

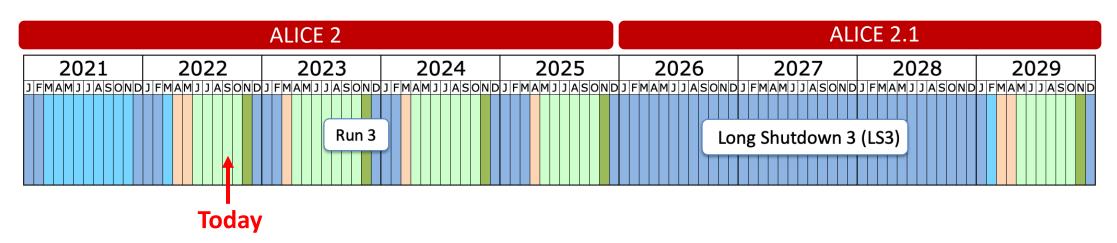
RICH 2022

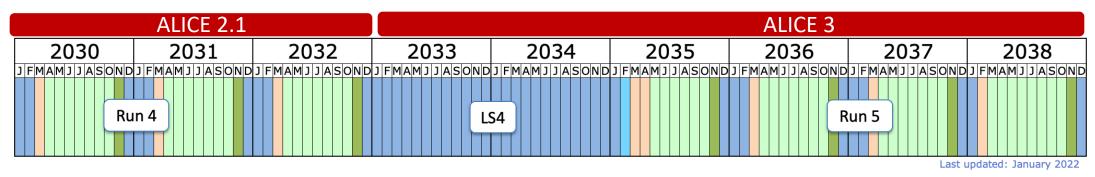
11th International Workshop on Ring Imaging Cherenkov Detectors, University of Edinburgh, Edinburgh (UK), 12 - 16 September 2022

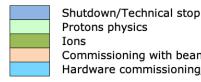
Aerogel RICH detector for the next generation heavy-ion experiment at LHC

Giacomo Volpe* for the ALICE collaboration

*University and INFN, Bari, Italy

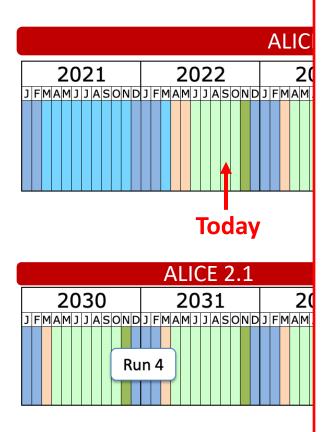

ALICE


- ALICE roadmap
- "ALICE 3" detector requirement
- RICH system
 - Radiator
 - Photon detector
 - Possible layouts
 - Simulation studies
- Ongoing and future studies
- Summary and outlook


Outline

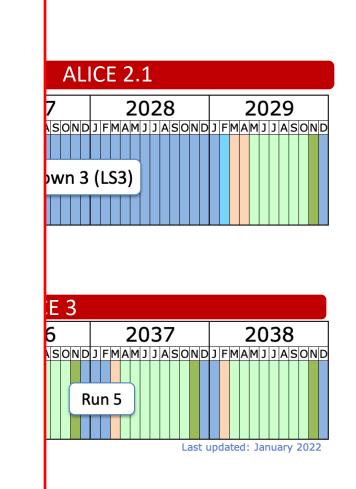
ALICE roadmap

- Ideas for dedicated heavy-ion programme for Run 5 and 6 at the LHC ٠
 - developed within ALICE in the course of 2018/19 ٠
 - Letter of Intent prepared over the course of 2021 ٠
 - LHCC review process started in October 2021 •



Ions Commissioning with beam Hardware commissioning/magnet training ALICE


ALICE roadmap


- Ideas for dedicated heavy-ion programme for Run 5 and 6 at the LHC
 - developed within ALICE in the https://cds.cern.ch/record/2803563
 - Letter of Intent prepared over
 - LHCC review process started in

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

G. Volpe - RICH 2022

ALICE

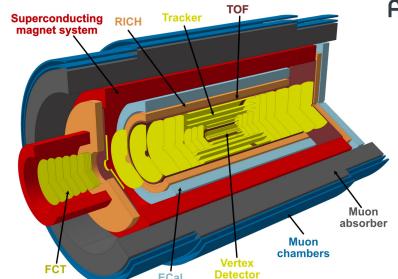
ALICE 3 detector requirements

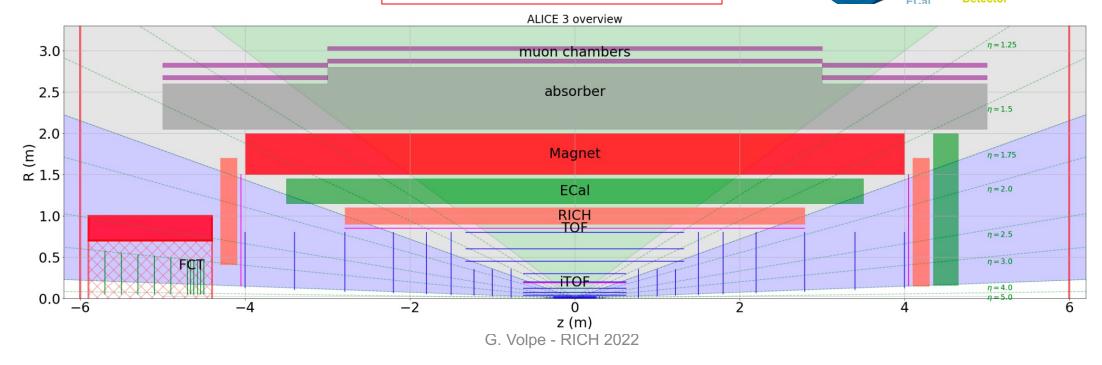
Component	Observables	Barrel ($ \eta < 1.75$)	Forward $(1.75 < \eta < 4)$	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 10 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 30 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{pos} \approx 2.5 \mu m$, $R_{in} \approx 5 m m$, $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}pprox$	z 1 – –2%	Silicon pixel tracker: $\sigma_{pos} \approx 10 \mu m$, $R_{out} \approx 80 \text{ cm}$, $L \approx \pm 4 \text{ m}$ $X/X_0 \approx 1\%$ per layer
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separation	up to a few GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5 {\rm GeV}/c$ at $\eta = 0$		steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons, jets	large ac	ceptance	Pb-Sci sampling calorimeter
ECal	Xc	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

