Measurement of the Muon Lifetime and the Michel Spectrum in the LAGO Water Cherenkov Detectors as a tool to improve energy calibration and to enhance the signal-to-noise ratio

L. Otiniano^{1,2}, A. Taboada^{3,4}, H. Asorey^{3,5}, I. Sidelnik^{4,5}, C. Castromonte¹, A. Campos-Fauth⁶ for the LAGO Collaboration⁷

Time difference between two consecutive pulses histogram

Noise Rejecting strategy

Measurement of the Muon Lifetime and the Michel Spectrum in the LAGO Water Cherenkov Detectors as a tool to improve energy calibration and to enhance the signal-to-noise ratio

Measurement of the Muon Lifetime and the Michel Spectrum in the LAGO Water Cherenkov Detectors as a tool to improve energy calibration and to enhance the ANTAR - 24 hours 200 signal-to-noise ratio Secondary particles Mitchell Spectrum 175 (particles / day) (particles / Cosmic ray proportional 10^{1} - Total(measured) - Muon decay (measured) Total (simulated) 10^{0} Muon decay (simulated) Rate Rate (a.u.) 10^{-1} This process is 50 being for used 25 correcting 0 250 500 750 1000 1250 1500 1750 2000 Charge (ADC) operative datasets 10^{-2} of LAGO WCDs Chitaga 2016 - 24 hours 600 Secondary particles Mitchell Spectrum /day) 500 Cosmic ray proportional 10^{-3} 400 (particles 3

Good agreement with simulations

Charge (ADC)

300 200 100 750 1000 1250 250 500 1500 1750 2000 0 Charge (ADC)

Rate