# Development of an integrated housing for SIPM for future RICH photon-detectors

**Roberta Cardinale** 

Flavio Fontanelli, Saverio Minutoli, Alessandro Petrolini, Antonino Sergi

INFN and University of Genova. Italy



on behalf of the LHCb/RICH Collaboration

RICH 2022 - Edinburgh - 12/16 September 2022

Roberta Cardinale

#### **Overview**

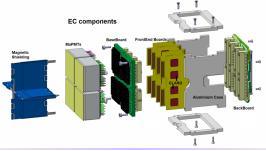
- The housing of photo-sensors for future RICH detectors is a complex task, regardless of the sensor choice, due the many requirements.
  In order to save on the required resources and simplify the design, different functions should be possibly integrated all together.
- This led to the development of the, today operational, LHCb/RICH focal surface photo-sensor array, for Hamamatsu MAPMT.
  - See presentation: The LHCb RICH Upgrade, A. Sergi, this conference.
- For the LHCb/RICH Upgrade II, for the Run 5 of the LHC at CERN, the MaPMT will be replaced since they do not fully fulfill the detector requirements. The baseline sensor is Silicon Photo-Multiplier (SiPM)
  - See presentation: The LHCb RICH Upgrade II, S. Wotton, this conference
  - See presentation: A novel fast-timing readout chain for LHCb RICH LS3 enhancements and prototype beam tests, F. Keizer, this conference.
  - The FTDR document on Upgrade II has been recently approved by LHCC

#### **Overview 2**

• For SIPM-like sensors, some sort of active cooling is required: the passive cooling used for MAPMT is certainly not suitable to keep the sensors at low temperatures of many tens of centigrade degrees below zero.

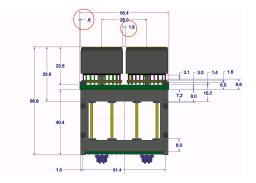
• For the LHCb/RICH Upgrade II, for the Run 5 of the LHC at CERN, several possibilities are being investigated.

A **local cooling** strategy is being investigated first, to cool down a region as small as possible around the sensor only, exploiting the industrial technologies existing today for cooling of solid state devices by many applications.

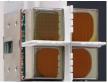

**Different technologies probably need to be combined**, up to an external **cryostat** enclosing (part of) the RICH detector, for a **global cooling** of the RICH detector.

# Housing photo-sensors: LHCb/RICH at LHC

- Main requirements for the photo-sensor housing, regardless of the sensor choice, include the following:
  - structural stability to house and secure in place the sensor, the read-out boards as well as any other ancillary system;
  - close-packing with large and uniform filling factor on a large surface
  - provide electrical connections from/to the sensors, thermal dissipation functionalities for heat transfer to the cooling system and electromagnetic shielding
  - provide support for possible optical components (lenses and/or optical filter) and for components for calibration systems
  - ease of access for repair and maintenance.
- A **modular solution**, based on fully autonomous functional units, is preferred, for ease of construction, maintenance and repair
- In order to save on the required resources and simplify the design, different functions should be possibly integrated together.


# MaPMT for LHCb/RICH Upgrade I

- Modular unit: Elementary Cell (EC) which consists of
  - A Base-Board (BB) with custom sockets to house the MaPMTs. It provides power, common High Voltage (HV) to the photocathodes of the MaPMTs, resistor divider chain(s) which supply potential(s) to the dynodes and connect the MaPMT anodes to the Front-End Boards.
  - Front-End Boards, each equipped with eight CLARO chips.
  - A backboard, which interfaces the FEBs to the Digital Board for configuration and read out.




Roberta Cardinale

# MaPMT for LHCb/RICH Upgrade I 2

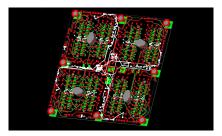


Magnetic Shielding is not drawn.



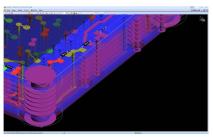
Roberta Cardinale

# MaPMT for LHCb/RICH Upgrade I 3





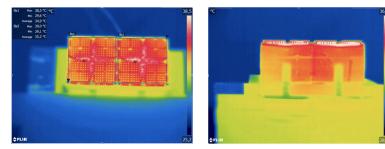

#### **Base-Board Passive Cooling Design**


- Base-Board: thick (3.1 mm) PCB
- Relevant for cooling is the internal structure, designed on purpose.
- Copper layers  $(6 \times 0.105 \,\mathrm{mm})$  to help heat conduction

The internal structure of the Base-Board: 3D view of the electrical routing.



NB: old prototype, not the final routing and thermal layers design.


The internal structure of the BB: 3D view of the passive internal copper layer

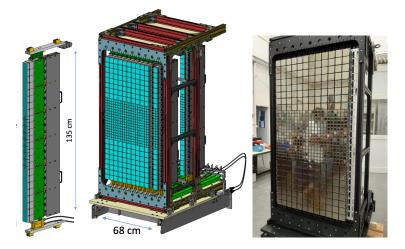


#### **Base-Board Passive Cooling Design 2**



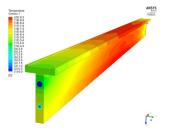
- Separated signal and thermal GNDs, the latter thermally connected to the Aluminum case
- 8 metalized holes connected to the case, for mechanical fixing and heat exchange, between the layers and to the case via the screws




# EC-R and EC-H on a cold-bar (prototypes)



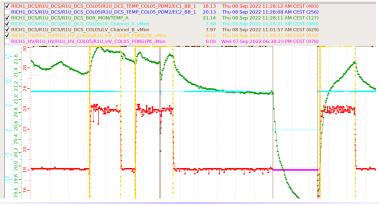
- The ECs are arranged in columns.
- One EC-R and one EC-H are shown on a cold-bar (all prototypes).
- The cold-bar sets a rough thermal reference.
- The design for SiPM might be an evolution of this one, with the thermal reference kept at a low enough temperature and thermally insulated as far as possible.


# LHCb/RICH upgrade-I cooling system

• Columns of EC form the PhotoDetector plane assembly

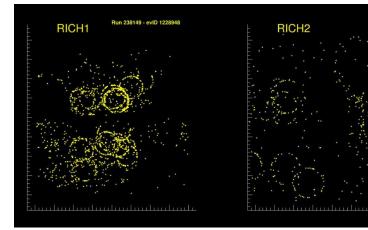


# LHCb/RICH upgrade-I cooling system 2


- The structural backbone of the columns is an aluminum T-piece (called cold-bar)
- The EC Aluminum case is connected to the cold-bar which has two ducts for coolant circulation, for effective passive cooling.
- Maximum temperature of the MaPMT: 35° C (to avoid high dark-count rates and degradation of the MaPMT photocathode).