ALICE 3 detector requirements

Component	Observables	Barrel ($ \eta < 1.75$)	Forward (1.75 $<$ $ \eta $ $<$ 4)	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{\rm pos} \approx 2.5 \mu{ m m},$ $R_{\rm in} \approx 5 { m mm},$ $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}$ $pprox$	≈ 1 2 %	Silicon pixel tracker: $\sigma_{pos} \approx 10 \mu m$, $R_{out} \approx 80 cm$, $L \approx \pm 4 m$ $X/X_0 \approx 1 \%$ per layer
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separation	up to a few GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5$ GeV/c at $\eta = 0$		steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons, jets	large ac	ceptance	Pb-Sci sampling calorimeter
ECal	Xc	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

RICH system in the ALICE 3 layout


7

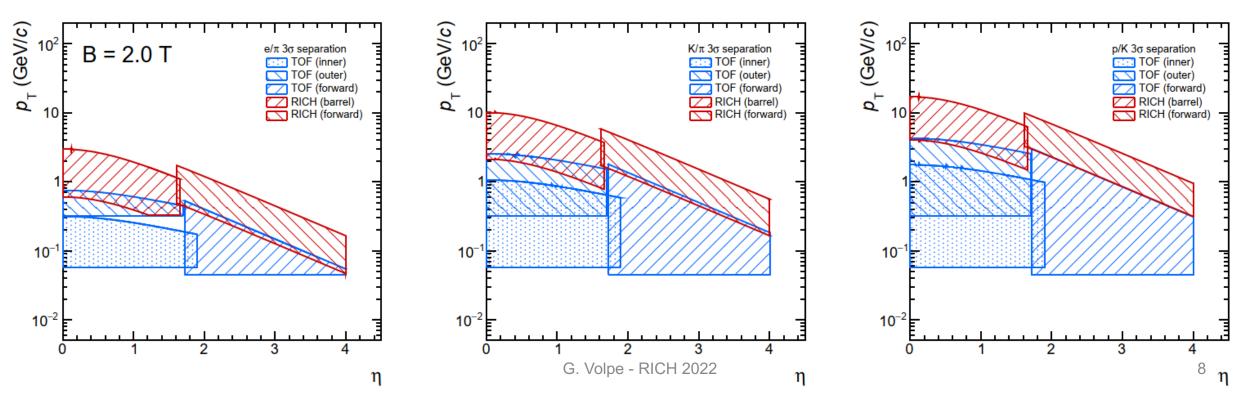

Barrel RICH:

- $\eta = \pm 1.75$, total length 5.6 m
- *R* = 0.9 1.1 m

Forward RICH:

- Ecal side:
 - +1.75 ≤ η ≤ +4.0
 - R= 0.2-1.5 m
- FCT side:
 - $-1.75 \le \eta \le -3.0$
 - R= 0.5-1.5 m

RICH system motivation


Extend electron and charged hadron ID at momenta higher than the TOF range, e.g in the barrel: e/π : 0.5 - 2 GeV/c

 π/K : 2.0 - 10.0 GeV/c

K/p : 4.0 – 16.0 GeV/c

- Barrel RICH: aerogel Cherenkov radiator (2cm, n=1.03) + 20 cm expansion gap + SiPM photon detector
 - Forward RICH: idem, but aerogel n = 1.006

Results from "fast" parametric simulation, assuming a Cherenkov angle resolution at saturation of 1.5 mrad and a TOF time resolution of 20 ps

Aerogel Cherenkov radiator

Cherenkov relation

momentum threshold for Cherenkov emission

$$\cos \vartheta_c = \frac{1}{n\beta} \rightarrow \beta_{th} = \frac{1}{n} \rightarrow p_{th} = \frac{m}{\sqrt{n^2 - 1}}$$

aerogel n	βth		moment	um threshold	d [GeV/c]	
		е	μ	π	К	р
1.01	0.99009901	0.0036	0.7453	0.9845	3.4821	6.6181
1.02	0.98039216	0.0025	0.5257	0.6944	2.4561	4.6681
1.03	0.97087379	0.0021	0.4281	0.5656	2.0005	3.8021
1.04	0.96153846	0.0018	0.3699	0.4886	1.7282	3.2846
1.05	0.95238095	0.0016	0.3300	0.4359	1.5420	2.9307
1.06	0.94339623	0.0015	0.3005	0.3970	1.4042	2.6688
1.07	0.93457944	0.0013	0.2776	0.3667	1.2969	2.4649
1.08	0.92592593	0.0013	0.2590	0.3421	1.2102	2.3001
1.09	0.91743119	0.0012	0.2436	0.3218	1.1383	2.1634
1.14	0.87719298	0.0009	0.1930	0.2550	0.9019	1.7142

Hydrophobic silica aerogel from Aerogel Factory Co. Ltd (Chiba, Japan):

- No degradation for exposure to humidity, easy storage
- Excellent transparency in the range 1.02-1.05
- Stable up to 10 Mrad

Best match with PID requirements, large choice of

refractive indexes

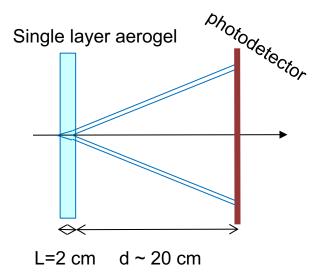
Possibility to fine tune PID threshold and range

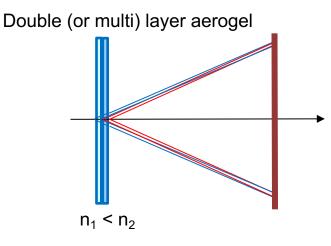
(M. Tabata – Chiba University) 1.0 0.8 n = 1.03 Transmittance 70 $T=A^*exp(-Ct/\lambda^4)$ A= 1, C= 0.00435 μm⁴/cm 0.2 0.0 300 400 500 600 700 800 Wavelength [nm]

