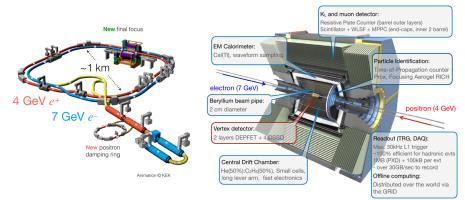
The TOP counter and determination of bunch-crossing time at Belle II

Marko Starič



Belle II collaboration

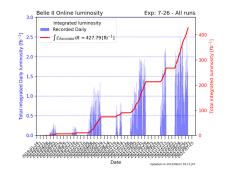
Jožef Stefan Institute, Ljubljana

RICH 2022

Belle II experiment: 2nd generation "Super B Factory"

SuperKEKB accelerator

- upgraded KEKB
 → nano-beam optics
- target luminosity: $30 \times \text{KEKB}$


Belle II detector

- general purpose spectrometer
- vertexing, tracking, neutral's detection, PID

The TOP counter

🚰 Belle II at work

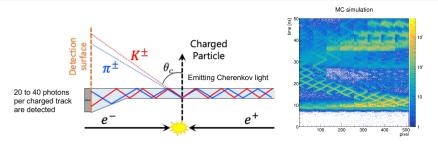
- Recorded 428 fb $^{-1}$ since 2019
 - $\bullet\,$ eqiv. to BaBar or 1/2 Belle
 - $\rightarrow \sim \! 1\%$ of final goal
- Luminosity world record of $4.7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ \rightarrow still an order of magnitude to go
- Now in long shutdown for several upgrades, restart at fall 2023

Physics program

- B, charm and tau physics, complementary to LHCb
- Searches in dark sector
- \rightarrow 11 physics papers already published or submitted to journals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Particle identification at Belle II

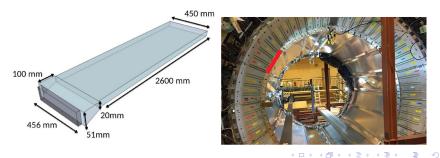

- Almost any detector component involved
 - SVD and CDC: energy losses (dE/dx)
 - TOP: Cherenkov imaging in barrel region
 - ARICH: Cherenkov imaging in forward region
 - ECL: energy deposits
 - KLM: penetrating power (trajectory length) mostly hadron ID mostly lepton ID
- All these components provide log likelihoods for e, μ, π, K, p, d
- Combined by summing over detector components:

•
$$\log \mathcal{L}_h = \sum_{\det} \log \mathcal{L}_h^{\det}, \ h = \{e, \mu, \pi, K, p, d\}$$

- Particle selection with either
 - binary PID: $P_{h/h'} = \frac{\mathcal{L}_h}{\mathcal{L}_h + \mathcal{L}_{h'}}$ global PID: $P_h = \frac{\mathcal{L}_h}{\sum_{h'} \mathcal{L}_{h'}}$

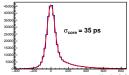
SVD	silicon vertex detector
CDC	central drift chamber
TOP	time-of-propagation counter
ARICH	proximity focusing aerogel RICH
ECL	electromagnetic calorimeter
KLM	K_L and muon detector

🚰 TOP counter: principle of operation

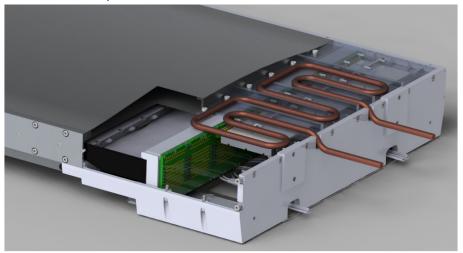


- Cherenkov photons transported to the photon sensors by means of total internal reflections (DIRC)
- Two dimensional information about the Cherenkov ring by measuring the time-of-arrival and the position of photons at photon sensors.
- Time-of-arrival is measured relative to the e⁺e[−] collision time → includes time-of-flight of the particle.

time-of-flight measurement combined with Cherenkov ring imaging


- Hadron ID in the barrel region $(32^0 < \theta < 120^0)$
- 16 modules at $R=120~{
 m cm}$
- Quartz optics of a module
 - $\bullet~2.6$ m long quartz plate, $2~{\rm cm} \times 45~{\rm cm}$ in cross-section
 - spherical mirror at forward side
 - expansion prism at backward side

- \bullet Photon sensors \rightarrow talk by Okubo-san on Friday
 - Hamamatsu MCP-PMT's,
 - 4×4 channels, 5.5 mm pixel size
 - 2 rows of 16 PMT's per module (512 pixels)
 - single photon sensitivity
 - excellent time resolution
 - works in magnetic field
- Front-end electronics
 - waveform sampling with 2.7 Gs/sec
 - custom designed ASIC with 11 $\mu \rm s$ long analog ring buffer for storing waveforms
 - \rightarrow running continuously
 - 8 channels/ASIC
 - 16 ASIC's/boardstack (=128 channels)
 - digitization and feature extraction (50% CFD)
 - data sent-out by optical link



