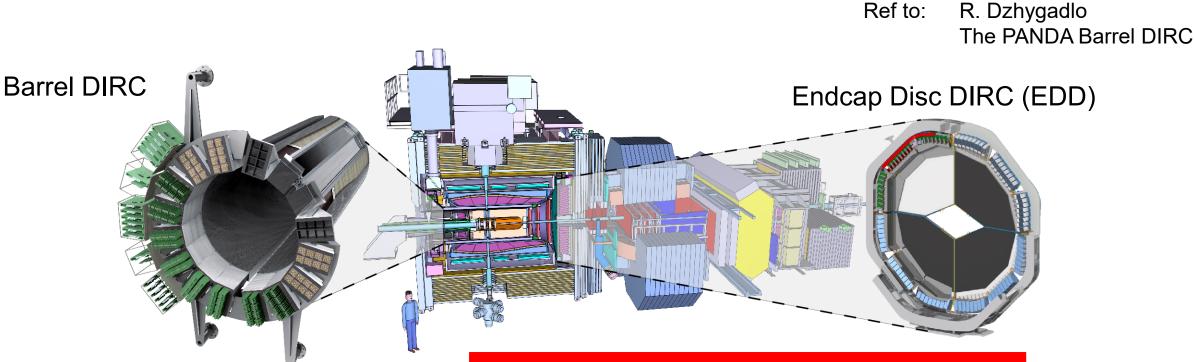
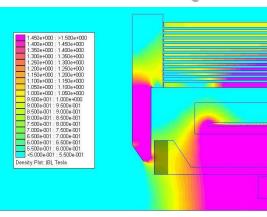
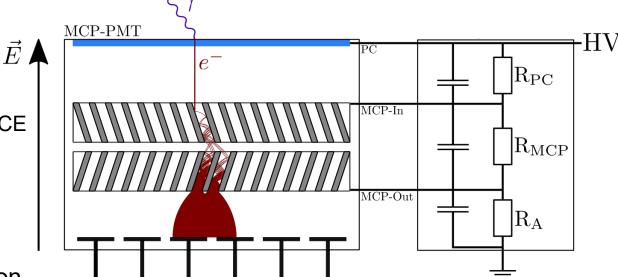
Performance of the most recent microchannel-plate PMTs for the PANDA DIRC Detectors at FAIR

ERLANGEN CENTRE FOR ASTROPARTICLE


Steffen Krauss, M. Böhm, K. Gumbert, A. Lehmann, D. Miehling & the PANDA collaboration


RICH2022, Sept. 15th, 2022

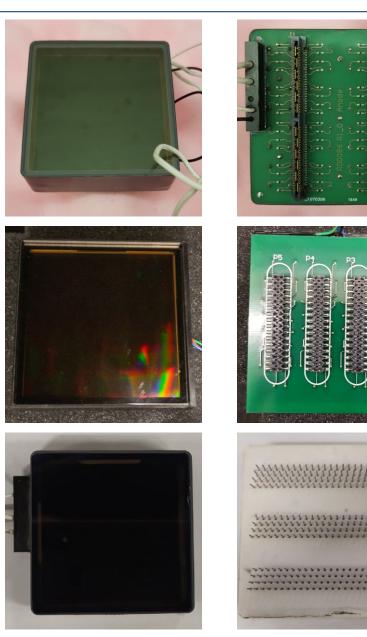
The PANDA detector at FAIR/GSI

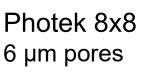

- High p p annihilation rate (average 20 MHz)
- Focal planes of both DIRC
 detectors are inside magnetic field
- Sensors need to operate at high magnetic field (~1 T)

RICH2022 - September 15th, 2022 - Steffen Krauss

MCP-PMTs for the DIRC detectors

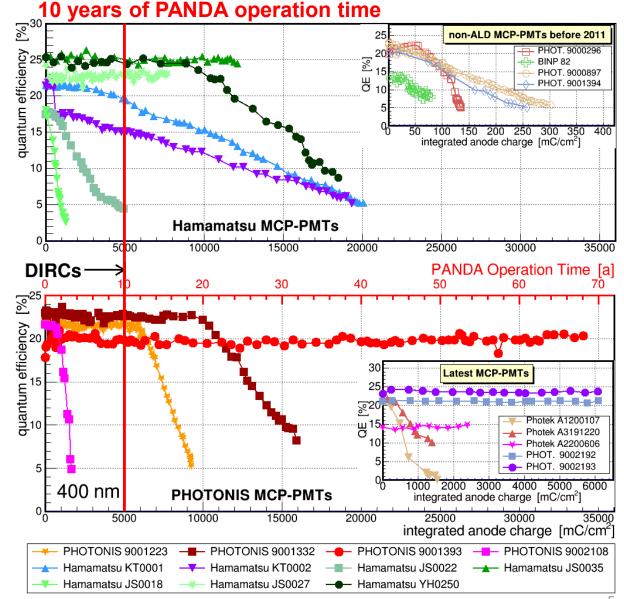
FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTL FAKULTÄT