Barrel RICH layout options

Two or more aerogel layers with

Aerogel layers @ 0.9 m from IP

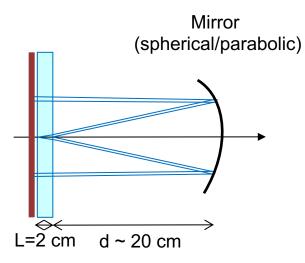

Aerogel ~ 32 m², p.d. ~ 39 m²


Photodetector @ 1.1 m

Baseline layout:

- No aerogel focusing
- Aerogel layer @ 0.9 m from IP
- Photodetector @ 1.1 m
- Aerogel ~ 32 m², p.d. ~ 39 m²

Aerogel focusing layout:


increasing n

\rightarrow pro's:

 photons produced in the second layer reach the pd @ same radius as the first one, thus reducing the geometric aberration error in saturation

Mirror layout:

- With or w/o aerogel focusing
- aerogel layers @ 0.95 m from IP
- photodetector @ 0.9 m
- Aerogel ~ 33 m², p.d. ~ 32 m²

\rightarrow pro's:

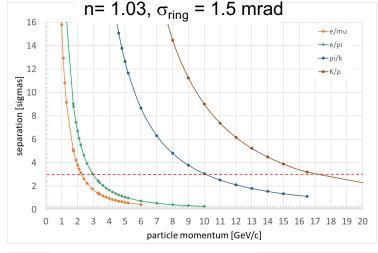
• Reduce/suppress geometric aberration depending on mirror:

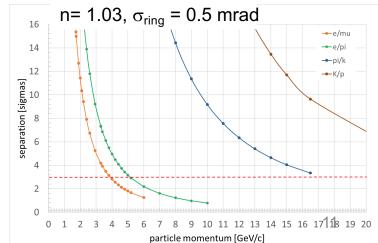
- flat: doubling of gap
- cylindrical: focusing in one direction + doubling of gap
- parabolic: full focusing
- reduce p.d. area by 60%

\rightarrow con's:

- ~ 20% photon loss due to double crossing of aerogel and mirror reflection
- spherical aberration and mirror alignment to be taken into account
 10

Analytical estimation of Cherenkov angle resolution




The particle separation depends on single photon angular resolution and on the amount of detected photons

 $\sigma_{\theta_{c}}(tot) = \frac{\sigma_{\theta_{c}}(p.e.)}{\sqrt{N_{v}}} \oplus \sigma_{\theta_{c}}(track)$ p.e.

 $\sigma_{\vartheta_c} \text{ (p.e.)} = \sqrt{\sigma_{\vartheta_c}^2 \text{ (chromatic)} + \sigma_{\vartheta_c}^2 \text{ (geometric)} + \sigma_{\vartheta_c}^2 \text{ (pixel)} + \sigma_{\vartheta_c}^2 \text{ (noise)}}$ $\propto \frac{dn(\lambda)}{d\lambda} \qquad \propto \frac{L}{d} \qquad \propto \frac{x}{d}$

layout	GAP [cm]	radiator L [cm]	pixel [cm]	chrom_err	geom_err	pixel_err	σ_single p.e. [mrad]	# of photoel.	σ_ring [mrad]
baseline	20	2	0.3	1.4	6	3.9	7.4	24	1.5
two aerogel layers in focusing	20	2 x 1	0.3	1.4	3.1	3.9	5.2	24	1.1
spherical mirror	20	2	0.3	1.4	1.0	3.9	4.2	20	0.9
spherical mirror+ smaller pixel	20	2	0.1	1.4	1.0	1.3	2.1	20	0.5

PID reach for various *n* and angle resolution options

3σ separation	n= 1.03 σ = 1.5 mrad	n= 1.03 σ = 0.5 mrad	n= 1.02 σ = 0.5 mrad	n= 1.01 σ = 0.5 mrad
e/π	3.0 GeV/c	5 GeV/c	5.5 GeV/c	6.8 GeV/c
π/Κ	10 GeV/c	17 GeV/c	20.0 GeV/c	23 GeV/c
K/p	18 GeV/c	24 GeV/c	32 GeV/c	39 GeV/c

The photon detector

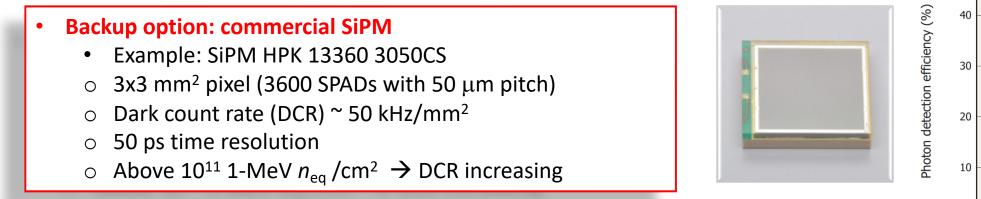
Main requirements

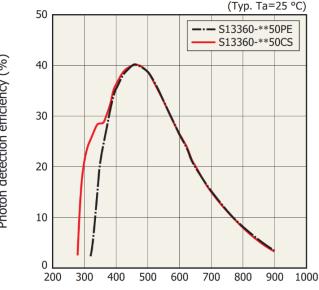
- Single photon sensitivity in the visible range (Photon Detection Efficiency (PDE) > 40-50%)
- Integration fill factor > 90%
- Pixel ~ 3x3 mm²
- Time resolution σ < ~ 100 ps
- Magnetic field $B \le 2 T$
- Expected radiation load: NIEL ~ 10¹² 1-MeV n_{eq} /cm²

Vacuum-based devices (MCPs, LAPPDs)

- Single photon detection efficiency ~ 25-30%
- Low noise and good radiation tolerance
- Time resolution ~ 30 ps
- Main limitations:
 - Sensitivity to B (x10 gain drop above 0.5 T, no gain for ⊥ B)
 - HV operation
 - Bulky, reduced fill factor ~ 70%, large X_0
 - Cost of commercial devices

