Particle identification with the NA62 RICH

Viacheslav Duk (INFN Perugia) on behalf of the NA62 RICH working group

NA62

RICH-2022 workshop, 12-16.09.2022, Edinburgh, UK

Outline

- NA62 experiment
- RICH detector
- PID in single-track final states
- PID in multi-track final states
- Conclusions

NA62 experiment

ECN3 hall at CERN

NA62: fixed target experiment at CERN SPS

Technique: Kaon decays in flight

Timeline:

2015: commissioning2016-2018: physics runs

▶2021-2025: physics runs

Primary goal: Measure BR(K⁺ $\rightarrow \pi^+ \nu \nu$)

NA62 collaboration: ~300 participants, ~30 institutions

13.09.2022

NA62 experimental setup

[NA62 Detector Paper, 2017 JINST 12 P05025]

Primary beam: ■400 GeV/c protons

Secondary beam:

■75 GeV/c (±1%) ■3x10¹² protons per spill Divergency < 100 μrad ■70% pions, 6% K⁺, 24% protons

Key detectors:

- ■PID: KTAG, RICH, LKr, MUV1-2, MUV3 Momentum: GTK, STRAW
- Time: GTK, KTAG, RICH, CHOD
- Photon veto: LAV, LKr, IRC, SAC

NA62 RICH

Gas vessel

- 17 m long, 200 m³
- Neon @ atmospheric pressure

Light sensors

- 1952 Hamamatsu R7400-U03 PMTs
- Arranged in two disks
- Sensor position optimized for positively charged tracks
- Not optimal for negatively charged tracks due to the acceptance

Mirrors

- Mosaic of 20 mirrors
- 18 hexagonal, 2 semihexagonal
- 2 groups (Jura and Saleve)

All details in the talk by F. Bucci (12.09.2022)

PID with RICH

R-based PID

- Only single-track final states
- Momentum P from spectrometer
- Ring radius R from the single ring (or track-seeded) fit
- Calculate m(RICH) $m^2(RICH) = p^2 \cdot (\frac{F^2 \cdot n^2}{F^2 + B^2} 1)$
- PID = cut on m(RICH)

Likelihood-based PID

- Any final states ٠
- P for each track from spectrometer
- Expected R calculated for each mass hypothesis •
- Calculate likelihoods for several mass ٠ hypotheses (e, μ , π , K, bkg)
- PID = select the highest likelihood and/or cut on ٠ likelihood ratio

General approach:

- Measure PID with the data as a function of momentum
- Apply to MC as an event weight

6

NA62 recent results

• $K^+ \rightarrow \pi^+ \vee \nu$

BR measurement, Search for $K^+ \rightarrow \pi^+ X$ JHEP 06 (2021) 93; JHEP 03 (2021) 58

- LFV/LNV decays
 - $K^+ \rightarrow \pi \mu e$ PRL 127 (2021) 131802
 - $K^+ \rightarrow \pi^- I^+ I^+$ PLB797 (2019) 134794; PLB830 (2022) 137172
 - $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ PLB830 (2022) 137172
 - $K^+ \rightarrow \mu^- \nu e^+ e^+$ Paper in preparation
- Precise measurements
 - $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ Paper in preparation
 - $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ Paper in preparation
- HNL production in $K^+ \rightarrow I^+ N$ PLB 807 (2020) 135599; PLB 816 (2021) 136259
- Search for $\pi^0 \rightarrow$ invisible JHEP 02 (2021) 201

NA62 recent results

• $K^+ \rightarrow \pi^+ \nu \nu$

BR measurement, Search for $K^+ \rightarrow \pi^+ X$ JHEP 06 (2021) 93; JHEP 03 (2021) 58

- LFV/LNV decays
 - $K^+ \rightarrow \pi \mu e$ PRL 127 (2021) 131802

 $K^+ \rightarrow \pi^- I^+ I^+$ PLB797 (2019) 134794; PLB830 (2022) 137172

- ${\rm K}^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \; \pi^0 \; e^{\scriptscriptstyle +} \; e^{\scriptscriptstyle +} \; \; {\rm PLB830} \; (2022) \; 137172$
- $K^+ \rightarrow \mu^- \nu e^+ e^+$ Paper in preparation
- Precise measurements
 - $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ Paper in preparation
 - $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ Paper in preparation
- HNL production in $K^+ \rightarrow I^+ N$ PLB 807 (2020) 135599; PLB 816 (2021) 136259
- Search for $\pi^0 \rightarrow$ invisible JHEP 02 (2021) 201

RICH PID essential (single-track final state)

RICH PID essential (multi-track final state)

RICH PID in a single-track final state

NA62 main goal: BR($K^+ \rightarrow \pi^+ \nu \nu$)