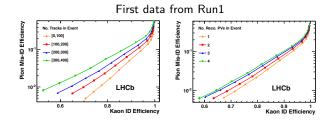





# LHCb/RICH upgrade-I cooling system 3

- PT1000 have been integrated on the Base-Board, and readout to monitor the temperature at the Base-Board
- To be done also for SiPM




Roberta Cardinale

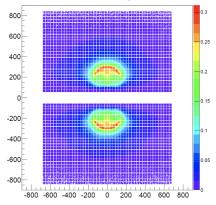
#### **Rings from collisions!**



# **RICH in Upgrade II**

- PID capability of charged hadrons fundamental in the LHCb physics program
- PID performance known to be affected by a high detector occupancy




• Goal: Keep/improve the current performance for Upgrade II at the HL-LHC extending also the high-momentum limit

# **RICH in Upgrade II**

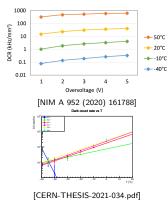
- Expected maximum occupancy (in limited regions of RICH1) in 2022:  $\sim 0.3$ ; known to be manageable from Run-1 and Run-2
- In Upgrade II:
  - far too high occupancy in the detector (in particular in the central region of RICH1): without any change wrt the Upgrade I detector, occupancies in excess of 100% are expected in RICH1
  - relatively large overall Cherenkov resolution

 $\sigma_{\theta} = \sigma_{\text{focusing}} \oplus \sigma_{\text{chromatic}} \oplus \sigma_{\text{pixelsize}}$ 

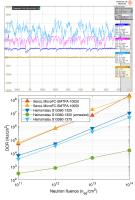
# Expected occupancy in RICH1 for Upgrade I



#### Design strategy for Upgrade II


| Reduce occupancy               | Reduce the angular granularity pixel size and/or focal length. |
|--------------------------------|----------------------------------------------------------------|
|                                | Readout timing information: the first time-resolved RICH       |
|                                | New optical design to spread out high-occupancy region         |
| Improve photon yield           | Sensors with enhanced PDE and large active area fraction       |
| Improve pixel size uncertainty | Reduce the pixel size                                          |
| Improve chromatic uncertainty  | Sensors with with enhanced red-shifted PDE                     |
|                                | Choice the gas radiator                                        |
| Improve focusing uncertainty   | Optical design and lightweight optics fabrication technologies |
| Keep low background/noise      | Narrow time bins in readout                                    |
| Keep low noise                 | If SiPM: cool it down.                                         |
|                                |                                                                |

#### New photo-sensor/photo-detector development


- For the Upgrade II, the MultiAnode-PMT (MaPMT) do not completely fulfill requirements, in particular pixel size (3 mm) and time resolution ( $\sim 200 \text{ ps}$ ).
- The baseline candidate photosensor for replacement are SiPMs.
- SiPM have the potential to meet all the the requirements after a vigorous R&D program targeted to LHCb/RICH:
  - improving intrinsic radiation hardness ⇒ work in strict contact with industrial partners;
  - enable operating at low enough temperature (plus, possibly, annealing) => study a suitable cooling system.
  - After that: shape the geometry of the design to obtain a large and uniform filling factor for the active areas.
- Need to characterize, improve and design for: correlated noise, time-response, low-temperature, radiation tolerance, light collection system, engineering....
- Synergies among several LHCb/RICH groups to fully characterize SiPM; sinergies outside LHCb are welcome.

#### SiPM well-known limitations

- High Dark Count rate (DCR) and correlated noise (cross-talk, after pulses, ...)
- DCR depends on temperature, it can be mitigated by cooling



- DCR depends heavily on irradiation
- It can be mitigated by cooling and annealing



[NIM A 952 (2020) 161788]

# SiPM for the LHCb/RICH

- The foreseen measurement of arrival times introduces short bins in time which, adding to the space bins given by pixels, helps a lot with DCR suppression, making DCR less critical. See presentation: A novel fast-timing readout chain for LHCb RICH LS3 enhancements and prototype beam tests, F.Keizer, this conference.
- In addition, the possibility of reducing radiation levels using neutron shielding around (parts of) the RICH is under investigation, in synergy with other LHCb detectors.
- Moreover, DCR adverse effects can be mitigated by using micro-lensing to reduce the physical SiPM area while keeping the effective pixel size in the range of  $\approx 1$  mm to avoid too many channels, and reducing sensor capacitance.

# Housing for SiPM for LHCb/RICH Upgrade II

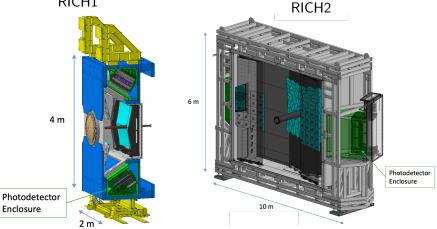
- A new housing PCB is needed for integration of SiPM in the current electro-mechanical structure
- Main challenges
  - integrate into the Elementary-Cell some sort of **active local cooling** with the other ancillary services.
  - maximize the geometry acceptance of the full PhotoDetector array (filling factor inside every module and among different modules) using optical adapters
  - signal coupling of the SiPM/Base-Board: the Base-Board complexity is driven by the number of channels which increases for larger number of channels because of higher densities, constraints on Front-End Board (FEB), readout chips channels and full readout scheme

# LHCb/RICH SiPM Cooling

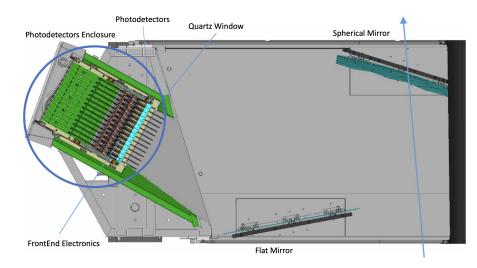
- The approach used for the housing of the MAPMT proved **very successful**. Therefore, we plan to continue to pursue it, by changing passive into active cooling.
- Strategy of cooling for Upgrade II
  - It depends on the required SiPM temperature
  - Local cooling: to cool down a region as small as possible around the sensor only, providing thermal insulation as close as possible to the sensor, thus minimizing the mass to cool and avoid problems with low temperatures of nearby objects, such as the radiator gases, using multiple cooling stages with several technologies
  - Global cooling: to cool down the full (or a part of if) PhotoDetector Assembly (PDA) into a cryostat
  - A combination of more techniques, Local plus Global, will be most likely required.