- Sensor requirements:
 - Immunity to magnetic fields >1 Tesla
 - High quantum efficiency (QE) and collection efficiency (CE) required
 - important for experiment: detective QE (DQE) = QE \cdot CE
 - High rate capability (<1 MHz/cm²)
 - Fast time response (σ_{RMS} ~100 ps)
 - Low dark count rate (<1 kHz/cm²)
 - Photo cathode lifetime of at least 10 years operation
 - High position resolution:
 - Barrel DIRC: ~5x5 mm²
 - Endcap Disc DIRC: 0.5x16 mm²
 - > Microchannel-plate Photomultipliers (MCP-PMTs) only viable option to fulfill all requirements
 - > PMTs of two vendors shown in this talk:
 - Photek (8x8 pix, 6 µm pores)
 - Photonis (8x8 & 3x100 pix, 10 µm pores)


MCP-PMTs shown in this talk

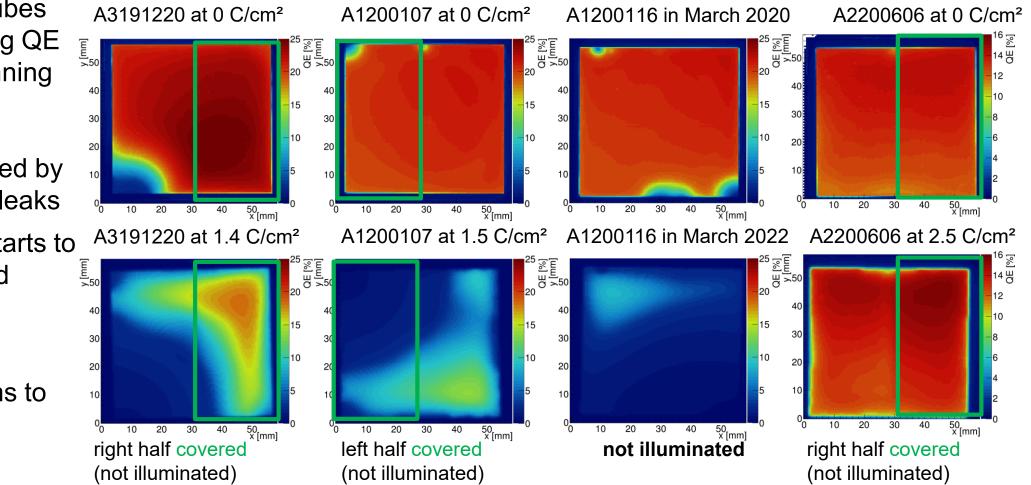
- MCP-PMTs with 8x8 pixels, 2x2 inch² active area
 - Barrel DIRC tubes from tender process (2020)
 - Photonis 9002192
 - Photonis 9002193
 - Photek A1200107
 - Photek A3191220
 - Barrel DIRC serial production tubes (2022)
 - Photonis 9002220 9002224
 - Latest Photek tubes (late 2020)
 - A1200116 Ref: t
 A2200606 J
 - Ref: talk of J. Milnes
- MCP-PMTs with 3x100 pixels, tested for EDD with different internal geometry
 - Photonis 943P541 & 946P541 (2019)
 - Photonis O37P541 & 105P541 (2021)