4 boardstacks per module

M. Starič (IJS)

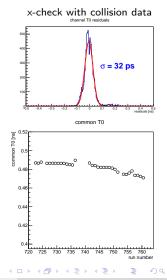
The TOP counter

Edinburgh, Sept. 12-16, 2022 8 / 23

э

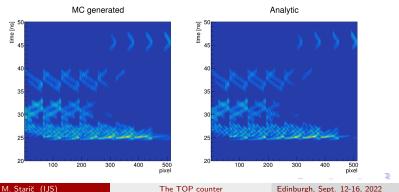
< □ > < □ > < □ > < □ > < □ >

🚰 Time calibration of Belle II TOP


Done in four steps

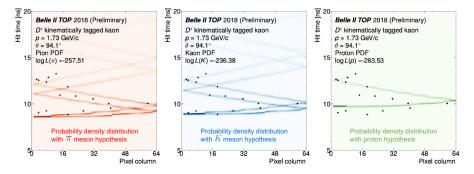
- time-base of wave-sampling electronics
 - double-pulses injected into ASIC channels
 - precision < 50 ps
- time alignment of channels within module
 - laser pulses injected into a module
 - precision < 50 ps
- time alignment of modules
 - collision data (dimuon events)
 - precision < 10 ps
 - \rightarrow these three found very stable in time
- relative to collision time (common T0)
 - collision data (dimuon events)
 - precision < 10 ps

ightarrow varies from run to run


M. Starič (IJS)

time alignment of channels

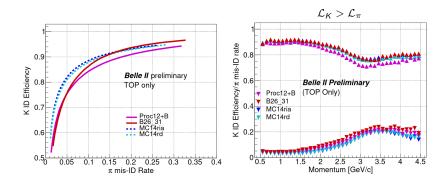
🚰 Particle identification with TOP


- Extended likelihood method with analytically constructed PDF's to determine log likelihoods of e, μ, π, K, p, d
- PDF in a single channel described with a sum of Gaussian distr.
 - positions, widths and normalizations determined analytically according to particle impact position, angles, momentum and mass
- Method presented at RICH2010 (NIM A 639 (2011) 252-255)

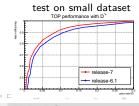
🚰 An example from collision data

Μ

• Kinematically tagged kaon from $D^{*+} o D^0 (o K^- \pi^+) \pi^+$ decay



				-) « (· ·
1. Starič (IJS)	The TOP counter	Edinburgh, Se	ept. 12-16, 2022	11 / 23


えぬ トラートス

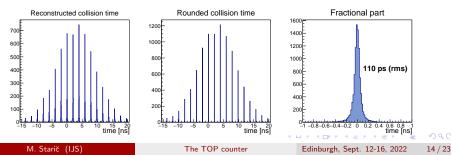
-

PID performance: with $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$

reprocessing	year	K effi at 10% π fake
proc9	2019	80%
proc10	2020	82%
proc11/12	2021	84%
proc13	2022	86%
(proc14)	(2023)	${\sim}90\%$

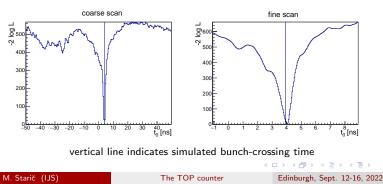

M. Starič (IJS)

The TOP counter

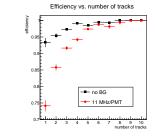

Edinburgh, Sept. 12-16, 2022

Determination of bunch-crossing time

- Start for photon time-of-arrival measurements is given by L1 trigger
- L1 trigger not precise enough:
 - $\bullet\,$ time jitter ${\sim}8\,$ ns
 - ${\ensuremath{\, \circ }}$ required precision $< 25~\ensuremath{\rm ps}$
- Required precision can be achieved by identifying bunch-crossing of the collision in off-line processing
- SuperKEKB:
 - $\bullet\,$ bunch length of 6 mm \rightarrow 14 ps spread in collision time
 - $\bullet~\text{RF}$ clock of 508 MHz \rightarrow 2 ns bucket spacing
 - 5120 RF buckets per beam revolution

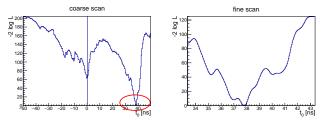


- The method relies on maximizing the sum of log likelihoods of particles hitting the TOP detector against a common offset subtracted from the measured photon times
 - need at least one track in event that emits enough Cherenkov photons
 - particle identities determined from dE/dx
- The result of maximization is then rounded to the nearest RF bucket and then used to correct photon arrival times before the final log likelihoods are calculated.