# LHCb/RICH SiPM Cooling Requirements

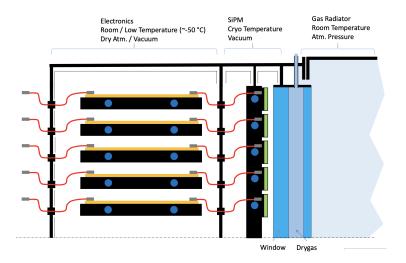
- Need to cool down both the sensors (SiPM) and the electronics
- $\bullet\,$  Large PhotoDetector Area: 4 planes,  $\sim 1\,m^2/planes$  each
- $\bullet\,$  Large optical window,  $\sim 1\,m^2$  separating the gas radiator from the PDA Asssembly
- Volume of the PDA:  $1.5\times0.7\times0.5\,\mathrm{m}^3$
- Considering a pixel size of  $1 \text{ mm}^2$  (30%) +  $9 \text{ mm}^2$  (70%) the estimates number of channels:  $\sim 400000/\text{plane}$
- Power estimate for electronics (FastRICH + TDC:  $5 \div 10 \, mW/channel + other components$ ):  $\sim 5 \, kW/plane$


#### Local cooling concept: new housing

- Cooling of solid state devices is today targeted by many applications, also at the industrial/commercial level.
- Possible technologies include
  - miniaturized active Peltier coolers; but radiation hardness has to be checked;
  - fluid micro-channel cooling technologies
  - miniature cryo-coolers
- Options for similar problems have been studied in LHCb.
- We are in the process to try to figure out the most promising approach and will look for expert advice (we cannot probably test all the possibilities....),
- Any of these technologies are to be integrated as much as possible in the housing or nearby. Cold fingers, capable to extract enough power, need to be placed as close as possible to the housing.


# **Global Cooling Strategy**

• Cryostat including the full (or a part of) PDA


RICH1



# **Global Cooling Strategy**



#### **Global cooling strategy: cryostat**



#### Global cooling strategy: cryostat 2

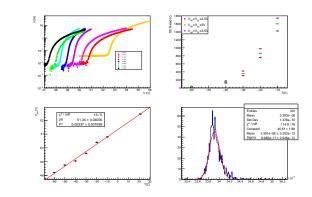
#### Critical issues include

- A large mass to cool and keep cold and thermal leaks.
- Possible thermal interference among the ambient temperature gas radiator, in order to avoid gas condensation due to the nearby cooled sensors.
- Quartz windows separate the SiPM region from gas radiator regions. To mitigate the thermal effect on the gas volume is to install two windows separated by vacuum/drygas
- Investigation on the feasibility is on-going.

#### **Development Plan for Local Cooling**

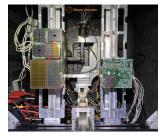
- Expert-advised market survey for available technologies.
- Modify the Base-Board to host SiPM instead of MAPMT (done) and test different SiPM (on-going).
- Base-Board with full geometrical acceptance SiPM coverage (in production).
- Thermal cooling measurements (started), and comparison with thermal simulations, aimed at modeling of thermal transfers
- First prototype with integrated cooling design in 2023.
- Details follow.

#### SiPM Evaluation Base-Board


- A first evaluation Base-Board housing SiPM already produced
- Fully compatible with the Upgrade I EC housing
- Housing various SiPM types (including Hamamatsu and FBK SiPM) for test purposes
- Possibility of reading both positive or negative SiPM signals (to be more flexible for the readout electronics)
- Tested successfully both in laboratory and in Autumn 2021/July 2022 testbeam periods



#### SiPM Base-Board prototypes: test in lab


- Fully automatic setup able to measure IV-curves/gain/DC rate/time resolution/... up to 8 channels
- System setup includes a laser with ps pulses, fast pre-amplifiers, a multichannel digitizer, several multimeters, an oscilloscope






#### TestBeam with SiPM Base-Board

• First test on beam of the opto-electronic chain with fast-timing information using the new SiPM Base-Board [See Floris Keizer's talk]



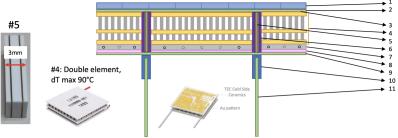








#### SiPM Base-Board prototype


- A prototype of the Base-Board housing SiPM has been designed and it is currently in production
- It houses 4 SiPM matrices with LGA (Hamamatsu S13361-3050NE-08)
- Main technological challenges:
  - achieved a high fill factor
- It will be tested both in laboratory and in the next testbeam period in one month time (October 2022)