Photonis 8x8 10 µm pores



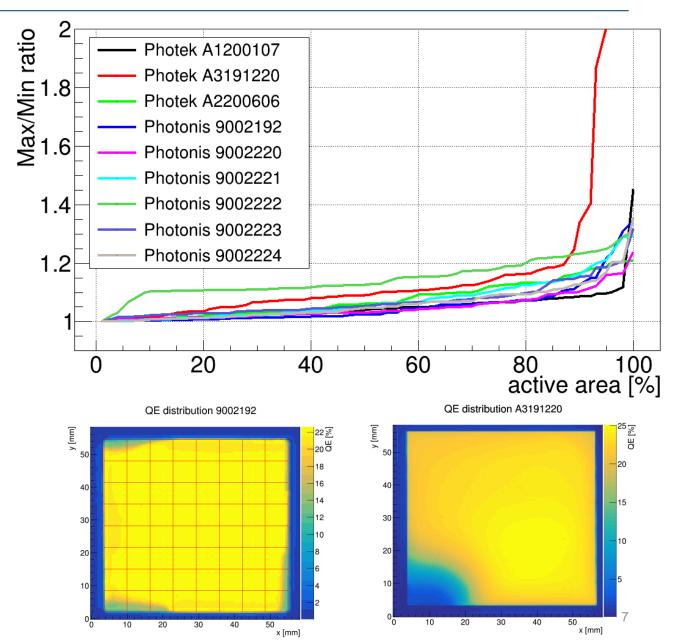
Photonis 3x100 10 µm pores

Status of lifetime measurements


- Required spec: 5 C/cm² IAC (10 years of PANDA) reached by most ALD-coated MCP-PMTs
- Best sensor by far: Photonis 9001393 with two ALD-layers (no QE loss up to 34 C/cm²)
- Photonis 9002108, Photek A1200107 and A3191220 had poor lifetime
- More information on lifetime measurements for Photek MCP-PMTs on next slide
- Photonis 9002192, 9002193 have reached
 6 C/cm² IAC without PC damage or QE loss
- Latest Photek A2200606 has no sign of QE damage up to 2.5 C/cm²

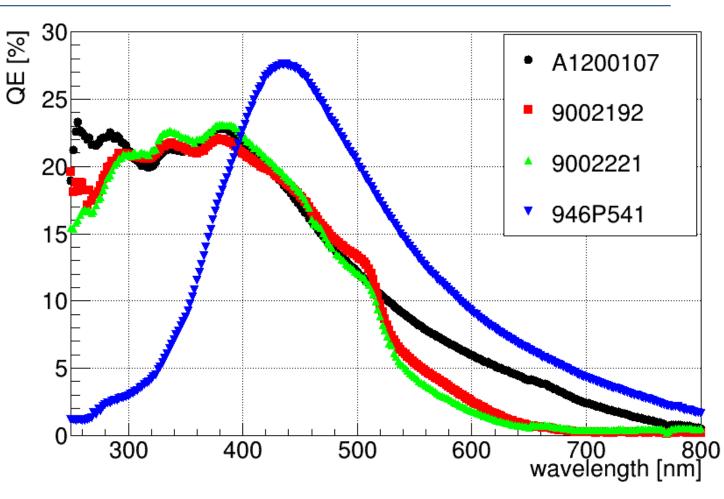
Photek - lifetime issues and improvement

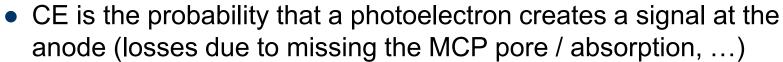
- First Photek tubes had decreasing QE from the beginning even without illumination, probably caused by vacuum microleaks
- QE damage starts to grow from bad spots
- Problem seems to be solved with A2200606

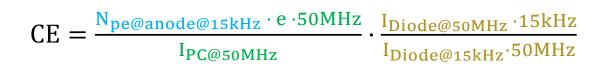


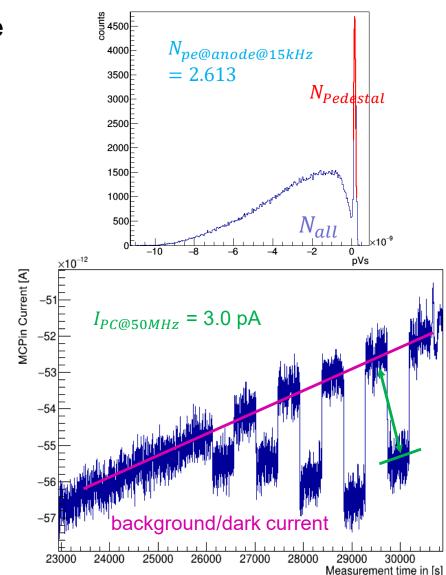
Quantum efficiency (QE)

- **Required spec:** max/min ratio <1.5 over whole active area
- Evaluation of max/min ratio:
 - Divide active area into 8x8 pixels and calculate mean QE of every pixel
 - Mean QE of pixel with max. value divided by mean QE of every other pixel gives max/min ratio
 - Plotted in order from best to worst pixel
- All Photonis tubes fit requirement of QE homogeneity
- Photek A3191220 exceeds limit due to initial microleak which caused QE damage at the corner (as seen on bottom right)


RICH2022 - September 15th, 2022 - Steffen Krauss


QE vs wavelength


- Required spec: peak QE of >18% between 300 400 nm
- QE measured at center pixel
- Peak QE of all 8x8 pixel tubes at about 380 nm
- QE distribution over wavelength for Photonis 946P541 different because of modified photo cathode (blue enhanced)
 → maximum shifted



Collection efficiency (CE) measurement

- Measurement of $CE = N_{pe@anode@15kHz} / N_{pe@PC@15kHz}$
- Numerator is simple: Poissonian statistics of charge spectrum (measured with a Picosecond Laser (PiLas) at 15 kHz and a ND-filter)
- $> N_{pe@anode@15kHz} = -\ln(N_{Pedestal}/N_{all})$
- N_{pe@PC@15kHz} can only be measured indirectly:
 - Measure MCPin current using the QE setup at several high laser frequencies
 - Correct for non-linearities in the intensity vs frequency relation of the laser by using a reference diode

