A novel fast-timing readout chain for LHCb RICH LS3 enhancements and prototype beam tests

Floris Keizer on behalf of the LHCb RICH collaboration

11th International workshop on Ring Imaging Cherenkov Detectors, RICH 2022, 12–16 September, Edinburgh
A time-resolved RICH detector

Promptly emitted Cherenkov photons + focusing mirror geometry = For each track the signal arrives ~ simultaneously

In this presentation, aim to address:

- **How** to make use of this feature to improve the PID.
- **Which** readout technologies and functionality to install during LHC Long Shutdown 3.
- **Prototype** developments and the ongoing test beam campaign.
The LHCb detector layout

RICH 1 (C_4F_{10}) for charged hadron ID from 3 GeV/c (veto mode) to 65 GeV/c.

RICH 2 (CF_4) covering 15 to 100 GeV/c.

At these **relatively high momenta**, the particle time-of-flight differences are negligible. Instead, time information improves PID through (combinatoric) background reduction.
Simulating the Run 3 detector with an ‘ideal’ photon detector with zero time jitter shows distinct peaks originating from different Primary Vertices (PVs).

- In practice, the photon detector time resolution blurs the image in time.
- The RICH reconstruction maximum-likelihood approach works with tracks and single hits.

To reduce background and improve PID, need to accurately predict when the photons from a given track ought to arrive.
RICH photon hit times are predictable to within 10 ps

The reconstruction algorithm already finds the track and photon paths. Combined with the PV t-zero, the photon hit time can be predicted.

\[t_{\text{predicted}} = t_{\text{pv}} + t_{\text{track ToF}} + t_{\text{photon ToF}} \pm \text{RICH2 correction for curved tracks} \]

Considering all contributions, obtain a prediction of better than 10 ps.

- Faster detectors are better, as in practice the photon detector resolution will limit the performance.
How to use time information: shutter and timestamp

1. At the front-end ASIC, apply a **nanosecond-scale “shutter time” to save bandwidth.**
 Width includes time-walk, PV spread, photodetector jitter and ‘track + photon’ path-length variations.
2. Within the shutter, give all hits a **picosecond-scale timestamp to improve PID.**
 Can be used to apply a software time gate during the event reconstruction.

Width of the software gate:
- Must be large enough to accept sensor spread and small enough to reduce combinatoric background.
- $\pm 2\sigma_{\text{sensor}}$ was found optimal.
- **Oversampling** in the readout electronics helps to tune the width of the gate.
Time gate in reconstruction software

For the Run 4 MAPMTs with $\sigma_{\text{sensor}} \sim 150$ ps, the optimal software time gate is $\pm 2\sigma \sim 600$ ps.

- FastRICH ASIC with ~ 25 ps bins can be coupled to new sensors with improved time resolution for Upgrade II.

Significant improvement in PID performance with time gate (PV time from MC).

- MAPMT noise (dark counts, SIN) not included; purely photon backgrounds.
- Subsequent effect on selected physics channels was demonstrated in note LHCb-PUB-2021-009 with up to 70% background reduction.
RICH estimate of Primary Vertex (PV) t-zero during Run 4

The PV “t-zero” is a key parameter for the predicted RICH detector hit time.

- Using LS3 electronics enhancements, RICH can standalone estimate the PV t-zero.
- New measurement for the RICH detector and LHCb.

\[
\langle t_0 \rangle_{PV} = \sum_{\text{true photon→PV relations}} [t_{\text{hit}} - t_{\text{track ToF}} - t_{\text{photon ToF}}]
\]

Main challenge is to correctly associate photons to their PV.

- **Oversampling** in electronics of the multitude (hundreds) of photons per PV allows the relatively large MAPMT transit-time spread (σ~150 ps) to be fitted.
- Stage 1: Using LHCb tracking container for PV reconstruction.
- Stage 2: Cuts (first studies) or iterative (alternative, but more CPU) approach inside the RICH algorithms to reduce combinatorics in associating photons to tracks.