| 30,4 mm        30,6 mm        4, x, 513361-3050ME-08        4, x, 513361-3050ME-08        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1        1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            | IV                                                                                                                                | -                                                                          | DL                                                                                                           |                                                                                                                      |                                                                | 2.(                                                                                                                                                                                                                                                                                                | ,                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 3000      3000      600        4 x \$13361-3000ME-08      4 x \$13361-3000ME-08      4 x \$13361-3000ME-08        1 main construction of the second of the s                                                                                                                                                                                                                                                              | -       |                                                                                                                                                                             | _                                                                                                                                                                                  | _                                                                                                                                                  | _                                                                                                            | _                                                                                                                    | _                                                    | _                                                                                                                                                                                                                                                 | 55,                                                                                                            | ¢ r | nm                                                                                                                                                                                                                                         | _                                                                                                                                 | _                                                                          | _                                                                                                            |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    | _                                                                                                              |
| 3000      3000      600        4 x \$13361-3000ME-08      4 x \$13361-3000ME-08      4 x \$13361-3000ME-08        1 main construction of the second of the s                                                                                                                                                                                                                                                              |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      | 1                                                    | 1                                                                                                                                                                                                                                                 | - [                                                                                                            |     | T                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| 3000      3000      600        4 x \$13361-3000ME-08      4 x \$13361-3000ME-08      4 x \$13361-3000ME-08        1 main construction of the second of the s                                                                                                                                                                                                                                                              |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      | i.                                                   |                                                                                                                                                                                                                                                   |                                                                                                                |     | Ē.                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                | 2                                                                                                                                                                                                                                                                                                  |                                                                                                                |
| 3000      3000      600        4 x \$13361-3000ME-08      4 x \$13361-3000ME-08      4 x \$13361-3000ME-08        1 main construction of the second of the s                                                                                                                                                                                                                                                              |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      | E                                                    |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            | T                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| 3000      3000      600        4 x \$13361-3000ME-08      4 x \$13361-3000ME-08      4 x \$13361-3000ME-08        1 main construction of the second of the s                                                                                                                                                                                                                                                              |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            | T                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      | E                                                    |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            |                                                                                                                                   | 1                                                                          | 25,81                                                                                                        | mm                                                                                                                   |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            | t                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     | t                                                                                                                                                                                                                                          | t                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     | t                                                                                                                                                                                                                                          | t                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       | -                                                                                                                                                                           |                                                                                                                                                                                    | -                                                                                                                                                  | 1                                                                                                            | i.                                                                                                                   | 1                                                    | T                                                                                                                                                                                                                                                 |                                                                                                                | 1   | T                                                                                                                                                                                                                                          | T                                                                                                                                 |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    | 1                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    | F                                                                                                            | 4 v                                                                                                                  | \$13                                                 | 336                                                                                                                                                                                                                                               | 1-3                                                                                                            | 0   | 50N                                                                                                                                                                                                                                        | E-C                                                                                                                               | 18                                                                         |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    | i.                                                                                                           | . ^                                                                                                                  | 51.                                                  |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   | -                                                                                                              |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   | . 1                                                                                                            |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     | t                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     | t                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1      A      B      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      C      D      D      C      D      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      | 1                                                    |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Max      Max <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_ 5</th> <th>5.6</th> <th>mm</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | _                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   | _ 5                                                                                                            | 5.6 | mm                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Max      Max <th>tΓ</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tΓ      |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                              |                                                                                                                      |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     |                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                            |                                                                                                              |                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                |
| Image: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ш       |                                                                                                                                                                             | 8.1                                                                                                                                                                                | 0.1                                                                                                                                                | <b>n</b> .1                                                                                                  | 11.1                                                                                                                 |                                                      | 6.1                                                                                                                                                                                                                                               | 1.4.1                                                                                                          | T   | dia.                                                                                                                                                                                                                                       | 0.1                                                                                                                               | 0.1                                                                        | <b>P</b> -1                                                                                                  | 8.4                                                                                                                  | 8.4                                                            | 0.1                                                                                                                                                                                                                                                                                                |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 4.2                                                                                                                                                                         | _                                                                                                                                                                                  | _                                                                                                                                                  | -                                                                                                            | -                                                                                                                    |                                                      |                                                                                                                                                                                                                                                   |                                                                                                                |     | -                                                                                                                                                                                                                                          | _                                                                                                                                 | <u> </u>                                                                   | <u> </u>                                                                                                     | -                                                                                                                    |                                                                | <u> </u>                                                                                                                                                                                                                                                                                           | _                                                                                                              |