ΓΑΚΙ ΙΙ ΤΑΊ

Dar

CE results

Tube	Photonis XP85112 9001394	Hamamatsu R13266-07- M64 JS0022	Hamamatsu R13266-07- M64-M YH0250	Photonis XP85112 9002108	Photek MAPMT253 A1200116	Photonis XP85112 9002220
Year of production	2013	2014	2017	2018	2020	2022
Properties	non-ALD	ALD, film in front of MCPs	ALD, no film, most recent	ALD, first Hi- CE	ALD	ALD, Hi-CE
CE	(63 ± 6)%	(39 ± 4)%	(65 ± 7)%	(95 ± 9)%	(90 ± 9)%	(95 ± 5)%

- ~65% for former standard Photonis tube 9001394 seems reasonable
- Photonis 9002108 was first Hi-CE tube received and measured
- Photonis 9002192 and 9002193 also contain Hi-CE MCPs and have ~88% CE
- All Photek MCP-PMTs have quite high CE (>75%)
- Ion feedback protection film in Hamamatsu tube significantly reduces CE
- New Photonis tubes 9002220 9002224 reach CE of 80 90%

Gain vs voltage for recent Photonis MCP-PMTs

- Measurement of gain curve:
 - Measure charge spectra for different voltages
 - Fit charge spectra measured with scope
- Measurements with two different voltage dividers taken for each tube
 - 1-10-1: 200 V PC MCPin
 - 4-10-1: 800 V PC MCPin
- All 4-10-1 curves at slightly higher gain than other curves because of higher initial energy of photo electron

