

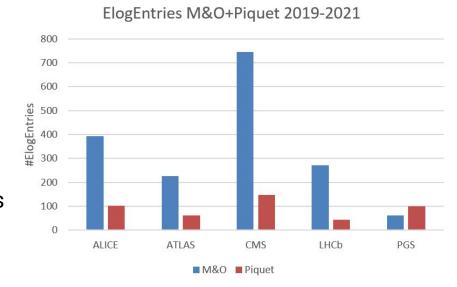
Gas Systems Operation & Development

Mara Corbetta on behalf of the Gas Team

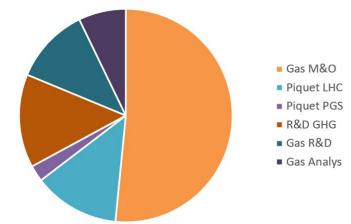
CERN

OUTLINE

- Gas System Project
- LHC Gas Systems
 - Maintenance & Operation Improvements
 - LS2 R&D and Upgrades
 - New LHC Gas Systems
- New Non-LHC Gas Systems
- Greenhouse Gases Reduction Strategies
 - Optimization of Current Technologies
 - Gas Recuperation Systems
 - Alternative Gases
- Conclusion


Gas System Project

M&O of > 30 Gas Systems


- Daily operation monitoring
- Modules maintenance
- Stand by duty (piquet),
 ~ 150 interventions per year in LS2
 systems in maintenance, unstable status
- Gas systems upgrades
- Gas quality monitoring
- Implementation of new Gas Systems

Gas Systems R&D

- LHC systems performance optimization
- Greenhouse gases reduction strategies
- Gas systems long term R&D (Lab/GIF++)
- Gas analysis techniques

CERN EP-DT Detector Technologies

M&O Improvements

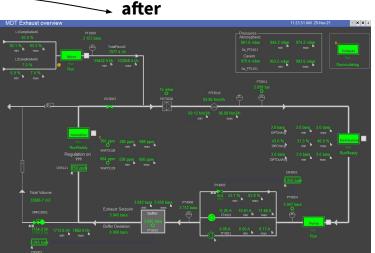
LS2 Maintenance and Upgrades

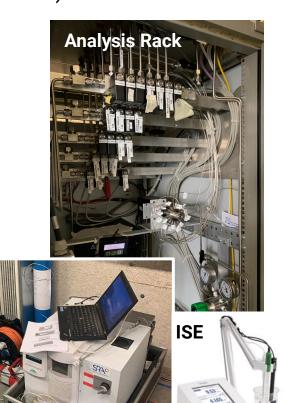
- Modules maintenance:
 - ~300 modules performed, procedures worksheets
- Components: ~ 100 MFC calibration,
 - ~ 400 safety valves calibration,
 - ~ 30 low pressure buffer re-validation,
 - ~1000 flowcells installation/re-calibration...
- New generation PLC (with BE-ICS team)
 - ~20 new PLC + Software new/upgraded

PFC: New layout
Two profibus branches SG and US+UX

MIXER MAINTENANCE PROCEDURE Complete the form and print it at the end								
SYSTEM: ALICE MTR			DATE: 25/06/20			OPERATOR: Louis-Philippe De Menezes, Leonardo Nesti		
Mixer in RUN system ON								
WHAT	DESCRIPTION	51	TATUS	RESULT		ACTION UST	Notes	
LEDs check	Press the button in the mixer chassis and check if the leds are ok	4	Done	GR Problem		Ok, go ahead with next step		
Check Pressure Reducers	Check PI-1X03 reading and compare their value with the corresponding PT-1X03 reading on WinCCOA, Is error less than 20%?	4	Done	Ok Problem		Take note of the two readings. If possible, set the corresponding PCV to zero and see which one doesn't read zero	C2H2F4: PI-1103: 3.7barg - PT-1103: 3.4barg (21%)IC4H10: PI-1203: 2.3barg - PT-1203: 1.9barg (17%)SF6: PI-1303: 2.4barg - PT-1303 3barg (20%)	
Unes pressure	Check if the pressure of each line is equal to the DMFC calibration pressure (indicated the device).		Done	□ OA Problem Solved		Great! Go Ahead with the procedure		
	Compare PCV Tescom gauge pressure with supply pressure on the wall panel for each line: regulator pressure should be 0.3-0.5 bar lower than network pressure	Œ	Done	☐ Ok ☐ Problem ☐ Solved		Ok, next step		
	Check that pressure master MFC PI-1103 is lower than pressure slaves MFCs	4	Done	DQR Problem Solved		Great! Go Ahead with the procedure		
	Make sure that the smallest concentration line has the highest pressure	Œ	Done	☐ Problem ☐ Salved		Great! Go Ahead with the procedure		
Read PI-1009 pressure and ompare its value with the PT- 1009 reading on WinCCOA	2-3 gauge divisions difference acceptable	4	Done	r Ok		Great I Go Ahead with the procedure		
Check PICV-1502 setting (which is pressurizing the Zimmeri PCV-1007)	If the system is in: - recirculating mode: ~ 200mbar below PT1009 reading pressure - open mode: ~ 600 mbar	4	Done	Dis Problem Solved			Not applicable	
Check YV-1008 bypass is		n	Done	rOk Problem		Great! Go Ahead with the procedure		