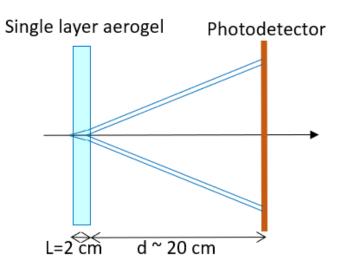
SiPM

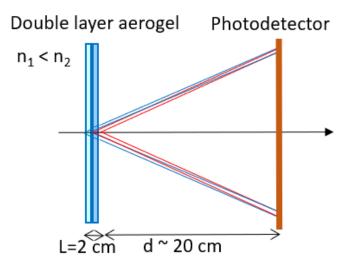

- PDE ~ 50%
- LV operation
- Time resolution ~ 50 ps
- Main limitations:
 - Noise at room temperature, increase above 10¹¹ 1-MeV n_{eq} /cm²
 - Cost of commercial devices

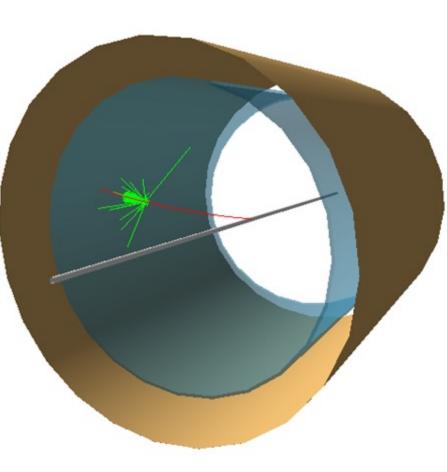

The photon detector

Significant enhancement on the semiconductor process over past decades, excellent improvement of CMOS SPAD performance \rightarrow renewed interest for the **development of digital-SiPM** for large area coverage in HEP applications (e.g.: development ongoing in Sherbrooke University and FBK)

- R&D on digital SiPM based on CMOS Imaging technology
 - Reduce cost
 - Explore solutions for:
 - noise performance improvement (beyond online/offline time gate)
 - radiation hardness improvement (1-2 orders of magnitude, 10^{12} 1-MeV n_{eq} /cm² required)
 - TOF applications (MIPs detection with time resolution ~ 20 ps)

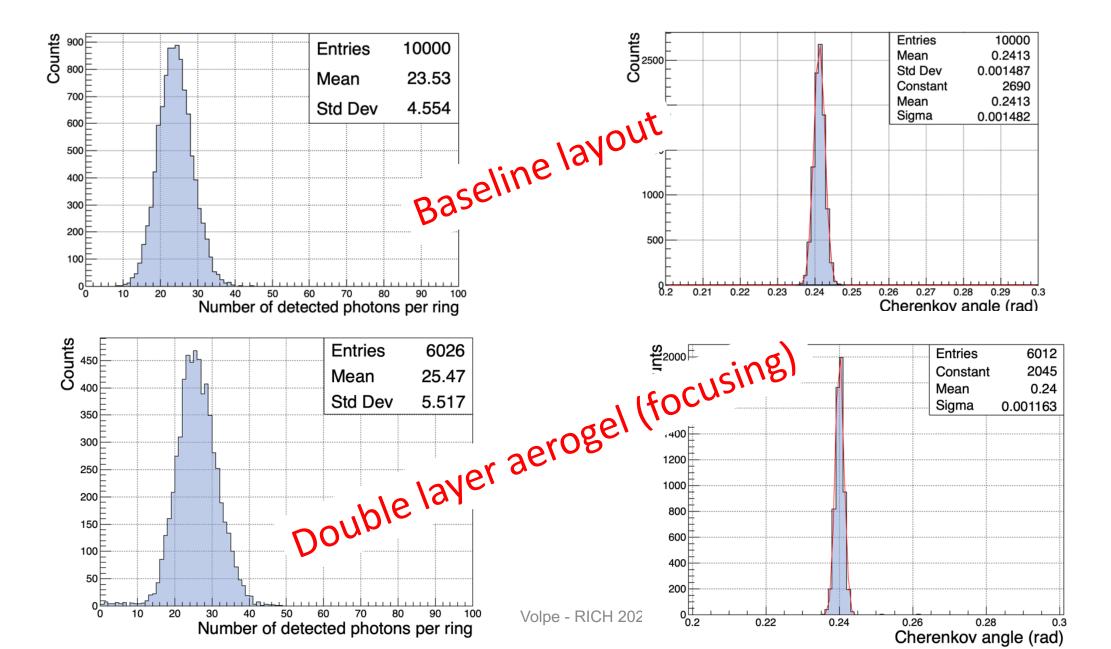



Simulation studies



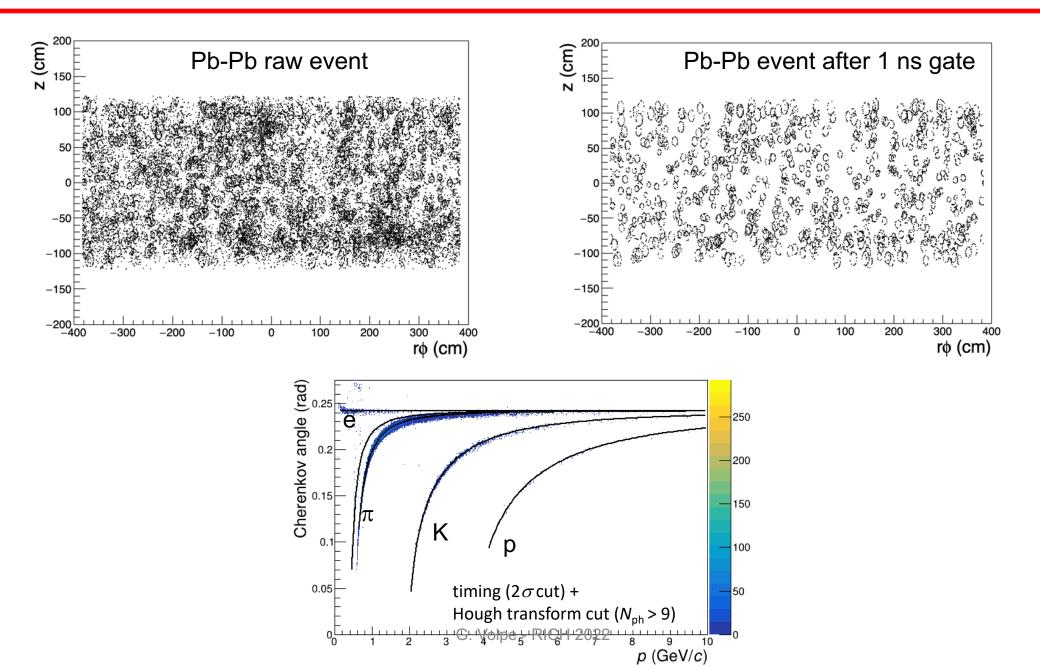
Aerogel n=1.03, p.d. @ R=1.2 m, HPK 13360 3050CS (pixel 3x3 mm², DCR 50 kHz/mm², 90% fill factor)