| Max      Max <td>П</td> <td></td> <td>B-2</td> <td>6-2</td> <td>D-2</td> <td>E-2</td> <td>F-2</td> <td>62</td> <td>H-2</td> <td></td> <td>A-2</td> <td>B-2</td> <td>62</td> <td>D-2</td> <td>E-2</td> <td>F-2</td> <td>62</td> <td>H-2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | П       |                                                                                                                                                                             | B-2                                                                                                                                                                                | 6-2                                                                                                                                                | D-2                                                                                                          | E-2                                                                                                                  | F-2                                                  | 62                                                                                                                                                                                                                                                | H-2                                                                                                            |     | A-2                                                                                                                                                                                                                                        | B-2                                                                                                                               | 62                                                                         | D-2                                                                                                          | E-2                                                                                                                  | F-2                                                            | 62                                                                                                                                                                                                                                                                                                 | H-2                                                                                                            |
| Image: 1      Image: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | A-3                                                                                                                                                                         | B-2<br>B-3                                                                                                                                                                         | 0-2<br>0-3                                                                                                                                         | D-2<br>D-3                                                                                                   | 8-2<br>8-3                                                                                                           | F-2<br>F-3                                           | G-2<br>(5-3                                                                                                                                                                                                                                       | H2<br>H3                                                                                                       |     | A-2<br>A-3                                                                                                                                                                                                                                 | 8-2<br>8-3                                                                                                                        | 0-2<br>0-3                                                                 | D-2<br>D-3                                                                                                   | 8-2<br>8-3                                                                                                           | F-2<br>F-3                                                     | 6-2<br>0-3                                                                                                                                                                                                                                                                                         | H-2<br>H-3                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | A-3<br>A-4                                                                                                                                                                  | B-2<br>B-3<br>B-4                                                                                                                                                                  | 0-2<br>0-3<br>0-4                                                                                                                                  | D-2<br>D-3<br>D-4                                                                                            | 8-2<br>8-3<br>8-4                                                                                                    | F2<br>F3<br>F4                                       | 6-2<br>6-3<br>6-4                                                                                                                                                                                                                                 | H-2<br>H-3<br>H-4                                                                                              |     | A-2<br>A-3<br>A-4                                                                                                                                                                                                                          | 8-2<br>8-3<br>8-4                                                                                                                 | 02<br>03<br>04                                                             | D-2<br>D-3<br>D-4                                                                                            | 8-2<br>8-3<br>8-4                                                                                                    | F2<br>F3<br>F4                                                 | 6-2<br>6-3<br>6-4                                                                                                                                                                                                                                                                                  | H-2<br>H-3<br>H-4                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | A-3<br>A-1<br>A-5                                                                                                                                                           | 8-2<br>8-3<br>8-4<br>8-5                                                                                                                                                           | 02<br>03<br>04                                                                                                                                     | D-2<br>D-3<br>D-4<br>D-5                                                                                     | 8-2<br>8-3<br>8-4<br>8-5                                                                                             | F12<br>F13<br>F14<br>F15                             | 6-2<br>6-3<br>6-4<br>6-5                                                                                                                                                                                                                          | H2<br>H3<br>H4<br>H5                                                                                           |     | A-2<br>A-3<br>A-4<br>A-5                                                                                                                                                                                                                   | 8-2<br>8-3<br>8-4<br>8-5                                                                                                          | 03<br>04<br>05                                                             | D-2<br>D-3<br>D-4<br>D-5                                                                                     | 8-2<br>8-3<br>8-4<br>8-5                                                                                             | F12<br>F13<br>F14<br>F15                                       | 6-2<br>6-3<br>6-4<br>6-5                                                                                                                                                                                                                                                                           | H-2<br>H-3<br>H-4                                                                                              |
| 4      A      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | A-3<br>A-4<br>A-5<br>A-6                                                                                                                                                    | 8-2<br>8-3<br>8-4<br>8-5<br>8-6                                                                                                                                                    | 03<br>04<br>05<br>06                                                                                                                               | D-2<br>D-3<br>D-4<br>D-5<br>D-6                                                                              | 8-2<br>8-3<br>8-4<br>8-5<br>8-6                                                                                      | F12<br>F13<br>F14<br>F15<br>F16                      | 6-2<br>6-3<br>6-4<br>6-5<br>6-6                                                                                                                                                                                                                   | H2<br>H3<br>H4<br>H5<br>H6                                                                                     |     | A-2<br>A-3<br>A-4<br>A-5<br>A-6                                                                                                                                                                                                            | 8-2<br>8-3<br>8-4<br>8-5<br>8-6                                                                                                   | 03<br>04<br>05<br>06                                                       | D-2<br>D-3<br>D-4<br>D-5<br>D-6                                                                              | 8-2<br>8-3<br>8-4<br>8-5<br>8-6                                                                                      | F12<br>F13<br>F14<br>F15<br>F16                                | 6-2<br>6-3<br>6-4<br>6-5<br>6-6                                                                                                                                                                                                                                                                    | H-2<br>H-3<br>H-4<br>H-5<br>H-6                                                                                |
| 4      A      C      D      C      D      C      D      C      D      C      D      C      D      C      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D      D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | A-3<br>A-4<br>A-5<br>A-6<br>A-7                                                                                                                                             | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7                                                                                                                                             | 03<br>04<br>05<br>06<br>07                                                                                                                         | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7                                                                       | E-2<br>E-3<br>E-4<br>E-5<br>E-6<br>E-7                                                                               | F12<br>F13<br>F14<br>F15<br>F16<br>F17               | 6-2<br>0-3<br>0-4<br>6-5<br>6-5<br>6-7                                                                                                                                                                                                            | H-2<br>H-3<br>H-6<br>H-7                                                                                       |     | A-2<br>A-3<br>A-4<br>A-5<br>A-6<br>A-7                                                                                                                                                                                                     | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7                                                                                            | 02<br>03<br>04<br>05<br>06<br>07                                           | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7                                                                       | 8-2<br>8-3<br>8-4<br>8-5<br>8-5<br>8-6<br>8-7                                                                        | F12<br>F13<br>F14<br>F15<br>F16<br>F17                         | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>6-7                                                                                                                                                                                                                                                             | H-2<br>H-3<br>H-4<br>H-5<br>H-6<br>H-7                                                                         |
| As      Bs      Co      Ds      Co      Co      Bs      As      Ds      Co      Ds      Co      Bs        Me      Me      Co      Me      Me      Co      Ds      Co      Me      Me      Me      Co      Ds      Co      Me      Me </td <td>Sfen</td> <td>A-3<br/>A-4<br/>A-5<br/>A-6<br/>A-7<br/>A-8</td> <td>8-2<br/>8-3<br/>8-4<br/>8-5<br/>8-6<br/>8-7<br/>8-8</td> <td>0.2<br/>0.3<br/>0.4<br/>0.5<br/>0.6<br/>0.7<br/>0.8</td> <td>D-2<br/>D-3<br/>D-4<br/>D-5<br/>D-6<br/>D-7<br/>D-8</td> <td>E-2<br/>E-3<br/>E-4<br/>E-5<br/>E-6<br/>E-7<br/>E-8</td> <td>F12<br/>F13<br/>F14<br/>F15<br/>F15<br/>F16<br/>F17<br/>F18</td> <td>6-2<br/>0-3<br/>0-4<br/>0-5<br/>0-6<br/>0-6<br/>0-7<br/>0-8</td> <td>H2<br/>H3<br/>H4<br/>H5<br/>H6<br/>H7<br/>H8</td> <td></td> <td>A-2<br/>A-3<br/>A-4<br/>A-5<br/>A-6<br/>A-7<br/>A-8</td> <td>8-2<br/>8-3<br/>8-4<br/>8-5<br/>8-6<br/>8-7<br/>8-8</td> <td>02<br/>03<br/>04<br/>05<br/>06<br/>07<br/>08</td> <td>D-2<br/>D-3<br/>D-4<br/>D-5<br/>D-6<br/>D-7<br/>D-8</td> <td>E-2<br/>E-3<br/>E-4<br/>E-5<br/>E-6<br/>E-7<br/>E-8</td> <td>F12<br/>F13<br/>F14<br/>F15<br/>F16<br/>F17<br/>F18</td> <td>6-2<br/>6-3<br/>6-4<br/>6-5<br/>6-5<br/>6-7<br/>6-8</td> <td>H2<br/>H3<br/>H5<br/>H6<br/>H7</td>                                                                                                                                                                                                                                                                                                                                                                                                        | Sfen    | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8                                                                                                                                      | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8                                                                                                                                      | 0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7<br>0.8                                                                                                      | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8                                                                | E-2<br>E-3<br>E-4<br>E-5<br>E-6<br>E-7<br>E-8                                                                        | F12<br>F13<br>F14<br>F15<br>F15<br>F16<br>F17<br>F18 | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-6<br>0-7<br>0-8                                                                                                                                                                                              | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H8                                                                         |     | A-2<br>A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8                                                                                                                                                                                              | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8                                                                                     | 02<br>03<br>04<br>05<br>06<br>07<br>08                                     | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8                                                                | E-2<br>E-3<br>E-4<br>E-5<br>E-6<br>E-7<br>E-8                                                                        | F12<br>F13<br>F14<br>F15<br>F16<br>F17<br>F18                  | 6-2<br>6-3<br>6-4<br>6-5<br>6-5<br>6-7<br>6-8                                                                                                                                                                                                                                                      | H2<br>H3<br>H5<br>H6<br>H7                                                                                     |