M&O Improvements


Gas Systems Monitoring


- Implemented weekly checklist to monitor most important parameters
- Gas System general **overview page** improved (operational 2022)
- Implemented warning system, to notify potential issues

Gas Quality Monitoring

- x8 IR modules (iC₄H₁₀, CO₂, CF₄), \sim 30 H₂O + O₂ analyzers
- x5 Fixed + x2 Portable micro Gas Chromatographs
- > 10 ISE Fluoride Electrode Stations

EP-DT Detector Technologies

LS2 R&D and Upgrades

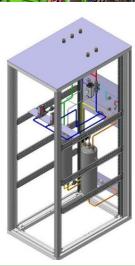
Consolidation and upgrades performed on ~15 LHC Gas Systems

CMS

- RPC Automatic regulation valves
- RPC Dummy chambers installation
- DT Analysis module upgrade (ongoing)

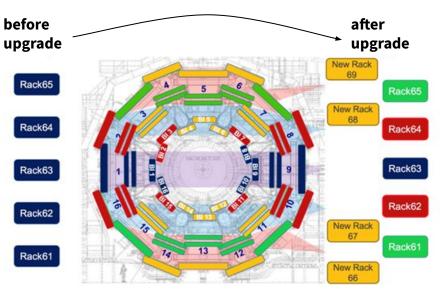
ATLAS

- RPC New distribution racks
- **RPC, MTR** Dummy chamber installation
- MDT Pump and Humidifier upgrade


ALICE

- CPV New humidifier module
- **TPC** Gas system clean room
- **TRD** Software Upgrade for Xenon recuperation

... & more



EP-DT Detector Technologies

LS2 R&D and Upgrades

e.g.: ATLAS RPC New distribution racks

- x4 new additional distribution modules designed with 3D models before realization
- New distribution layout configuration (from 5 to 9 levels)
 to decrease hydrostatic pressure difference rack-chambers
- Additional channels needed for detector upgrade
 + support to TC team for piping installation

EP-DT Detector Technologies

New LHC Gas Systems

CMS GEM

- New full gas system (modules/PLC/software)
- Mixer with 2/3 components (Ar, CO₂, spare)
- x6 Distribution racks in UX (4 GE + 2 ME0)
- Filters installed before distribution

ATLAS MicroMegas

- New dedicated PLC + WinCCOA software
- ATEX mixer, 3 components: Ar, CO₂, iC₄H₁₀
- Analysis module for iC₄H₁₀ + H₂O monitoring
- Distribution from upgraded old CSC modules

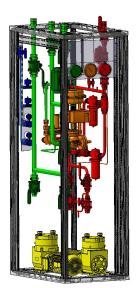
LHCb Scintillating Fibers (SciFi) + Upstream Tracker (UT)

- SciFi read out by SiPM detectors, at low temperature
- Dry air (dew point -70° C) flushing to keep low humidity
- SGX+UX PLC and gas supply + 2 distribution racks
- UT flushing system construction ongoing

New Non-LHC Gas Systems

CERN

EP-DT
Detector Technologies

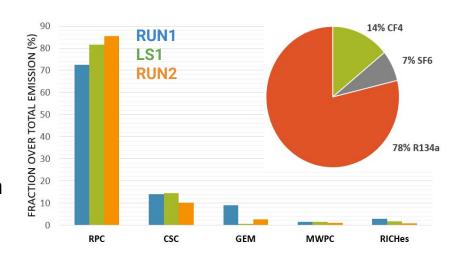

- Full design and construction of new modules
- Removal and recuperation of old modules
- Large need of resources, delivery March 2022

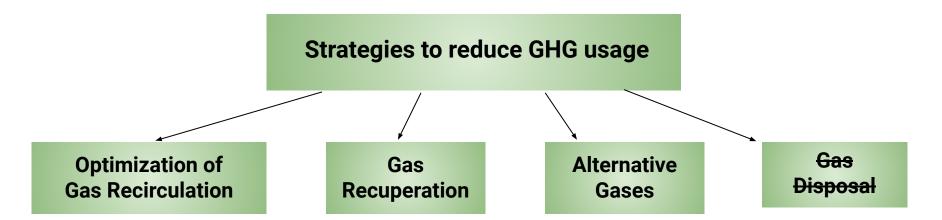
T2K-ND280 neutrino TPC:

- 3D design of modules before construction
- Commissioning @CERN completed by 2021
- Will be shipped in Japan, operational at J-parc in 2022

NA61/SHINE TOF-RPC

- 3D design of modules before construction
- Gas System running since Sept 2021




GHG Reduction Strategies

CERN is taking steps to lower consumption of GHG gases used in LHC Experiments
GHG = high Global Warming Potential
(in gas detectors: R134a, CF₄, SF₆,...)