- single particle events
 - uniform energy distribution
 - isotropic angular distribution
 - origin from (0, 0, 0)
 - one particle per event: $e^{-} \pi^{-}$ $\mu^{-} K^{-} p$
 - 10 k events/particle
- Pythia8 pp collisions
 - − √s = 14 TeV
 - c-cbar biased processes
 - 100k events
- Pythia8 Xe-Xe and Pb-Pb collisions
 - − √s = 5.76 TeV
 - minimum bias
 - 1k events



Tracking and TOF layers not shown

Simulation studies



15

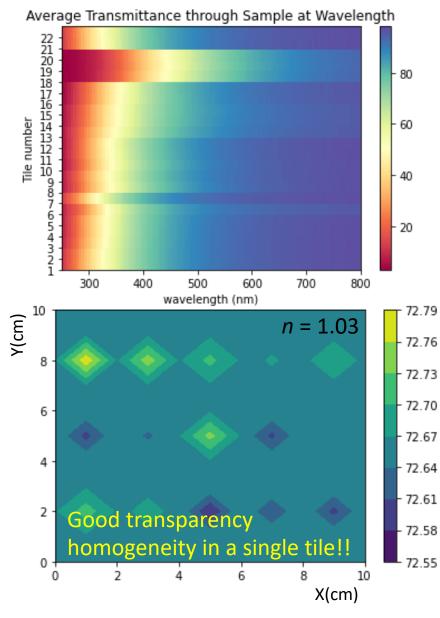
Simulation studies

Ongoing and future studies

ALICE

• Design

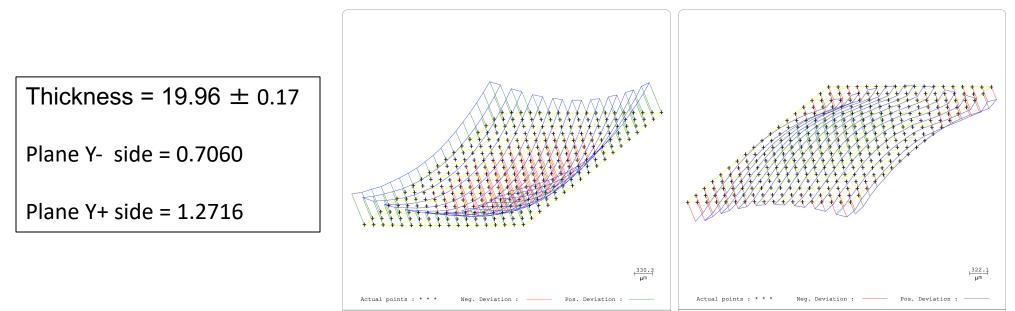
- Performance vs Layout (options: aerogel n, focusing aerogel, mirror shape, SiPM pixel size)
- Next
 - MonteCarlo (Geant4) simulations:
 - ✓ bRICH performance: aerogel n tuning (vs TOF performance), focusing aerogel, mirrors


• Aerogel

- Optical properties (transparency, Rayleigh+Mie scattering), tile size, multiple layer focusing performance, barrel integration (segmentation, mechanical support, mounting)
- Ongoing: basic characterization of hydrophobic aerogel (2x10x10 cm³ tiles) from Aerogel factory, JP (optical properties, mechanical tolerances)
- Characterization of larger tiles (2x15x15 cm³)
- Characterization of lower *n* and multi-layer (focusing)
- Integration/Mounting issues

Ongoing and future studies: aerogel tile characterization

Transparency measurement in lab!

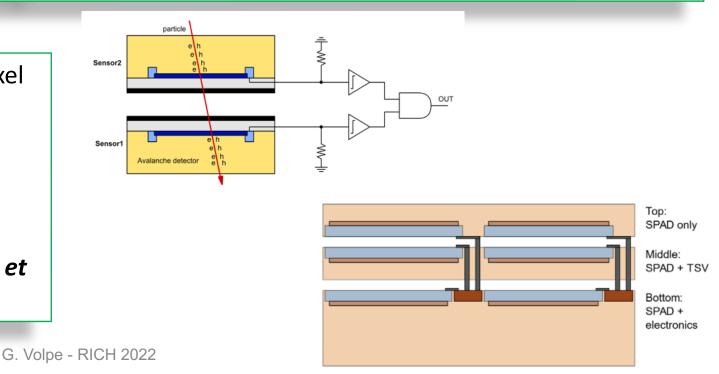

#	Sample	n	Max t (mm)	Measured a	bs. length
1	LEC4-1b	1.03	21.2302		71.6598
2	LEC4-2a	1.03	21.3703		72.0948
3	LEC6-1a	1.03	20.783		68.774
4	LEC6-1b	1.03	21.2154	HERMES	68.9515
5	LEC6-2b	1.03	20.961	1998	67.9965
6	SP3-0	1.03	11.7749		32.2599
7	SP3-1	1.03	12.5724		44.6441
8	LEC11-6	1.04	20.8677		57.823
9	LEC11-7	1.04	21.4847		61.4199
10	LEC12-1	1.04	20.9313		57.6797
11	LEC12-4	1.04	21.1525		60.1764
12	LEC12-6	1.04	21.5779		61.1588
13	LEC8-1	1.05	21.1954		51.7276
14	LEC8-2	1.05	21.0821		49.4528
15	LEC8-6	1.05	21.8642		48.9281
16	LEC9-1	1.05	21.0111		47.2045
17	LEC9-2	1.05	21.07		48.0334
18	TSA41-2a	1.00539	20.3624		19.8812
19	TSA41-2b	1.00544	21.2492		19.3864
20	TSA41-3a	1.00548	21.1344		19.7495
21	TSA38-2	1.0312	21.443		70.9995
22	TSA38-8	1.0311	21.4538		72.2721