Gain = 1.0436e+06

N(p.e.) = 0.17725

Zero = -0.41952

20 30

0 40 50 Charge * 50Ω 1250

1300

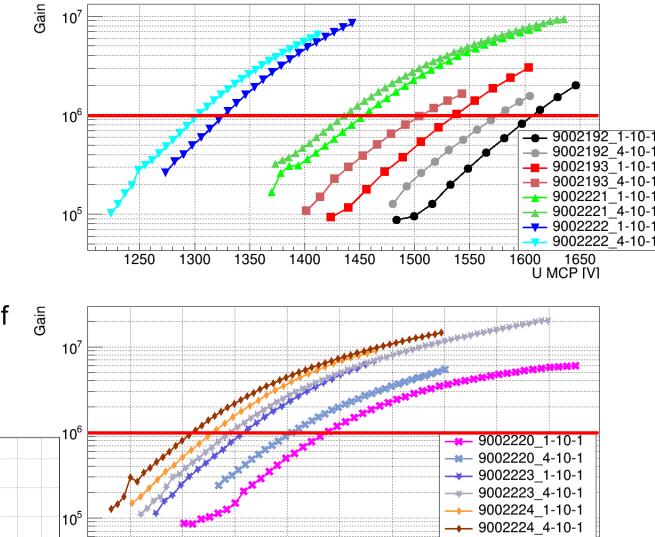
1350

1400

1450

1500

1550

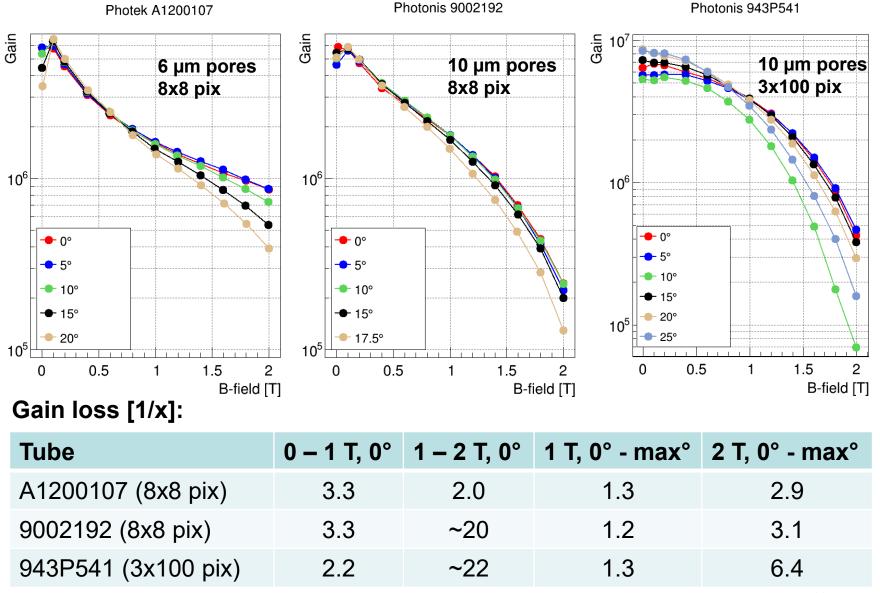

1600

1650 U MCP [V]

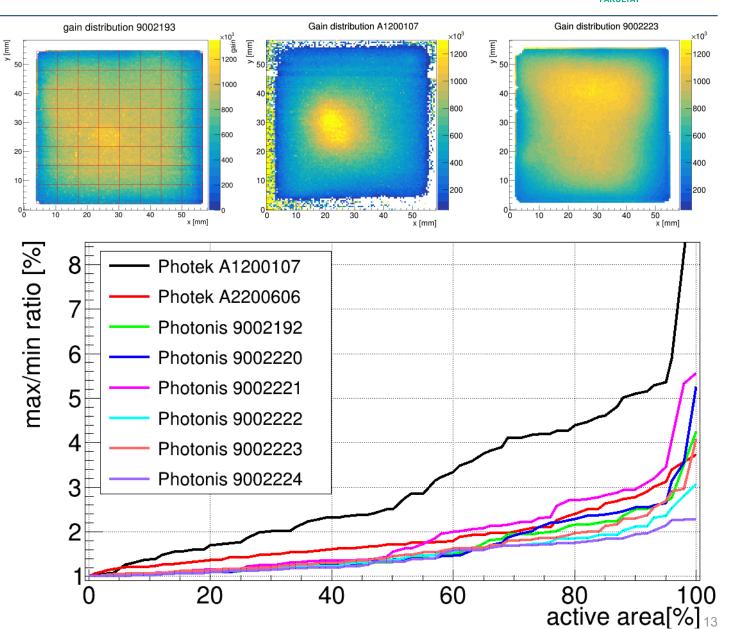
 10^{3}

 10^{2}

- Gain of 10⁶ safely reached by all tubes, for a few most recent ones even > 10⁷
- Maximum applicable MCP voltage for all Photonis tubes: 1800V



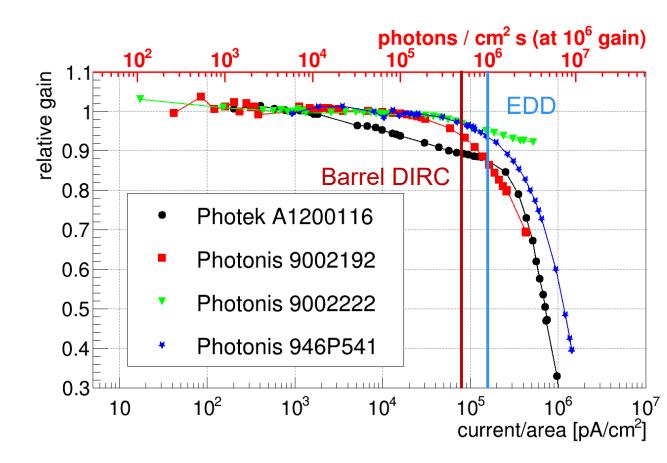
Gain dependency in B-field


- Photek tubes: 6 µm MCPpore diameter
- Photonis tubes: 10 µm MCP-pore diameter
- Similar behaviour of 8x8 pixel tubes up to 1 T, gain loss factor of ~3 for all tubes
- Significantly lower gain loss at higher field strengths for Photek tubes
- Different internal geometry of 8x8 & 3x100 pixel Photonis tubes → different slopes and lower gain loss for fields up to 1 T

Gain homogeneity

- **Required spec**: max/min ratio <3 over whole active area
- All Photonis tubes and latest Photek A2200606 are below max/min ratio of 3 for **at least 90%** of active area
- Overall homogeneity ratio is within specs for Photonis tubes
- Photek A1200107 ratio: ~5.5 at 95% active area
- Photek A1200107 less than 60% below required ratio
- Improved homogeneity for latest Photek A2200606 (below 3 for 90% of active area & below 4 in total)

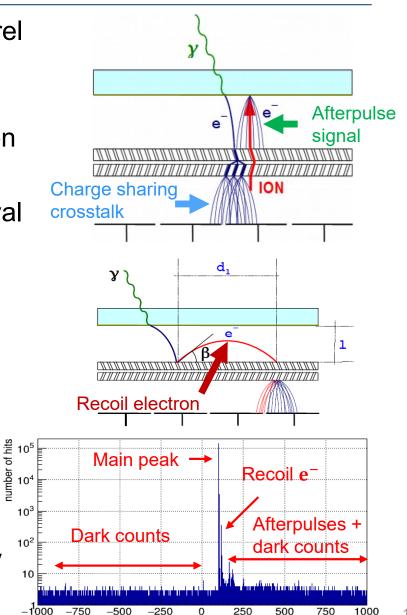
Photonis 9002193 with different voltage dividers, from