| Mai      Mai      Col      Col      Fe      Fe      Col      Mai      Mai      Col      Col      Fe      Mai      Mai      Col      Col      Mai      Mai      Col      Col      Mai      Mai      Col      Mai      Mai      Col      Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - SSénn | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-1                                                                                                                               | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1                                                                                                                               | 02<br>03<br>04<br>05<br>06<br>07<br>08                                                                                                             | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1                                                         | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1                                                                 | N2<br>FN<br>FN<br>FN<br>FN<br>FN                     | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>6-7<br>0-8<br>0-8                                                                                                                                                                                              | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H8                                                                         |     | A-2<br>A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-7                                                                                                                                                                                       | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1                                                                              | 02<br>03<br>04<br>05<br>06<br>07<br>08                                     | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1                                                         | 8-2<br>6-3<br>6-4<br>8-5<br>8-6<br>8-7<br>8-8                                                                        | N2<br>FN<br>FN<br>FN<br>FN<br>FN                               | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-6<br>0-6<br>0-8<br>0-8                                                                                                                                                                                                                                        | H-2<br>H-3<br>H-4<br>H-5<br>H-7<br>H-8<br>H-1                                                                  |
| A5      B5      C5      B5      F5      F5      F5      A5      B5      C5      D5      D5      F5      F5      G5      H5      A5      B5      C5      D5      F5      F5      F5      G5      H5      A5      B5      C5      D5      F5      F15      G5      H5      A5      B5      C5      D5      F15      F15      G5      H5      A5      B5      C5      D5      F15      F15      G5      H5      A5      B5      C5      D5      F15      G5      H5      G5      H5      G5      H5      G5      H5      G5      H5      G6      H6      B6      C6      D6      C6      H6      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.6m   | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-1<br>A-2<br>A-1<br>A-2                                                                                                          | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1<br>8-2                                                                                                                        | 02<br>03<br>04<br>05<br>06<br>07<br>08<br>02                                                                                                       | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2                                                  | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>51<br>52                                                                   | N2 10 10 10 10 10 10 10 10 10 10 10 10 10            | 62<br>03<br>04<br>65<br>67<br>68<br>61<br>62                                                                                                                                                                                                      | 142<br>143<br>144<br>145<br>146<br>147<br>148                                                                  |     | A2<br>A3<br>A4<br>A5<br>A6<br>A6<br>A7<br>A8<br>A2<br>A2                                                                                                                                                                                   | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1<br>8-2                                                                       | 02<br>03<br>04<br>05<br>06<br>08<br>02                                     | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2                                                  | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>61<br>52                                                                   | N2<br>N1<br>N1<br>N1<br>N1<br>N1<br>N1<br>N1<br>N1<br>N1<br>N1 | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-6<br>0-8<br>0-8<br>0-8<br>0-2                                                                                                                                                                                                                                 | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H8<br>H1<br>H2                                                             |
| A6      B6      C6      D6      E6      F4      G6      H6      A6      B6      C6      D6      E6      F4      G6      H6        A7      B7      C7      D7      D7      D7      B7      C7      B7      C7      D7      D7 </td <td>55.énn</td> <td>A-3<br/>A-4<br/>A-5<br/>A-6<br/>A-7<br/>A-8<br/>A-7<br/>A-8<br/>A-2<br/>A-3<br/>A-3</td> <td>8-2<br/>8-3<br/>8-4<br/>8-5<br/>8-6<br/>8-7<br/>8-8<br/>8-1<br/>8-2<br/>8-3<br/>8-3</td> <td>02<br/>03<br/>04<br/>05<br/>06<br/>07<br/>08<br/>07<br/>08</td> <td>D-2<br/>D-3<br/>D-4<br/>D-5<br/>D-6<br/>D-7<br/>D-8<br/>D-1<br/>D-2<br/>D-3</td> <td>5-2<br/>5-3<br/>5-4<br/>5-5<br/>5-6<br/>5-7<br/>5-8<br/>5-1<br/>5-2<br/>5-3</td> <td>N2 N1 N1</td> <td>62<br/>63<br/>64<br/>65<br/>64<br/>67<br/>68<br/>61<br/>62<br/>63</td> <td>82<br/>83<br/>84<br/>85<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86<br/>86</td> <td></td> <td>A2<br/>A3<br/>A4<br/>A5<br/>A6<br/>A6<br/>A6<br/>A8<br/>A3<br/>A3</td> <td>8-2<br/>8-3<br/>8-4<br/>8-5<br/>8-6<br/>8-7<br/>8-7<br/>8-8<br/>8-7<br/>8-2<br/>8-3</td> <td>02<br/>03<br/>04<br/>05<br/>06<br/>07<br/>08<br/>01<br/>02<br/>03</td> <td>D-2<br/>D-3<br/>D-4<br/>D-5<br/>D-6<br/>D-7<br/>D-8<br/>D-1<br/>D-2<br/>D-3</td> <td>52<br/>53<br/>54<br/>55<br/>56<br/>57<br/>58<br/>51<br/>52<br/>51</td> <td>N2 N1 N1</td> <td>6-2<br/>6-3<br/>6-4<br/>6-5<br/>6-7<br/>6-8<br/>6-1<br/>6-2<br/>6-1<br/>6-2<br/>6-3</td> <td>H-2<br/>H-3<br/>H-4<br/>H-5<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7<br/>H-7</td> | 55.énn  | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-7<br>A-8<br>A-2<br>A-3<br>A-3                                                                                                   | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1<br>8-2<br>8-3<br>8-3                                                                                                          | 02<br>03<br>04<br>05<br>06<br>07<br>08<br>07<br>08                                                                                                 | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3                                           | 5-2<br>5-3<br>5-4<br>5-5<br>5-6<br>5-7<br>5-8<br>5-1<br>5-2<br>5-3                                                   | N2 N1            | 62<br>63<br>64<br>65<br>64<br>67<br>68<br>61<br>62<br>63                                                                                                                                                                                          | 82<br>83<br>84<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86             |     | A2<br>A3<br>A4<br>A5<br>A6<br>A6<br>A6<br>A8<br>A3<br>A3                                                                                                                                                                                   | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-7<br>8-8<br>8-7<br>8-2<br>8-3                                                         | 02<br>03<br>04<br>05<br>06<br>07<br>08<br>01<br>02<br>03                   | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3                                           | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>51<br>52<br>51                                                             | N2 N1                      | 6-2<br>6-3<br>6-4<br>6-5<br>6-7<br>6-8<br>6-1<br>6-2<br>6-1<br>6-2<br>6-3                                                                                                                                                                                                                          | H-2<br>H-3<br>H-4<br>H-5<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7<br>H-7                 |
| A7 B7 C7 D7 D7 F7 G7 H7 A7 B7 C7 D7 F7 G7 H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.6mm  | 4-3<br>4-4<br>4-5<br>4-6<br>4-7<br>4-8<br>4-1<br>4-2<br>4-3<br>4-4                                                                                                          | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-8<br>8-1<br>8-2<br>8-3<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4<br>8-4 | 02<br>03<br>04<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05                                                       | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3<br>D-4                      | 5-2<br>5-3<br>5-4<br>5-5<br>5-6<br>5-7<br>5-8<br>5-1<br>5-1<br>5-1<br>5-1<br>5-1<br>5-1<br>5-1                       |                                                      | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-7<br>0-8<br>0-1<br>0-2<br>0-1<br>0-2<br>0-1<br>0-2<br>0-3<br>0-4<br>0-4<br>0-4<br>0-5<br>0-6<br>0-6<br>0-7<br>0-8<br>0-7<br>0-8<br>0-7<br>0-8<br>0-8<br>0-9<br>0-9<br>0-9<br>0-9<br>0-9<br>0-9<br>0-9<br>0-9 | 82<br>83<br>84<br>85<br>86<br>87<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88       |     | A2<br>A3<br>A4<br>A5<br>A6<br>A7<br>A8<br>A3<br>A4<br>A3<br>A4                                                                                                                                                                             | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-1<br>8-2<br>8-3<br>8-4                                                         | 02<br>03<br>04<br>05<br>05<br>05<br>04<br>04<br>02<br>02<br>03<br>04       | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-7<br>D-8<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3<br>D-4        | 62<br>63<br>64<br>65<br>66<br>67<br>68<br>61<br>61<br>61<br>61                                                       | N2 N1                      | 6-2<br>6-3<br>6-4<br>6-5<br>6-6<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7                                                                                                                                                                                                                   | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H8<br>H1<br>H2<br>H1<br>H2<br>H1                                           |
| A4 56 C4 56 54 54 54 54 54 54 54 54 54 54 54 54 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.énn  | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8                                                                       | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-6<br>8-7<br>8-8<br>8-1<br>8-2<br>8-2<br>8-3<br>8-4<br>8-5<br>8-4<br>8-5                                                                |                                                                                                                                                    | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3<br>D-4<br>D-5                             | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | N N N N N N N N N N N                                | 6-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-7<br>0-8<br>0-1<br>0-2<br>0-2<br>0-4<br>0-4<br>0-4<br>0-4<br>0-4<br>0-4<br>0-4<br>0-5<br>0-6<br>0-6<br>0-7<br>0-7<br>0-7<br>0-7<br>0-7<br>0-7<br>0-7<br>0-7                                                  | 82<br>83<br>84<br>85<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86             |     | A-2<br>A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8 | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-8<br>8-1<br>8-2<br>8-3<br>8-4<br>8-5        | 02<br>03<br>04<br>05<br>06<br>07<br>08<br>01<br>02<br>02<br>04<br>04<br>05 | D-2<br>D-3<br>D-4<br>D-5<br>D-6<br>D-7<br>D-8<br>D-1<br>D-2<br>D-3<br>D-4<br>D-5                             | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | N N N N N N N N N N N                                          |                                                                                                                                                                                                                                                                                                    | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.6mm  | A-3<br>A-4<br>A-5<br>A-6<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-7<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8<br>A-8 | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-8<br>8-7<br>8-7<br>8-7<br>8-7                                                                              | 02<br>03<br>04<br>05<br>05<br>05<br>07<br>08<br>01<br>02<br>03<br>04<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05<br>05 | 0-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-7<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8 | 52<br>53<br>54<br>55<br>56<br>57<br>58<br>51<br>52<br>51<br>54<br>54<br>54<br>54                                     | NNNNNNNNNN                                           | 6-2<br>6-3<br>6-4<br>6-5<br>6-7<br>6-8<br>6-1<br>6-2<br>6-3<br>6-4<br>6-5<br>6-4<br>6-5<br>6-4<br>6-5<br>6-4<br>6-5<br>6-4<br>6-5<br>6-4<br>6-5<br>6-4<br>6-5<br>6-6<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7<br>6-7                             | 82<br>83<br>84<br>85<br>86<br>87<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86<br>86 |     | A2<br>A3<br>A4<br>A5<br>A6<br>A6<br>A6<br>A6<br>A6<br>A6<br>A6<br>A3<br>A4<br>A5<br>A6                                                                                                                                                     | 8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-7<br>8-6<br>8-7<br>8-8<br>8-7<br>8-8<br>8-1<br>8-2<br>8-3<br>8-4<br>8-5<br>8-6<br>8-5<br>8-6 | 04<br>04<br>05<br>04<br>05<br>04<br>04<br>02<br>03<br>04<br>04<br>05       | 0-2<br>0-3<br>0-4<br>0-5<br>0-6<br>0-7<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8<br>0-8 | 52<br>53<br>54<br>55<br>55<br>57<br>58<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | N N N N N N N N N N N                                          | 62<br>63<br>64<br>65<br>65<br>67<br>68<br>61<br>62<br>64<br>64<br>64<br>65<br>64<br>64<br>65<br>64<br>64<br>65<br>64<br>64<br>65<br>64<br>65<br>64<br>65<br>64<br>65<br>65<br>64<br>65<br>65<br>64<br>65<br>65<br>64<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | H2<br>H3<br>H4<br>H5<br>H6<br>H7<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1 |