G. Volpe - RICH 2022

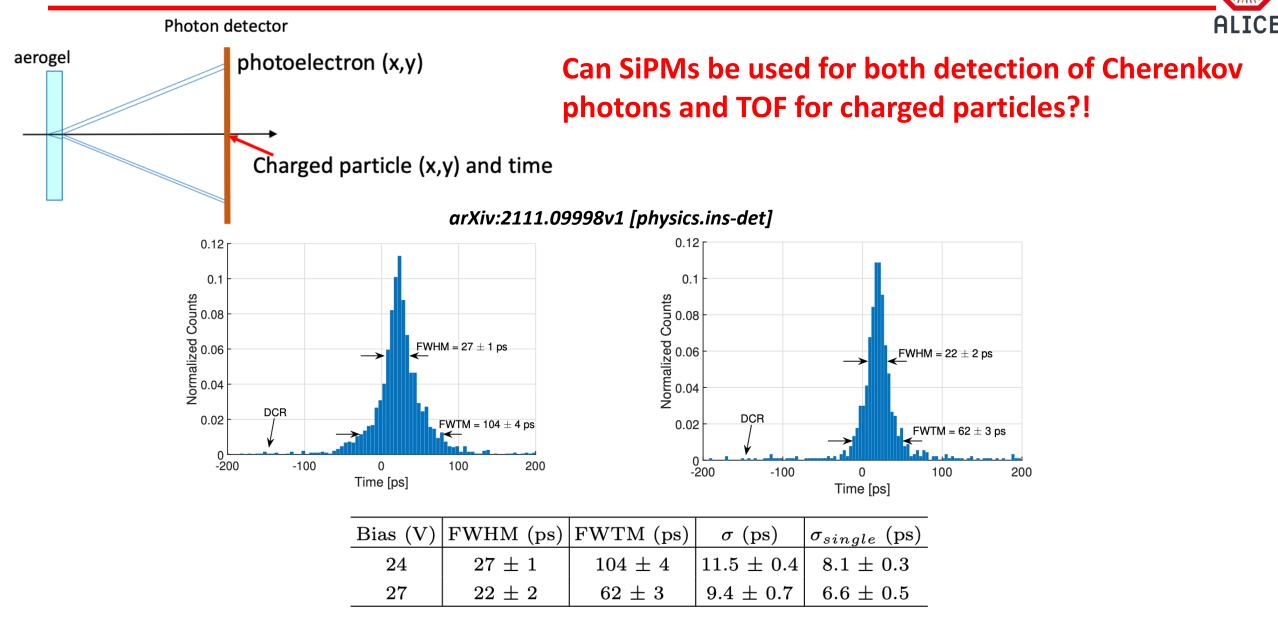
Ongoing and future studies: aerogel tile characterization

Thickness and flatness measurement in metrology lab at CERN!

- Results obtained on a tile of n = 1.03 with the touch probe system (force applied by the probe is 2 gr).
- The measuring system is the LEITZ PMMC with \pm 0.3 μ m of precision

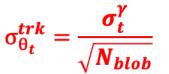


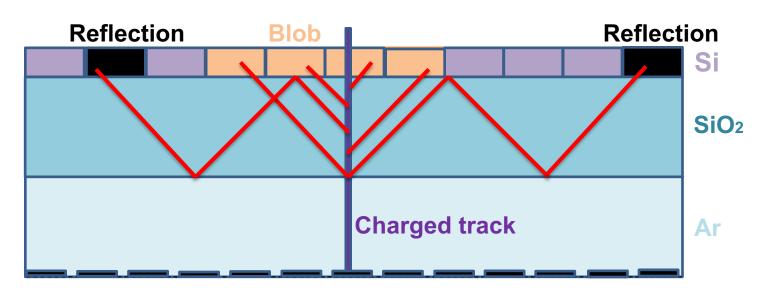
- There is a variation in thickness from the centre to the edges, of the order of 0.4 mm, and a different planarity in the two faces, one 0.7 mm, the other 1.27 mm. In general the tiles have the shape of a dome.
- The manufacturer (Aerogel Factory Ltd, Chiba, JP) stated that it is possible to improve the flatness and the thickness uniformity;
- the planarity can be mapped, to include the defect in the reconstruction of the Cherenkov angle.

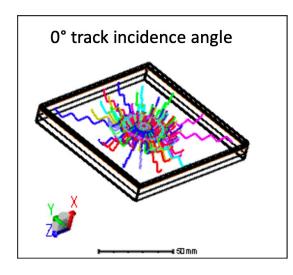


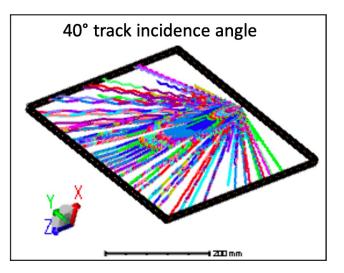
A few examples of SiPM R&D ideas

- Need to instrument large area without minimal gaps, solutions: integrate sensor + front-end with 3D manufacturing (+ active quenching, fast signal processing and TDC integration, disabling of hot SPADs,)
- Implementation of MIP detection for TOF measurements in the same photo-detector layer (*F. Carnesecchi et al., arXiv:submit/4155801*): detection efficiency and time resolution for MIPS?
- Exploit Cherenkov photons from thin SiO₂ coating?
- "Monolithic" 3D approach for double layer pixel coincidence (DCR suppression), APIX/ASAP concept (*L. Pancheri et al. NIM A 845 (2017)* 143-146, *P. Brogi et al. NIM A 958 (2020)* 162546, *L. Ratti et al. doi:* 10.3389/fphy.2020.607319)
 - ➡ 10 ps measured in test beam (L. Gramuglia et al., arXiv:2111.09998v1)