 Higher CE of Photonis comes with a 1:10:1 (PC-MCPin:MCPin-MCPout:MCPout-Anode) to 4:10:1 price: more collected recoil electrons \rightarrow worse time resolution (especially 15000 40000 RMS!) **RMS = 290 ps RMS** = 175 ps 30000 • Solution: increase of HV between PC 10000 **σ** = 42 ps stuno 20000 $\sigma = 31 \text{ ps}$ sount and MCPin \rightarrow shift of recoil peak into 1:10:1 2:10:1 the main peak \rightarrow better TTS (σ) and 5000 10000 RMS (-0.5...2 ns) • RMS timing improves by a factor 2 - 30.5 0 0.5 0 Delay [ns] Delay [ns] 30000 stination of the state of the s 80000 Photek A3191220 **RMS** = 131 ps **RMS** = 109 ps souor' sound sound 60000 **RMS** = 199 ps $\sigma = 27 \text{ ps}$ 40000 **σ = 27 ps** $\sigma = 32 \text{ ps}$ 3:10:1 4:10:1 5000 10000 20000 0.5 0 ٥ 0.5 0.5 Delay [ns] Delay [ns] Delay [ns]

RICH2022 – September 15th, 2022 – Steffen Krauss

Rate capability

- Sublinear increase of anode current with increasing light intensity from laser
 → MCP-PMT gain saturates
- Required spec:
 - Barrel DIRC: <20% gain loss
 @ 0.5 MHz photons/cm²
 - EDD: <20% gain loss @ 1 MHz photons/cm²
- All shown tubes reach requirements
- Latest Photonis tubes (9002222) indicate an improved rate capability compared to older ones (9002192)
- Photonis 9002222 reaches about 4 MHz photons/cm² with gain loss <10%



TRB/DiRICH DAQ system

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE

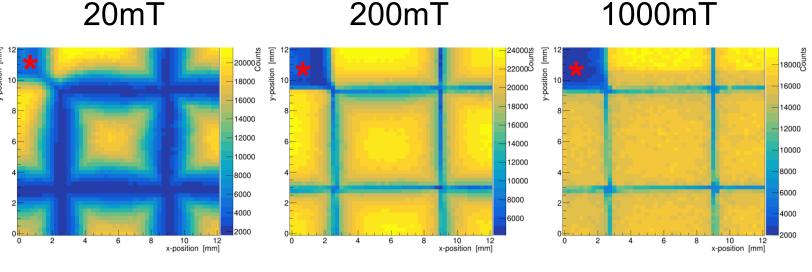
- Multihit capable DAQ system used in HADES and planned for Barrel DIRC applied to simultaneously read out all MCP-PMT channels
- Each channel: TRB/DiRICH system is permanently analysing data stream and buffering time and time-over-threshold (ToT) information for each hit
- After a trigger (laser) (t = 100 ns) all hits within a certain time interval (-10 to +1 µs) are read out and stored
- Main information obtained for each channel with xy-scans:
 - x-, y-position, hit time, ToT, number of hits
- Higher level information deduced (currently):
 - Afterpulse distributions \rightarrow TOF of feedback ions
 - Dark count xy-distributions
 - Charge sharing crosstalk (≥2 hits at same time on neighbouring channels)
 - Recoil electron distributions → back bouncing electrons at MCP entry (spatial information and time delay)

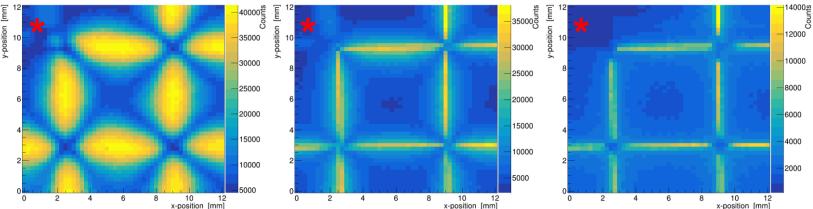
RICH2022 - September 15th, 2022 - Steffen Krauss

16

time [ns]

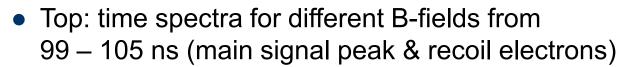
TRB surface scan results - Photonis 9002223