SiPM BB v 2.0

# First SiPM BB prototype with active cooling

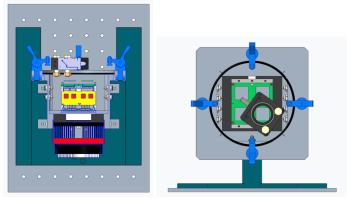
• New version currently under design will include some pioneering prototype for active cooling



Legend:

- 1. SiPM matrix (8 x 8 S13361-3050NE-08)
- 2. SiPM signals fan-out PCB
- 3. Silicon conductive paste with high thermal conductivity
- Two Stages Peltier cell (2<sup>nd</sup> stage with doubled thickness compared to the first, to keep the same useful cold area)

- 5. Silicon rubber with vertical gold wires (SiPM to FEB fan-out)
- 6. Silicon rubber holder
- 7. Metal heatsink with possible liquid cooling
- 8. Thermal insulator
- 9. Baseboard PCB
- 10. Front-End Board connector
- 11. Fron-End Board


#### First SiPM Base-Board with active cooling

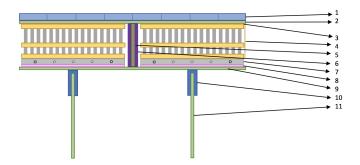
- Test of a system equipped with Peltier cells on-going to measure the effectiveness of cooling and orient the design
- A direct-to-air thermoelectric cooling assembly equipped with Peltier modules is used



# First SiPM Base-Board with active cooling 2

- An enclosure with a transparent quartz window to house the full EC has been designed
- Modified FEBs have been produced to be able to reroute the SiPM signals




Courtesy of Cecilia Rossi and Antonello Mercenaro, INFN Genova

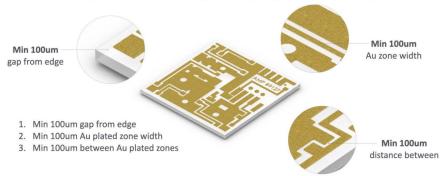
Roberta Cardinale

## Conclusions

- Start from the robust design for MAPMT and try to adapt.
- From MAPMT to SiPM: no challenge (with the same pixel size)
- From passive to active cooling: it looks like challenging, whatever strategy, either local or global cooling.
- A SiPM Evaluation Base-Board (without cooling) already produced and tested both in lab and in testbeams
- A SiPM Base-Board prototype currently in production and ready to be tested at the next testbeam in October2022
- Design of a BaseBoard with integrated cooling already developed: to be produced in 2023
- A cryogenic cooling is under study
- A full campaign of tests foreseen in the next months

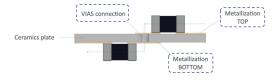
# **Spare Slides**



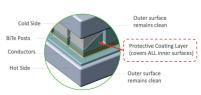

Legend:

- 1. SiPM matrix (8 x 8 S13361-3050NE-08)
- 2. SiPM signals fan-out PCB
- 3. Silicon conductive paste with high thermal conductivity
- Two Stages Peltier cell (2<sup>nd</sup> stage with doubled thickness compared to the first, to keep the same useful cold area)

- 5. Silicon rubber with vertical gold wires (SiPM to FEB fan-out)
- 6. Silicon rubber holder
- 7. Metal heatsink with possible liquid cooling
- 8. Thermal insulator
- 9. Baseboard PCB
- 10. Front-End Board connector
- 11. Fron-End Board


#### THREE BASIC DESIGN RULES FOR AU PATTERNS

There is a simple rule "3x100um". The shape and complexity of Au pattern can be any then




Au pattern can be applied to one or both sides of the ceramic substrate.