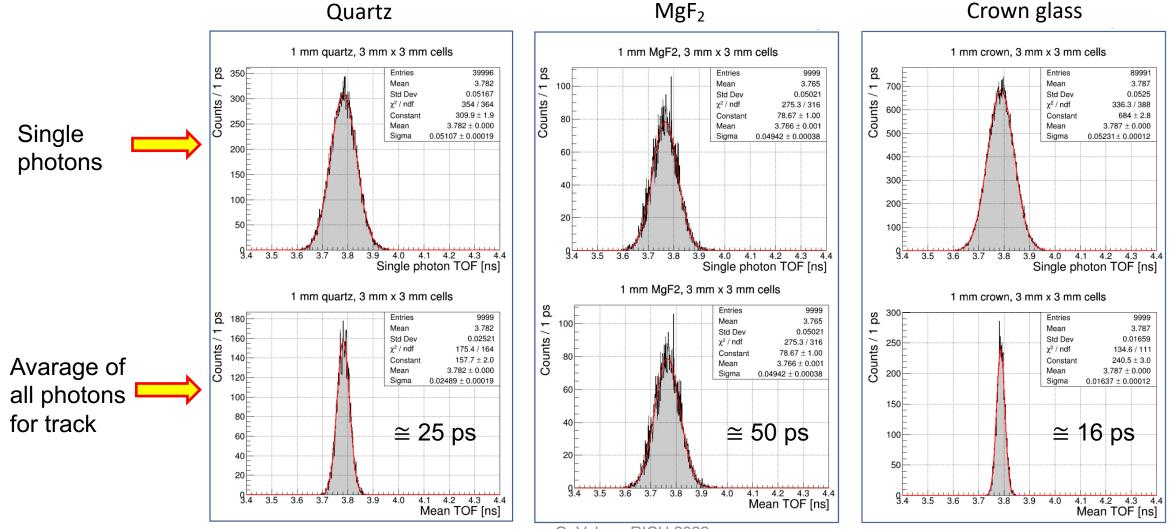

A step forward: Cherenkov-based TOF system


Reflection background


About 30% of photons reflected at $SiO_2 - Si$ Total reflection at $SiO_2 - Ar$


Track time resolution

Determined by single photon resolution and blob size



Simulations with different window materials have been performed in ZEMAX [*https://www.zemax.com*] (Assuming intrinsic SiPM time resolution = 50 ps)

Participating institutes

Institute	Interest
CERN, Geneva, Switzerland	D-SiPM
INFN, Bari, Italy	Design studies (simulations), aerogel, D-SiPM
INFN, Bologna, Italy	D-SIPM: synergy with EIC (SiPM radiation tolerance) and ALICE 3 timing layer (MIPS induced signal in SiPM)
UNAM, Mexico City, Mexico	Design studies (simulations), D-SiPM

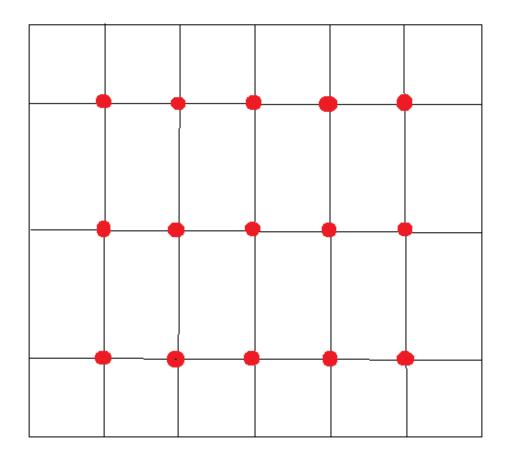
Further contributions are more than welcome!

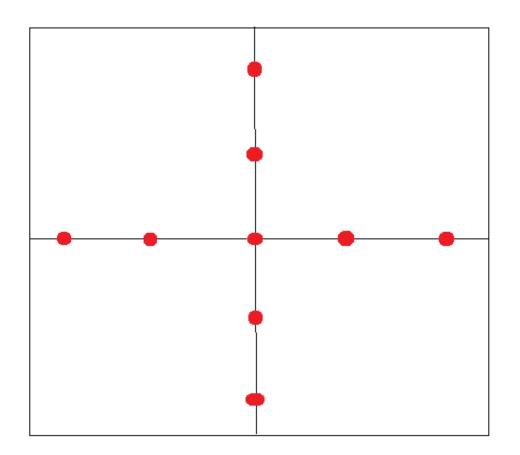
Summary and outlook

- The RICH system studied and presented in the ALICE 3 LoI was conceived to fulfill preliminary PID requirements.
- Depending on final timing performance of the TOF system and finalization of PID requirements, the detector layout can be further optimized (aerogel n, focusing, mirror integration, ...) to achieve full coverage of electron and charged hadron ID.
- The evolution of CMOS SPAD technology has renewed the interest for digital SiPM to be exploited in HEP large systems.
 - The challenging R&D could profit of the synergy among research institutes, academy and industry.