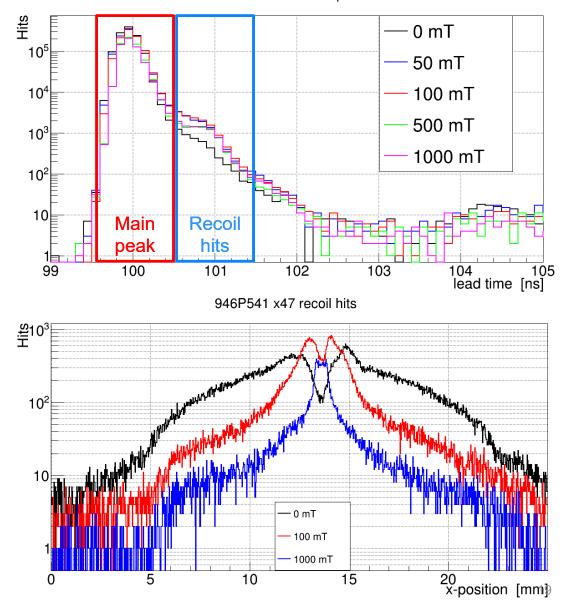

- Scan over whole active area with 0.5 mm step size & 20% single photon peak (spp) threshold
- Pixel map shows low darkcount rate per pixel
- Afterpulse ratio for most pixels below 1%
- σ and RMS time resolution not directly comparable with time resolution shown before because:
 - Combined resolution of tube and DAQ electronics
 - Measured mean of different position at a pixel (runtime difference over pixel size)
- Worse RMS and σ resolution at outer pixel ring
- Mean σ: 92 ps
- Mean RMS: **166 ps**
- AP: 0.74%
- DCR: 104 Hz/pixel (247 Hz/cm²) RICH2022 – September 15th, 2022 – Steffen Krauss


				da	rkcou	unt p	ixel n	nap]						afte	rpuls	sing p	oixel	map]	1.2 🕞
y-pixel	8	49	62	60	68	71	65	61	88		140 [ZH] el [Hz]	8	3 0.90	0.81	0.56	0.61	0.73	0.76	0.53	0.61	<u> </u>
Ż	7	60	88	109	117	106	113	106	153		120 × d		7 0.95	0.83	0.72	0.65	0.73	0.73	0.67	0.74	
	6	66	105	123	119	126	121	102	79	_	100 b	(6 <mark>1.09</mark>	0.82	0.61	0.68	0.72	0.73	0.64	0.62	-0.9 a
	5	79	115	129	135	130	125	86	46	_	80 08	ţ	5 <mark>-1.22</mark>	0.86	0.61	0.67	0.76	0.67	0.61	0.60	-0.8 papilit
	4	88	131	138	141	132	117	83	42	_	dark counts per	4	1.05	0.80	0.63	0.70	0.64	0.70	0.61	0.60	0.7 prod
	3	105	151	136	157	144	130	89	42		-5 40	(3 1.04	0.82	0.62	0.70	0.70	0.66	0.62	0.71	- 1.1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	2	120	133	136	142	140	123	86	42		20	2	2 0.98	0.82	0.69	0.66	0.64	0.69	0.68	0.68	after
	1	122	125	107	129	133	135	61	61		0		1 _0.92	1.01	0.59	0.78	0.60	0.63	0.61	1.17	0.3
		1	2	3	4	5	6	7 x	8 -pixel		0		1	2	3	4	5	6	7 x-	8 pixel	0.2
				C	s time	e pixe	el ma	ар	J		110				rn	ns tin	ne pi	xel m	ap	J	010
y-pixel	8	9 9.3	93.5	92.9	97.0	96.7	96.9	98.9	116.7		110 105 105 105 106 105 100 105 100 105 100 105 100 105 100 105 100 105 100 105 105 105 105 105 105 105 105 105 105	8	3 192	177	191	192	179	175	180	196	210 [sd] -200 [sd] -190 ad
Ż	7	97.6	91.6	89.9	92.2	88.2	90.6	87.6	104.8		105 ja 5 i100 ສ		7 173	147	152	152	147	148	146	176	-200 -200 - 200 -
	6	92.5	90.0	95.6	92.2	84.6	87.3	89.6	104.9		95 e	(6 170	151	154	156	150	149	147	173	
	5	9 5.2	91.2	84.9	88.8	87.2	89.2	88.6	98.1		60 timere	Į	5 179	151	152	154	150	151	147	167	- 180 Series
	4	9 6.2	91.4	87.7	87.0	83.6	85.7	86.8	99.0		85	4	182	152	152	150	150	150	148	171	-160
			05.0	00.1	00.4	86.7	85.4	83.8	93.2			ć	3 182	151	152	150	153	153	150	169	-150
	3	9 3.7	85.0	02.1	80.1	00.7				_	80		_								
		93.7 93.5		81.8	80.1		88.0		95.6		80 75	2	2 188	154	153	154	155	154	150	176	
		-							95.6 107.2		80 75 70	-	2 188 1 218 1 1	154 187	153 193 3	154 198	155 203 5	154 210	150 207	176 205 8	140