First (preliminary) studies showed a resolution better than 100 ps at least for a subset of PVs in the full LHCb simulation.
- Further software R&D foreseen.
Evolution of the RICH photon detector

Relatively long period of LS3 central to the RICH evolution.

<table>
<thead>
<tr>
<th>Year</th>
<th>Phase</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Run 2</td>
<td>LS2</td>
</tr>
<tr>
<td>2018</td>
<td>LHC</td>
<td>13 TeV</td>
</tr>
<tr>
<td>2019</td>
<td>Upgrade I</td>
<td>4x10^{32} cm^{-2} s^{-1} 9 fb^{-1}</td>
</tr>
<tr>
<td>2020</td>
<td>Run 3</td>
<td>LS3</td>
</tr>
<tr>
<td>2021</td>
<td>2x10^{33} cm^{-2} s^{-1} 23 fb^{-1}</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>LS3 Enhancements</td>
<td>2x10^{33} cm^{-2} s^{-1} 50 fb^{-1}</td>
</tr>
<tr>
<td>2023</td>
<td>Upgrade II</td>
<td>1.5x10^{34} cm^{-2} s^{-1} 300 fb^{-1}</td>
</tr>
<tr>
<td>2024</td>
<td>Run 4</td>
<td>LS4</td>
</tr>
<tr>
<td>2025</td>
<td>Run 5 - 6</td>
<td>LS4 Enhancements</td>
</tr>
</tbody>
</table>

- **LS3 / Run 4**: focus on **FastRICH** readout electronics with fast timing and wide input dynamic range.
- **LS4 / Run 5**: focus on **sensor technology**.

Fast-timing is essential for the luminosity challenge after Upgrade II. [Talk by Stephen Wotton]

15.09.22
RICH LS3 enhancements - F.Keizer
8
Run 3 photon detector and hardware shutter time

Run 3 MAPMTs are read out by CLARO ASICs to shape and discriminate signals.
- Digital board with FPGAs samples the digital signals at 320 MHz (3.125 ns), formats the data and transmits the data using GBTX ASICs.
- Allows hardware shutter to be implemented. Still only 1 bit/hit output: no timestamp. The shutter is limited to 3-6 ns by CLARO time-walk.

Approach limited by radiation hardness of the FPGA and by clocking / logic resources.
- FPGA firmware designed to use only 1-2% of logic resources to reduce radiation upsets.
- ASIC solution required for future upgrade operation.
The LHCb RICH LS3 enhancements aim to equip the detector with new front-end readout electronics including the **FastRICH ASIC** capable of timestamping photon detector hits with ~ 25 ps time bins.

- Improve **PID performance during Run 4**.
- Introduce technologies for high-luminosity operation **ahead of Upgrade II**.
- Gather valuable experience with novel fast-timing and data compression techniques.

LS3 enhancements:
- Introduce FastRICH with 25 ps bins.
- Change to Data Compressed (DC) format.
- Introduce lpGBT/VL+.
- Small expansion at the back-end.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>ASIC timewalk</th>
<th>FE time gate</th>
<th>TDC time bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC Run 3</td>
<td>150 ps</td>
<td>< 4 ns</td>
<td>6.25 ns</td>
</tr>
<tr>
<td>LHC Run 4</td>
<td>150 ps</td>
<td>CFD correction</td>
<td>2 ns</td>
</tr>
<tr>
<td>HL-LHC Run 5</td>
<td>~ 50 ps</td>
<td>CFD correction</td>
<td>2 ns</td>
</tr>
</tbody>
</table>

LHCb RICH LS3 enhancements - F.Keizer
LS3 hardware changes

Intend to modify *only* the FE electronics whilst maintaining all other services and components (cooling and power, mechanics, optics and sensors).