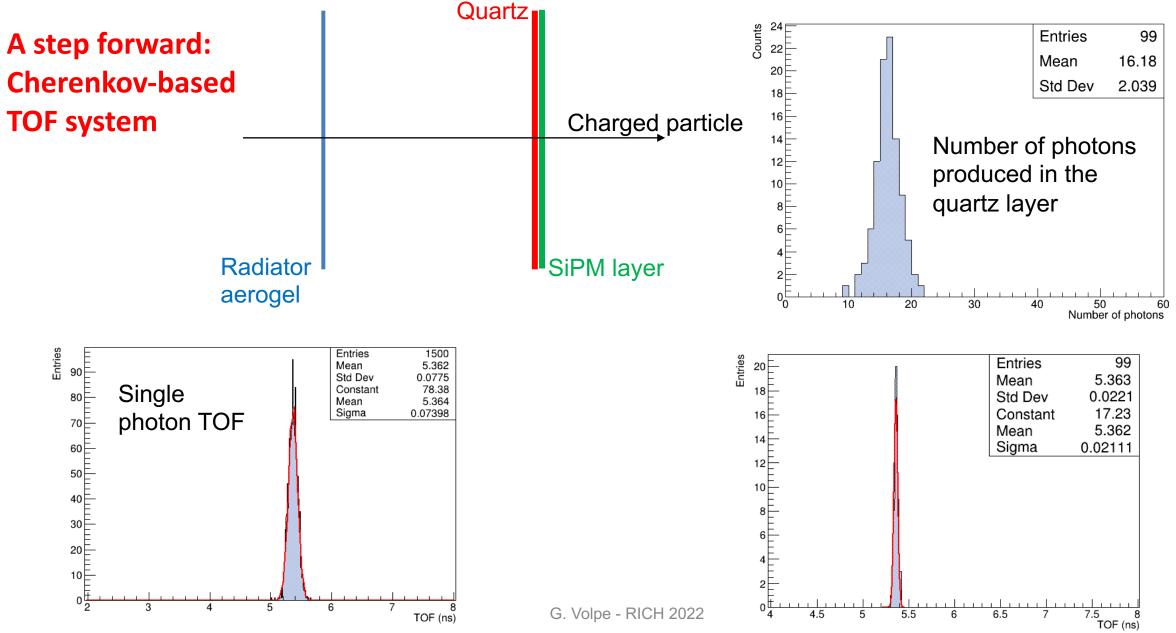
ALICE 3 Motivation

- After Run 3 and 4 some QGP features will still remain unrevealed
- Qualitative steps needed in detector performance and statistics
 - next-generation heavy-ion experiment!


Observables	Kinematic range
Heavy-flavour hadrons	$p_{ m T} ightarrow 0, \ \eta < 4$
Dielectrons	$p_{\rm T} \approx 0.05$ to 3 GeV/c, $M_{\rm ee} \approx 0.05$ to 4 GeV/c ²
Photons	$p_{ m T} pprox 0.1$ to 50 GeV/c, $-2 < \eta < 4$
Quarkonia and exotica	$p_{ m T} ightarrow 0, \ \eta < 1.75$
Ultrasoft photons	$p_{\mathrm{T}} \approx 1$ to 50 MeV/c, 3 < η < 5
Nuclei	$p_{\mathrm{T}} o 0, \ oldsymbol{\eta} < 4$


Key physics objects and the respective kinematic ranges of interest for ALICE 3

Measuring points



10x10 cm

15x15 cm

9

3 mm x 3 mm cells, SPTR = 50 ps

Normal incidence

Material	Thickness (mm)	Time resolution (ps)
	5	12.3
SiO2	3	11.7
	1	24.9
	5	14.2
MgF2	3	14.9
	1	49.4
	5	8.5
Crown	3	12.0
	1	16.4

MIP at 40° wrt normal

Material	Thickness (mm)	Time resolution (ps)
	5	8.5
SiO2	3	10.8
	1	17.4
	5	8.3
MgF2	3	10.8
	1	20.2
	5	8.5
Crown	3	11.1
	1	14.9

3 mm x 3 mm cells, SPTR = 60 ps

Normal incidence

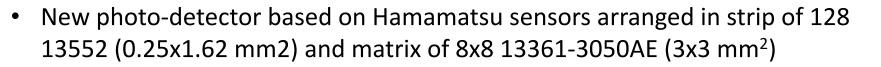
Material	Thickness (mm)	Time resolution (ps)
	5	14.9
SiO2	3	14.0
	1	29.8
	5	17.0
MgF2	3	18.0
	1	59.0
	5	10.2
Crown	3	14.3
	1	19.6

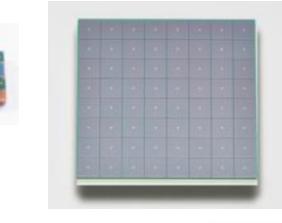
MIP at 40° wrt normal

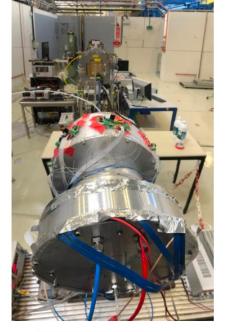
Material	Thickness (mm)	Time resolution (ps)
	5	10.2
SiO2	3	12.9
	1	20.8
	5	9.9
MgF2	3	12.9
	1	24.2
	5	10.2
Crown	3	13.2
	1	17.9

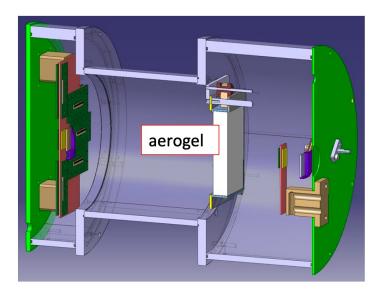
3 mm x 3 mm cells, SPTR = 70 ps

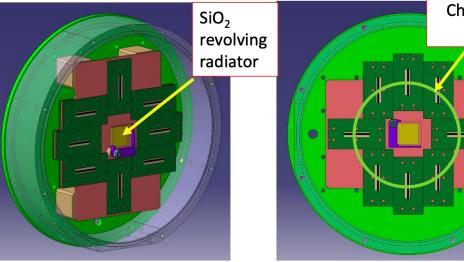
Normal incidence

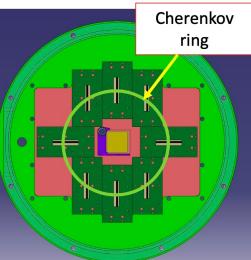

Material	Thickness (mm)	Time resolution (ps)
SiO2	5	17.3
	3	16.3
	1	34.6
MgF2	5	19.8
	3	20.9
	1	68.4
Crown	5	11.9
	3	16.7
	1	23.0


MIP at 40° wrt normal


Material	Thickness (mm)	Time resolution (ps)
SiO2	5	12.0
	3	15.0
	1	24.3
MgF2	5	11.5
	3	15.1
	1	28.2
Crown	5	11.9
	3	15.5
	1	20.9


Preparing for October 2022 test beam





G. Volpe - RICH 2022