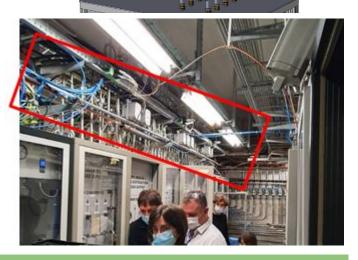
Use of GHG is discouraged by European Union

- GHG cost already started to increase
- some will be phased out by 2030, lower availability on the market

FP-DT **Detector Technologies**

GHG Reduction Strategies

Optimization of Current Technologies Example


CMS RPC automatic regulation valves to improve operation with gas recirculation by minimizing changes in chamber pressure (lower risk of new leaks)

- More than 20 valves tested: selected ECONEX
- Tests + simulation performed for valve configuration
 - → custom 3D printed valve seat to adapt to flow
- x30 valves installed on the return of each distribution rack
- Operational since mid-November, very good performance in keeping Chamber Pressure stable

without Econex RPC Chamber Pressure with Econex

GHG Reduction Strategies

Gas Recuperation Systems

Gas recuperation plants operational on LHC Gas Systems:

6 in stable operation + 1 prototype

LHCb RICH2 CF_4 Recuperation (CO_2/CF_4)

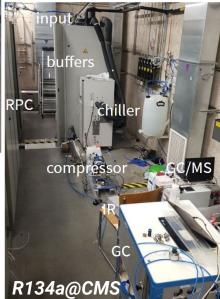
- New system commissioned
- Efficiency 60%, 30 m³ recuperated

CMS CSC CF₄ Recuperation $(Ar/CO_2/CF_4)$

- Average efficiency > 60%
- -45% GHG emission & gas cost (Run2)
- CF₄ re-injected into system by mixer

RPC R134a Prototype (R134a/i C_4H_{10}/SF_6)

- Prototype operational since 2018
- High separation efficiency (80-90%)
- Good quality R134a recuperated (~ 100 ppm Air)
- Further tests needed to be ready for usage on experiments


Adsorbers

CMS CSC

Membrane

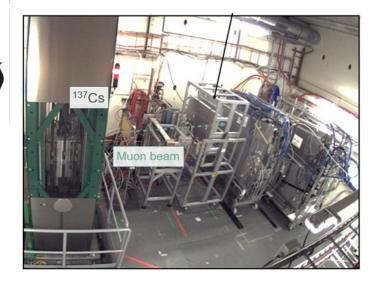
EP-DT Detector Technologies

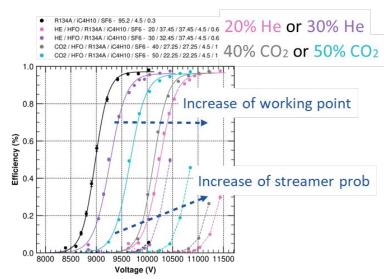
GHG Reduction Strategies

Alternative Gases

RPCs detector characterization:

- R-134a alternative gases:
 HFO-1234ze, R-1224yd
- SF₆ alternative gases:
 Novec 5110[™], Novec 4710[™], C₄F₈O, CF₃I
- Characterization of additional gases: CO₂, He
- Studies in laboratory and GIF++


HFO as substitute of R134a


- More than 50 eco-friendly gas mixtures tested
- HFO cannot directly replace R134a
- Compromise: use both HFO and R134a
 HFO reduces GWP, R134a reduces charge
- Participation in Eco-Gas Collaboration funded by AIDA

Performance

EP-DT Detector Technologies

EP-DT Detector Technologies

Conclusions

LHC Gas Systems M&O

- > 2000 intervention LS2 for maintenance, operation, stand-by duty, r&d..
- Maintenance of Gas Modules,
 PLC + Software, gas monitoring
- Gas Systems upgrades (e.g. ATL RPC)

New Gas systems

- LHC
 CMS GEM (2019), ATLAS MM (Nov 2021),
 LHCb SciFi (2020), LHCb UT (ongoing)
- non-LHC
 CLOUD (2022), NA61 (2021),
 T2k-ND280 (delivery Japan 2022)

GHG Reduction Strategies

- Optimization of current technologies for gas recirculation (e.g. CMS RPC)
- Improvement of existing Gas Recuperation systems (e.g. CMS CSC, LHCb RI2) and development of new plants (RPC mixture prototype)
- R&D on Eco-Friendly gas mixtures (>50 mix tested)

Big thanks to all Trainee, Students, Doct, FSU, Fellow, Staff!!

Thank you for your attention