2018 data sample

Run 1 (2016-2018) fully analyzed N(K decays) $N(K^+ \rightarrow \pi^+ \nu \nu \nu \nu)$ candidates) publication Data PBL 791 (2019) 156 2x10¹¹ 2016 1 JHEP 11 (2020) 042 2x10¹² 2017 2 4x10¹² 2018 17 JHEP 06 (2021) 093

 $\widehat{\mathbf{g}}^{10^{-}}$ Camerini ▼ Experimental upper limit @ 90 % CL **Experimental measurement** Theoretical prediction Klems Cable ▼ Asano E787 E787+E949 1970 1980 1990 2000 2010)60 Year of Publication

Combined result:

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} \text{ at } 68\% \text{ CL} \qquad \underbrace{\overset{\dagger}{\overset{\dagger}_{10^{-5}}}_{10^{-7}}}_{10^{-7}}$$
Statistical significance: $p = 3.4 \times 10^{-4}$ (3.4 σ)
 $\overbrace{\overset{\dagger}_{10^{-9}}}_{10^{-10}}$
First evidence of the decay
 10^{-11}

NA62

2020

PID in the $K^+ \rightarrow \pi^+ \nu \nu$ analysis

One of main backgrounds: $K^+ \rightarrow \mu^+ \nu (K\mu 2)$

- BR(Kµ2) = 0.63
- O(10¹²) suppression needed

✓ PID with hadron calorimeters: $O(10^5)$

✓ PID with RICH: $O(10^3)$

PID in the $K^+ \rightarrow \pi^+ \nu \nu$ analysis

R-based PID

Likelihood-based PID

2017-A RICH control samples: pions and muons (15-35 GeV/c)

PID in the $K^+ \rightarrow \pi^+ \nu \nu$ analysis

- Both algorithms used
- Pion efficiency $\varepsilon(\pi) = 85\%$
- Muon misID probability $\varepsilon(\mu) = 0.2\%$

Example of a single ring fit and expected rings

RICH - SALEVE Disk - Run 8061, Burst 976, Event 1373057

RICH PID in a multi-track final state

Search for $K^+ \rightarrow \pi^- e^+ e^+$

Data:

• Run 1 (2016-2018)

Main features

- blind analysis
- A(sig) = 4.23%
- $N_{K} = 9.79(31) \times 10^{11}$
- SES = 2.4 x 10⁻¹¹

Normalisation:

- $K^+ \rightarrow \pi^+ e^+ e^-$
- $N(K^+ \rightarrow \pi^+ e^+ e^-) = 9483$

Expected bkg:

• N = 0.43(9)

BR(K⁺ →π⁻ e ⁺ e⁺) < 5.3 x 10⁻¹¹ (90% CL)

Factor of 12 improvement wrt previous limit: BR < 6.4x10⁻¹⁰ (90% CL)

PID in the $K^+ \rightarrow \pi^- e^+ e^+$ selection

Bkg from $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \gamma$

- π^+ misidentified as e^+
- e^- misidentified as π^-

RICH PID

- Applied only for positively charged tracks
- misID probabilities measured on $K^+ \rightarrow \pi^+ \pi^- \pi^-$ sample

PID in the $K^+ \rightarrow \pi^+ e^+ e^-$ selection

Normalization selection $K^+ \rightarrow \pi^+ e^+ e^-$

Bkg from $K^+ \rightarrow \pi^+ \pi^- \pi^-$

- One π^+ misidentified as e^+
- π^- misidentified as e^-

O(10³) reduction due to RICH

Conclusions

- RICH PID is essential for NA62
- RICH PID works well only for positively charged tracks (due to the acceptance)
- $K^+ \rightarrow \pi^+ \nu \nu$ analysis: O(10³) suppression of $K^+ \rightarrow \mu^+ \nu$ bkg with ($\mu^+ \rightarrow \pi^+$) misID
- LNV search in $K^+ \rightarrow \pi^- e^+ e^+ : O(10^3)$ suppression of bkg with $(e^+ \rightarrow \pi^+)$ and $(\pi^+ \rightarrow e^+)$ misID

Conclusions

- RICH PID is essential for NA62
- RICH PID works well only for positively charged tracks (due to the acceptance)
- $K^+ \rightarrow \pi^+ \nu \nu$ analysis: O(10³) suppression of $K^+ \rightarrow \mu^+ \nu$ bkg with ($\mu^+ \rightarrow \pi^+$) misID
- LNV search in $K^+ \rightarrow \pi^- e^+ e^+ : O(10^3)$ suppression of bkg with $(e^+ \rightarrow \pi^+)$ and $(\pi^+ \rightarrow e^+)$ misID

Thank you!