Remove:
- FEBs with **CLAROs**.
- PDMDB motherboards with **FPGAs**.
- (R&D study) Perhaps **GBTX/VTRX plugins**.

Install:
- New boards with **FastRIC**H.
- New electronics **levelling plate** to cold bar.
- (R&D study) Additional or all new **lpGBT/VTRX+ plugins**.
- Additional **PCIe40++** cards for back-end processing.

Adjust:
- Fibre distribution to account for non-uniform occupancy.
Front-end electronics specifications

Specifications are tailored to ensure backwards-compatibility with the Run 3 mechanics whilst equipping the detector for Upgrade II.

- Time resolution: TDC with ~ 25 ps time bins.
- Power consumption: less than 6 mW per channel (analog + digital).
- Radiation hardness: ASIC solution for \(~ 10^{13} \text{n}_{\text{eq}}/\text{cm}^2\) and \(~ 5 \text{kGy}\).
- Number of channels: 16.
- Dynamic range: 5 µA to few mA for coupling to MAPMT or SiPM.
- LHCb compatibility: direct compatibility with IpGBT / VTRX+ chipset.
- Bandwidth: aim for \(~ 12\) bits per hit or less.
- Readout rate: 40 MHz (LHC).

Note: Sketch for illustrative purposes. The numbers and placement of components will be subject to R&D and optimisation.
The Fast Integrated Circuit (FastIC) is an ASIC designed in 65 nm CMOS technology by the University of Barcelona (ICCUB) and CERN-EP-ESE.

- 8-channel chip with **wide input dynamic range** (5 µA to 25 mA) for pos/neg signal polarities.
- ‘Analog’ ASIC with fast discriminator (~ 30 ps jitter).
- **Not** designed to be specifically radiation hard.

Next-generation FastRICH is based on the FastIC and specific requirements of the RICH detector.

- 16-channel chip with **analog and digital** signal processing.
- **Hardware shutter time** (configurable) to limit the timestamp range to ~ 1 to 2 ns.
- **Constant-fraction discrimination** (CFD).
- **Zero-suppressed** output over configurable number of output links to lpGBT.
- TDC with ~ 25 ps time bins and 40 MHz readout rate.
- Radiation hard by design (~ 10^{13} n$_{eq}$/cm2 and ~ 5 kGy).
- Compatibility with lpGBT and the architecture of the Run 4 and Run 5 DAQ.

FastRICH design is ongoing (CERN-ICCUB) with the analog parts far advanced.
LS3 bandwidth considerations

The excellent FastRICH data-compression techniques of CFD, hardware shutter and zero-suppression achieve
7 bits time plus 4 bits channel ID per hit.

Run 3: no data-compression (NDC) at FE.
- ~ 200k channels and 40 MHz rate gives ~ 8 Tb/s.
- DC at back-end, but sufficient margin in available PCIe40 readout boards.

Run 4: DC techniques at FE.
- Average occupancy of 5.5%,
 11 bits per hit and 30 MHz gives ~ 3.5 Tb/s.

More than a factor 2 lower than the Run 3 bandwidth and factor 3 than the Run 3 optical fibre limit (~ 12 Tb/s).
- Margin available for (a) fluctuations / “busy events”,
 (b) bunch count synchronisation / header data and (c) challenging FastRICH-to-optical link mapping for non-uniform occupancies.

Detailed simulation studies are ongoing.
Power consumption of the readout electronics

Removal of the Run 3 FPGAs saves ~ 8.6 mW/ch (and CLARO ~ 1 mW/ch).

- Additionally, 50% margin was built into the Run 3 electronics power consumption for irradiation damage during Run 3 and Run 4 combined. The LS3 enhancements set the TID for Run 4 back to zero.

With ~ 6 mW/ch target consumption for the FastRICH, the overall column power consumption goes down.

- The Run 3 FPGAs are closely coupled to the cold bar, and R&D is ongoing to evaluate adjustments to the boards layout to improve the thermal coupling between the cold bar and the FastRICH ASICs.