Photonis 9002192 charge sharing crosstalk

- Top row 1 hit events plotted
 - <2 mm charge cloud width at 0 Tesla
 - Visible pixel structure
 - For higher B-field strength pixel definition gets sharper due to decreasing charge cloud width
- Bottom row 2 hit events plotted
 - Visible pixel rim structure
 - Charge sharing has less spatial spread with increasing B-field strength
 - Pixel rims get sharper




*Dead DAQ readout channel

<2 mm charge cloud width at 0 Tesla

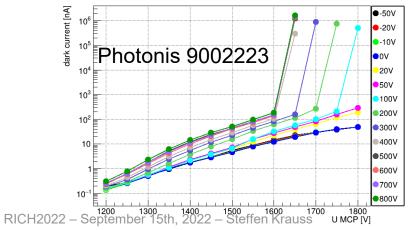
Photonis 946P541 recoil distribution

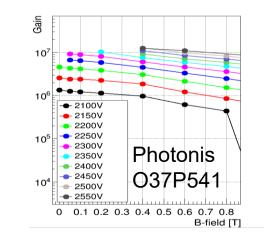
- Only minor changes in time distribution for recoil hits
- Bottom: spatial distribution of recoil hits (hits in time window from 100.6 – 101.5 ns, inside blue box) for varying B-field
- Spatial spread shows strong dependence
 - > >10 mm recoil electron spread at 0 T
 - > At higher fields recoil electrons much closer to pixel
 - Better position resolution

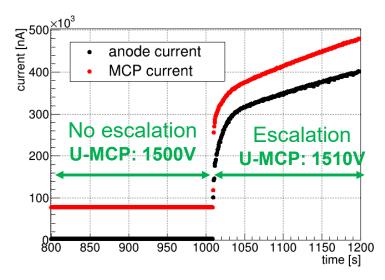
946P541 x47 time spectra

Danda

FRIEDRICH-ALEXANI


UNIVERSITÄT


FAKUI TÄT


"Escalation" behaviour

- B-field measurements showed strange effects ("escalation") when decreasing field to 0 T, first observed in fall 2020
- Start of "escalation" depends gain and/or illumination conditions
- List off effects seen during "escalation":
 - Higher current across the MCPs (factor >3) \rightarrow resistivity drop
 - Seems to have no equilibrium state, steady increase of currents
 - High (dark) count rate and high anode current
 - Smaller signals \rightarrow gain drop
 - photon creation
 - Effects appear to be less serious inside magnetic field
- Escalation behaviour only appears with latest Photonis tubes
 - By optimizing the ALD process Photonis was able to shift the "escalation" starting point to higher gains, but it is not yet completely gone

Reason: photon creation inside the MCP-PMT, can be seen with camera or even bare eyes

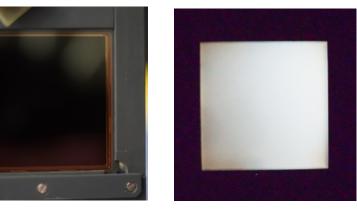


photo of PMT before operation and during escalation mode 20

Overview of other performance parameters

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE FAKULTÄT

Parameter	Required for Barrel DIRC	Photek MA-PMT253 A1200107	Photek MAPMT253 A3191220	Photek MA-PMT253 A2200606	Photonis XP85112 9002192	Photonis XP85112 9002193	Photonis XP85112 9002220	Photonis XP85112 9002223	
dark count rate	<1 kHz/cm ²	165	16	908	32	157	1700	247	
TTS	≤50 ps	40	36	33	26	27	41	Not	
RMS timing precision	<150-200 ps in -0.5+2 ns	215	199	177	109	109	105	Not measured	
rate capability	max 10% gain loss at 0.5 MHz/cm²	0%	0%	Not measurable	8%	7%	10%	4%	
DQE	≥12%	23%	18%		20%	22%	19%	17%	
QE uniformity (max/min)	better than factor 1.5	1.92	8.33	1.21	1.28	1.35	1.23	1.32	
gain uniformity (max/min)	better than factor 3	7.7	12.5	3.1	4.2	3.1	4.8	4.2	

- Lifetime of Photonis 9002192 & 9002193 reached 6 C/cm² (12 years of PANDA) without QE damage, latest Photek A2200606 has reached 2.5 C/cm²
- PANDA Barrel DIRC requirements fulfilled by latest tubes
- Latest Photek A2200606 tube shows significant improvements of QE and gain uniformity and also lifetime
- "Escalation" is a problem which needs to be further investigated
 - Entering of escalation mode starts at higher gains with increasing magnetic fields
 - Production of photons
 - After communication of the effect to Photonis they have optimized the ALD process
 - effect reduced but not completely gone yet
- Mass production and quality assurance measurements of 155 MCP-PMTs for Barrel DIRC have started

GEFORDERT VOM