3	0.22
Synchr. rad. loss/ turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	$\begin{aligned} & \mathrm{MH} \\ & \mathrm{z} \end{aligned}$	400
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron frequency	Hz	23.0

```
1.) Where are we?
* Standard Model of HEP
* Higgs discovery
```


And still...
 The LHC Performance in Run 1

Momentum at collision
Luminosity
Protons per bunch
Number of bunches/beam
Nominal bunch spacing
beta *
rms beam size IP

Design 2012
$7 \mathrm{TeV} / \mathrm{c} \quad 4 \mathrm{TeV} / \mathrm{c}$
$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
1.15×10^{11}
2808
25 ns
55 cm
$17 \mu m$
$20 \mu m$

The High light of the year

During collider run we had in Run 1 ...
1400 bunches circulating, with 800 Mio proton collisions per second in the experiments and collected only 450 Higgs particles in three years.
... and why all that??
High Light of the HEP-Year 2012 / 13 naturally the HIGGS

ATLAS event display: Higgs => two electrons \& two muons

$$
E=m_{0} c^{2}=m_{e 1}+m_{e 2}+m_{\mu 1}+m_{\mu^{2}}=125.4 \mathrm{GeV}
$$

What's next ???
Dark Matter \& Dark Energy
Physics beyond the Standard Model

PRC96-01a • ST Scl OPO • January 15, $1996 \cdot$ R. Williams (ST Scl), NASA

Reconstruction of Dark Matter distribution based on observations

Budget: Dark Matter: 26 \% Dark Energy: 70 \% Anything else (including us) 4 \%

Booooooom

LHC Operation:

Machine Protection \& Safety

Energy stored in magnet system	10	GJ
Energy stored in one main dipole circuit	1.1	GJ
Energy stored in one beam	362	MJ

$2 \cdot 10^{12}$	$4 \cdot 10^{12}$	$8 \cdot 10^{12}$	$6 \cdot 10^{12}$	450 GeV p Strahl

LHC Aperture and Collimation

LHC Operation:

Machine Protection \& Safety

... Komponenten des Machine Protection Systems:

beam loss monitors

QPS

permit server
orbit control
power supply control

collimators

online on beam check of all (?)
hardware components a fast dump the gaussian beam profile

[^0]
LHC Operation: Machine Protection \& Safety

What will happen in case of Hardware Failure

Phase space deformation in case of failure of RQ4.LR7
(A. Gómez)

Short Summary of the studies:
quench in sc. arc dipoles: $\tau_{\text {loss }}=20-30 \mathrm{~ms}$
BLM system reacts in time, QPS is not fast enough
quench in sc. arc quadrupoles: $\tau_{\text {loss }}=200 \mathrm{~ms}$
$B L M \& Q P S$ react in time
failure of nc. quadrupoles: $\tau_{\text {det }}=6 \mathrm{~ms}$
$\tau_{\text {damage }}=6.4 \mathrm{~ms}$
\rightarrow FMCM installed
failure of nc. dipole:
$\tau_{\text {damage }}=2 \mathrm{~ms}$

Energy stored in the magnets:

quench

If not fast and safe ...

Quench in a magnet

During magnet test campaign, the 7 MJ stored in one magnet were released into one spot of the coil (inter-turn short)

Quench in a bus bar (19 Sep 2008)

Electrical arc between C24 and Q24

LHC Operation:

Dump System
for painting
the beam

Beam dump block

Physics Beyond the Standard Model (BSM)

Example: Dark Matter

The outer region of galaxies rotate faster than expected from visible matter

Corbelli \& Salucci (2000); Bergstrom (2000)

Dark matter would explain this
Other observations exist ... (grav. lens effects) but all through gravity

What is it?

$$
\begin{aligned}
\frac{m N}{r} & =\frac{m^{*} M * G}{r^{2}} \\
v_{\text {circ }} & =\sqrt{\frac{M(r)^{*} G}{r}}
\end{aligned}
$$

[^0]: D stan Stop \square Save \square Continuous Saving

