Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA [1

JUNO

João Pedro A. M. de André¹*, Nhan Chau², Marcos Dracos¹, Leonidas N. Kalousis¹, Antoine Kouchner², Véronique Van Elewyck² for the KM3NeT Collaboration and members of the JUNO Collaboration

¹IPHC CNRS/IN2P3, Strasbourg, France

²APC CNRS/IN2P3, Paris, France

*jpandre@iphc.cnrs.fr

KM3NeT/ORCA overview [2, KM3Net talk]

- KM3NeT located in Mediterranean sea
 - Water Cherenkov detector
- ORCA: "low-energy" array
 - GeV energy atmospheric neutrinos
 - NMO obtained from Earth matter effects
- Neutrino sample divided in 3 PID classes
 - Frack-like (ν_{μ} CC) to Shower-like
- Detector being installed gradually until 2025

JUNO overview [3, 4]

- JUNO detector located in south east of China
- 53 km from Yangjiang and Taishan Nuclear Power Plants (NPP)
 - Detect reactor $\bar{\nu}_e$ at few MeV energy range via IBD
 - NMO from fast oscillations, not relying in matter effects
 - Update to JUNO NMO study presented at Neutrino 2022 [5]
 - ★ This work still uses previous JUNO performance values!
- JUNO energy resolution: $3\%/\sqrt{E/MeV}$
 - Energy resolution critical for NMO determination

ORCA systematics

Table: Baseline and optimistic scenarios for the tr	reatment of systemation	cs considered in the ORCA analysis.
Parameter	Baseline scenario	Optimistic scenario
Flux spectral index	free	
Flux $ u_e/ar u_e$ ratio	7% prior	
Flux $ u_{\mu}/ar{ u}_{\mu}$ ratio	5% prior	
Flux $(u_e + ar u_e)/(u_\mu + ar u_\mu)$ ratio	2% prior	
NC normalization	10% prior	
Detector energy scale	5% prior	×
PID-class norm. factors	free	×
Effective area scale	×	10% prior
Flux energy scale	×	10% prior

• Baseline scenario corresponds to systematics used in other KM3NeT/ORCA papers

• Optimistic scenario matches best parameters from Ref. [6]

Combined analysis

- Systematic errors from JUNO and ORCA not correlated
 - Different neutrino sources and energy
 - Different detection medium and methods
- \Rightarrow Only oscillation parameters "shared" between JUNO and ORCA
- However, not all oscillation parameters are shared...
 - ▶ δ_{CP} and θ_{23} → no impact on JUNO
 - Δm_{21}^2 and $\theta_{12} \rightarrow$ negligible impact on ORCA
 - Δm_{31}^2 and $\theta_{13} \rightarrow$ both JUNO and ORCA sensitive to them
 - * However, worse precision on θ_{13} than from current experiments

• Data taking to start in 2023

JUNO in this study

- JUNO modeling following Ref. [3]
 - Syst. error on reactor spectrum, detector response
 - Backgrounds rate, shape, and uncertainties
 - Detector mass, distance and power of NPPs
- Only 2 reactor cores @ Taishan considered
 - ▶ Ref. [3] considered 4 cores @ Taishan
 - 2 cores @ Taisahn already build
 - However, plan for adding last 2 cores uncertain
- Nominal $3\%/\sqrt{E/MeV}$ energy resolution assumed
 - From JUNO studies, nominal resolution achievable
 - Impact of significantly worse resolution studied

Figure: Expected event distribution for 6 years of data with JUNO. True NO and oscillation parameters from Ref. [7] are assumed.

- \Rightarrow Prior added on θ_{13} from Ref. [7]
- Perform grid scan on Δm_{31}^2 and θ_{13}
 - Asimov data set used to compute χ^2
 - ▶ In each point, compute separately χ^2 from JUNO and ORCA
 - χ^2 separately profiled over systematic errors and other oscillation parameters

 $\chi^{2}(\Delta m_{31}^{2},\theta_{13}) = \chi^{2}_{\mathsf{JUNO}}(\Delta m_{31}^{2},\theta_{13}) + \chi^{2}_{\mathsf{ORCA}}(\Delta m_{31}^{2},\theta_{13}) + \frac{(\sin^{2}\theta_{13} - \sin^{2}\theta_{13}^{\mathsf{GF}})^{2}}{2}$

Figure: $\Delta \chi^2$ profile for 6 years of data taking.

Conclusions

Dependency on JUNO energy resolution and number of NPPs @ 53 km for JUNO

• Combination power relies on tension between best-fit of Δm_{31}^2 in "wrong ordering" between JUNO and ORCA

• Different systematic errors impact in combined analysis

• For current NO best fit, reach 5σ NMO determination in 2 years • NMO determination 05σ with 6 years of data for any oscillation parameter

References

[1] S. Aiello *et al.* [KM3NeT and JUNO members], JHEP **03** (2022), 055 [2108.06293]. [2] S. Adrian-Martinez et al. [KM3NeT Collaboration], J. Phys. G 43 (2016) no.8, 084001 [1601.07459]. [3] F. An et al. [JUNO Collaboration], J. Phys. G 43 (2016) no.3, 030401 [1507.05613]. [4] A. Abusleme et al. [JUNO], Prog. Part. Nucl. Phys. **123** (2022), 103927 [2104.02565]. [5] J. Zhang et al. [JUNO], Neutrino 2022, DOI: 10.5281/zenodo.6775075. [6] M. G. Aartsen et al. [IceCube-Gen2], Phys. Rev. D 101 (2020) no.3, 032006 [1911.06745]. [7] I. Esteban *et al.* JHEP **01** (2019), 106 [1811.05487].

Figure: NMO sensitivity as a function of time with different energy resolution for JUNO.

Related presentation @RICH

[KM3Net talk] E. Drakopoulou et al. [KM3NeT Collaboration] "KM3NeT: Status and Physics Results"

Figure: NMO sensitivity as a function of time with different number of NPP at 53 km from JUNO.