For application with Dew Point and condensation risks, TEC can be provided with a protective coating



The connection between AU patterns on each side can be created using VIAs

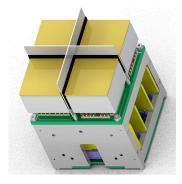


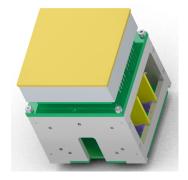
## **Cooling requirements for Upgrade I - RICH1**

| Number of circuits (loops):               | 2                                                        |
|-------------------------------------------|----------------------------------------------------------|
| Nominal heat power:                       | $2 	imes 3.45  \mathrm{kW}$                              |
| Max. temperature of the photon detectors: | $< 35 ^{\circ}\mathrm{C}$                                |
| Max. temperature of electronics           | $< 50 ^{\circ}\mathrm{C}$                                |
| Coolant:                                  | Fluorinated fluid:                                       |
|                                           | $3M \text{ Novec}^{TM} 649, 7100 \text{ or } C_6 F_{14}$ |
| Heat transfer medium:                     | Liquid mono-phase                                        |
| Minimum temperature at the PDA inlet:     | $\sim 11 ^{\circ}\mathrm{C}$                             |
| Temperature difference of the coolant     |                                                          |
| (PDA outlet), $\Delta T$ :                | 5 °C                                                     |
| Maximum pressure at the PDA inlet:        | $< 2 \mathrm{bar}$                                       |
| Pressure drop in the PDA:                 | $\sim 0.7\mathrm{bar}$                                   |
| Leak rate, in total:                      | < 0.05  l/day                                            |
| Typical flow of the coolant:              | 1750 l/h                                                 |

| Component                             | Power            |
|---------------------------------------|------------------|
| Digital Boards, LV (7 V, 3.4 A):      | $6\mathrm{kW}$   |
| Front-end ASIC Boards (0.128 W/board) | $250\mathrm{W}$  |
| The high voltage divider boards       | $650\mathrm{W}$  |
| Total power per Column                | $311\mathrm{W}$  |
| Total power                           | $6.9\mathrm{kW}$ |

Roberta Cardinale


## **Cooling requirements for Upgrade I - RICH2**


| Number of circuits (loops):                 | 2                                                               |
|---------------------------------------------|-----------------------------------------------------------------|
| Nominal heat power:                         | $2 \times 2.1 \mathrm{kW}$                                      |
| Max. temperature of the photon detectors:   | $< 35 ^{\circ}\mathrm{C}$                                       |
| Max. temperature of electronics             | $< 50 ^{\circ}\mathrm{C}$                                       |
| Coolant (Fluorinated fluid) [9]:            | $3M \text{ Novec}^{\text{TM}} 649, 7100 \text{ or } C_6 F_{14}$ |
| Heat transfer medium:                       | Liquid mono-phase                                               |
| Minimum temperature at the PDA inlet:       | $\sim 11 ^{\circ}\mathrm{C}$                                    |
| Temperature difference of the coolant       |                                                                 |
| $(\text{PDA}),  \Delta  T_{inlet-outlet}$ : | 5 °C                                                            |
| Maximum pressure at the PDA inlet:          | $< 2 \mathrm{bar}$                                              |
| Pressure drop in the PDA:                   | $\sim 0.7\mathrm{bar}$                                          |
| Leak rate, in total:                        | $< 0.05  \mathrm{l/day}$                                        |
| Typical flow of the coolant:                | 1060  l/h                                                       |

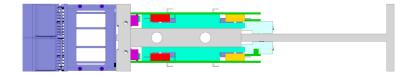
| Component                             | Power            |
|---------------------------------------|------------------|
| Digital Boards, LV (7 V, 3.4 A):      | $3.6\mathrm{kW}$ |
| Front-end ASIC Boards (0.128 W/board) | $150\mathrm{W}$  |
| The high voltage divider boards       | $650\mathrm{W}$  |
| Total power per Column                | $175\mathrm{W}$  |
| Total power                           | $4.2\mathrm{kW}$ |

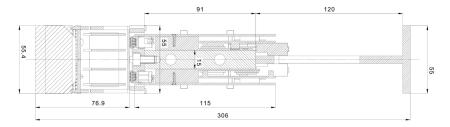
Roberta Cardinale

# MaPMT for LHCb/RICH Upgrade I






# MaPMT for LHCb/RICH Upgrade I

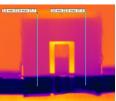


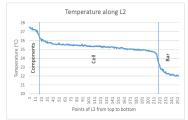

Bare Aluminium (Alu) case

Roberta Cardinale

# LHCb/RICH upgrade-I cooling system





# LHCb/RICH upgrade-I cooling system











# **Detector Design for Upgrade II**

#### Main requirements

- Single-photon Cherenkov angle uncertainty  $\sigma \lesssim 0.4/0.2 \,\mathrm{mrad}$  (RICH1/RICH2)
  - a factor 2 better than expected for Run3
- $\,$   $\,$  Number of detected photons per saturated track:  $\gtrsim 40/30~({\rm RICH1}/{\rm RICH2})$
- Maximum signal occupancy  $\approx 0.2$  (space and time bins)
- Signal/noise ratio: average Dark Count Rate occupancy  $\approx 0.001$  (space and time bins); plus cross-talk, after-pulse.....
- Provide the system with timing capabilities (event gating and photon ToD)
- Active area fraction:  $\gtrsim$  0.8.
- Integrate the detector with its own system for monitoring and calibration, to improve the systematic uncertainties.
- Plus, of course, many other requirements: recovery time, robustness to magnetic fields (could remove magnetic shield in RICH1 freeing space), feasibility of large-area implementation, uniformity, stability, rad-hardness, ageing, cooling, bandwidth limit, greenify whatever possible.....

## **Detector Design for Upgrade II 2**

- All this require and translates into the following sub-systems requirements.
  - New optical design.
  - New photo-sensors.
  - New readout for a time-resolved RICH.
  - New calibration/monitoring system with sub-ns precision and relative/absolute detector efficiency online measurement/calibration.
  - New radiator gases? TBD.
  - Aerogel? TBD.

See presentation: *Study of new aerogel radiators for the LHCb RICH upgrade*, A. Lozar, this conference.