Implementation

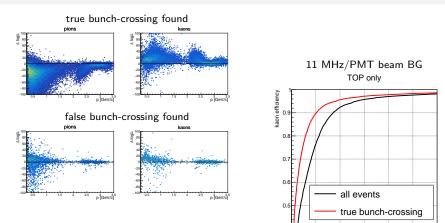
- Minimum in $\chi^2 = -2\sum_i \log \mathcal{L}_i$ is searched by scanning a selected time region, because local minima are usually present
- Done in two steps:
 - $\bullet\,$ coarse 1-dimensional scan in ± 50 ns using time-projected PDF's
 - fine scan in ± 5 ns around the result of coarse scan using full PDF's \rightarrow minimum precisely determined by fitting a parabola



- Efficiency of finding the true bunch-crossing
 - depends on track multiplicity
 - very sensitive to beam BG

no BG	1.2 MHz/PMT	11 MHz/PMT
98.2%	97.4%	92.1%

• Inefficiency due to false minima caused by BG hits



vertical line indicates simulated bunch-crossing time

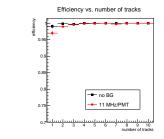
M. Starič (IJS)

The TOP counter

- With false bunch-crossing found:
 - likelihoods for both are more kaon-like
 - increase of pion mis-ID rather than decrease of kaon efficiency

M. Starič (IJS)

The TOP counter


0.4

Edinburgh, Sept. 12-16, 2022 17 / 23

0.25 0.3 pion mis-ID

- $\bullet\,$ SVD can now measure collision time with ${\sim}1$ ns precision
- Improved method:
 - instead of coarse scan use seed from SVD (to shorten the search region)
 - require reconstructed bunch-crossing to be matched with filled buckets

- Improved efficiency
 - much less dependent on track multiplicity
 - much less sensitive to beam BG

no BG	1.2 MHz/PMT	11 MHz/PMT
99.9%	99.9%	99.5%

< 回 > < 三 > < 三 >

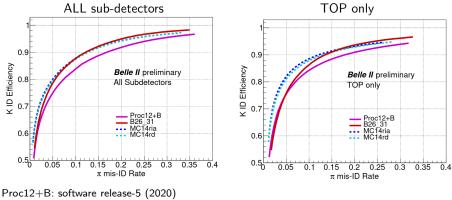
• TOP likelihoods provided only if bunch-crossing is reconstructed

- at least one track emitting sufficient number of Cherenkov photons
- reconstructed bunch-crossing matched with filled bucket
- \rightarrow not all events can fulfill these criteria
- Fraction of events with TOP PID

no BG	1.2 MHz/PMT	11 MHz/PMT
96.9%	95.7%	91.7%

• Fraction of tracks hitting TOP but w/o TOP PID

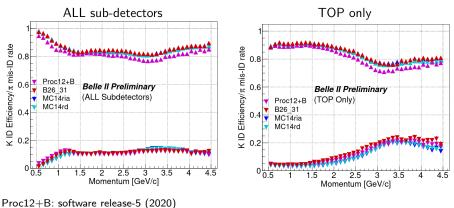

no BG	11 MHz/PMT
1.0%	4.5%


- to be compared to 5% loss due to gaps between modules \rightarrow poster by U. Tamponi on STOPGAP proposal
- PID with dE/dx still available for these tracks

M. Starič (IJS)

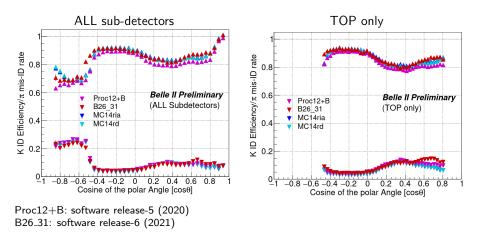
- PID performance of the Belle II TOP counter has been steadily increasing with each new software release/reprocessing since the start of data taking in 2019.
- This can be attributed particularly to the improvements in detector calibration, PDF modeling and bunch-crossing time determination.
- We are now in a long shutdown until the fall of 2023, which we are going to utilize for the replacement of conventional MCP-PMT's and malfunctioning electronic parts, as well as to prepare the front-end firmware for high-luminosity data taking.

B26_31: software release-6 (2021)


M. Starič (IJS)

Edinburgh, Sept. 12-16, 2022 21 / 23

э


(日)

Backup: PID performance (vs. momentum)

B26_31: software release-6 (2021)

□ ▶ ◀ ⓓ ▶ ◀ ≧ ▶ ◀ ≧ ▶ ె Ξ ∽ ♀ ⓒ Edinburgh, Sept. 12-16, 2022 22 / 23 Backup: PID performance (vs. polar angle)

□ ▶ ◀ ⓓ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 ∽ ♀ ⓒ Edinburgh, Sept. 12-16, 2022 23 / 23