New electronic readout simplifies the number of required power levels:

Run 3
- Sensor MAPMT
- FE ASIC CLARO
- FPGA
- Optical link GBT Versatile Link

Run 4 and 5
- Sensor MAPMT
- FastRICH
- Optical link IqGBT / VL+

Back-end
- PCle40
- PCle40 / PCle40++
Optical plugins (lpGBT and VTRX+)*

The FastRICH will be closely-compatible with the lpGBT.

- Digital outputs of the FastRICH couple directly to the lpGBT eLinks.
- Configurable number of FastRICH output links in FastRICH to account for different occupancy regions.
- I2C for configuration.
- 160 MHz clock lines from the lpGBT distributed across the FE.

Plugin driven by:
- (a) Flexibility on motherboard for bandwidth optimisation.
- (b) Modularity.
- (c) PCB requirements for the lpGBT (with small BGA pitch).

Alternative for highest-occupancy region:
Optical link components directly integrated onto the motherboard in order to achieve the required density.

* Next-generation CERN 10 Gbps optical link chipset
SPS test beam studies of a prototype opto-electronics chain

Studies of a prototype opto-electronic chain with $\mathcal{O}(100 \text{ ps})$ timing for LS3 / LS4.

- ‘Proof-of-principle’ demonstration to detect 4D Cherenkov rings / arcs.

- CERN SPS test beam facility.
- 180 GeV/c pions and protons.
- Pencil beam with $\sigma < 5 \text{ mm}$.
- Few hundred kHz average particle rate.
- RICH MCP-PMT for track time reference.
- TimePix4 telescope for tracking information.

Parallel setup in this beam for aerogel studies [Poster by A. Lozar et al].

Coated borosilicate **lens** in the beam to:
1. generate the Cherenkov photons,
2. reflect them and
3. focus the Cherenkov ring onto the detector plane.

DOI:10.1088/1748-0221/12/01/P01012
The prototype fast-timing readout chain

- FEBs with FastIC ASICs.
 - Output of fast-timing channel: ToA + non-linear ToT.

MAPMT / SiPM baseboard.
- [Talk by Roberta Cardinale]

Digital board for the testbeam, containing a Kintex7 FPGA with 34-channel TDC with 150 ps time bins
- [Poster by Lucian Cojocariu et al].

FastICs coupled to MAPMTs (1 and 2-inch devices, Run 4) and an SiPM array (Run 5 candidate).
Readout using 3 FEBs with 16 FastICs

FastIC FEBs for partial readout of sensor area.

Recorded hit maps for the three arrays.
Extraction of the time resolution requires detailed analysis of the data, including:

- Correction for **time walk** effect.
- **Calibration** of the TDC-in-FPGA.
- Understanding of FastIC **working points** and photon **occupancy**.
- Study of **systematic errors** including track time reference and chromatic dispersion.

Aim to achieve the single-photon resolution of ~ 150 ps limited by the MAPMT transit time spread.

Analyses are ongoing with prospect of more data-taking in October 2022 followed by testbeam paper.

- Plot shows example of measured time walk for a typical pixel.
Conclusion

Fast-timing information is foreseen to be added to the LHCb RICH system during LS3 (3 year long).
- Improve the PID during Run 4.
- Gain important experience (hardware / software) with technologies and techniques for Upgrade II.

The proposed new readout chain will:
- Introduce the FastRICH, which includes specific LHCb RICH upgrade requirements.
- Affect only a small part of the Run 3 detector and require limited resources.

Key features of the enhancement include:
- 25 ps time bins and a wide dynamic range for coupling to MAPMTs or SiPMs.
- Data compression techniques: CFD, 2 ns FE gate and zero-suppressed readout.
- Direct compatibility optical links: IpGBT / VL+.

SPS test beam campaign to study prototype readout chains.
- Successful data-taking in July 2022 with detailed timing analyses ongoing.