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Project goal and detector concept
n Development of a new photodetector with large active area able 

to measure single photons with simultaneous excellent timing 
and spatial resolution, with a low noise level at room temperature

n Detector based on a “hybrid” concept: 
q Vacuum detector; photocathode with high QE in the region of interest
q Proximity-focusing geometry
q Micro-channel plate (MCP) amplification
q Silicon ASIC embedded inside vacuum tube
q Reference: JINST 13 C12005 2018

Target time resolution <100 ps r.m.s.
Position resolution 5-10 μm
High-rate capability 109 hits/s
Low dark count rate at room T ~102-103 counts/s
Large active area 7 cm2

High channel density 0.23 millions
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https://iopscience.iop.org/article/10.1088/1748-0221/13/12/C12005/meta
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n Entrance window + 
photocathode
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Detector concept

RICH 2022

n Entrance window + 
photocathode
q Photon conversion
q High QE 

photocathode in 
the blue-green 
region
n E.g. bialkali, 

multialkali
n ~102 Hz/cm2

dark count rate
at room 
temperature

n Best for timing
q Flexible design 

allows to use 
different 
photocathodes

Single-photon

Photo-electron
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Detector concept

RICH 2022

Single-photon

Photo-electron

n Entrance window + 
photocathode

n Microchannel plate 
stack (chevron)
q A few 104 gain
q 5-10 μm pore size
q Short distance 

from MCP to 
cathode and anode 
for best time and 
position resolution

q Atomic layer 
deposition for 
increased lifetime 
>20 C/cm2
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Detector concept
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Single-photon

Photo-electron

Electrons cloud

n Entrance window + 
photocathode

n Microchannel plate 
stack (chevron)
q A few 104 gain
q 5-10 μm pore size
q Short distance 

from MCP to 
cathode and anode 
for best time and 
position resolution

q Atomic layer 
deposition for 
increased lifetime 
>20 C/cm2
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Detector concept
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Single-photon

Photo-electron

Electrons cloud

Pixelated anode

n Entrance window + 
photocathode

n Microchannel plate 
stack (chevron)

n Pixelated anode
q Electron cloud 

spread over a 
number of pixels

q 55μm× 55μm 
pixel size

q 0.23 M pixels 
measuring arrival 
time and duration 
of input signals

q 7 cm2 active area
q Up to 2.5 Ghits/s
q Local signal 

processing
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Hybrid detector assembly
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3D structure: detector rendering
Section view

n Vacuum-based detector
q Assembly of many components under high vacuum (~10-10 mbar)
q High-speed connections through pins in ceramic carrier board

40 mm

35 mm
12 mm
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3D structure: detector rendering
Section view

n Vacuum-based detector
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n Heat sink for stable detector operation (~5 W heat removal)
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Hybrid detector assembly

RICH 2022

3D structure: detector rendering
Section view

n Vacuum-based detector
q Assembly of many components under high vacuum (~10-10 mbar)
q High-speed connections through pins in ceramic carrier board

n Heat sink for stable detector operation (~5 W heat removal)
n Carrier printed circuit board (PCB)

q Socket for detector pins, regulators and high voltage
q Connected to FPGA-based read-out and DAQ via 16×10 Gbps links

40 mm

35 mm
12 mm
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Detector geometry

n Shortest photocathode-to-MCP distance preserves impact 
position information 

n Optimized MCP-to-anode distance spreads the electron cloud 
over a number of pixels

Input window, with internal photocathode coating

Ceramic carrier board

Pixelated CMOS anode

Heat sink

MCP stack

PCB PCB

Socket for 
pin connectors

Socket for 
pin connectors
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Pixelated anode
n Timepix4 ASIC in 65nm CMOS silicon pixel technology

q Developed and produced by the Medipix4 Collaboration for hybrid pixel detectors

Massimiliano Fiorini (Ferrara)RICH 2022 13

n Charge sensitive amplifier, single threshold discriminator 
and TDC based on Voltage Controlled Oscillator
q 4-side buttable (TSV)
q Data-driven and frame-based read-out

Technology CMOS 65 nm
Pixel Size 55 μm × 55 μm

Pixel arrangement 4-side buttable
512×448 (0.23 Mpixels)

Sensitive area 6.94 cm2 (2.82 cm × 2.46 cm)
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Data driven
Mode TOT and TOA
Event Packet 64-bit
Max rate 358 Mhits/cm2/s

TDC bin size 195 ps
Readout bandwidth ≤163.84 Gbps (16× @10.24 Gbps)

Equivalent noise charge 50-70 e-

Target global minimum threshold <500 e-
t1

  [
ns

]

Charge  [ke-]



The Timepix4 ASIC
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n 65 nm CMOS (TSMC)
n ASIC productions:

q Timepix4_v0 (Q1 2020)
q Timepix4_v1 (Q4 2020)
q Timepix4_v2 (Q4 2021)

Timepix4

Timepix2

X. Llopart (CERN)



Timepix4 hit data
n Measures arrival time (t1) and Time-over-Threshold (ToT=t2-t1)

q TDC bin size: 195 ps (56 ps r.m.s. resolution per pixel)
n Electron cloud spread over a number of pixels à cluster
n Use ToT information (proportional to the charge in a pixel) to:

q Correct for time-walk effect in every pixel
q Improve position resolution by centroid algorithm

n Go from 55μm/ 12~16μm down to 5μm
q Improve timing resolution by multiple sampling

n Many time measurements for the same photon à few 10s ps
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Timepix4 data-driven read-out
n Zero-suppressed continuous data-driven

q Output bandwidth from 40 Mbps (2.6 Hz/pixel) to 160 Gbps (10.8 
KHz/pixel)

n 4 external inputs to synchronize/align external signals with data
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Electronics and DAQ
n On-detector electronics

q Timepix4 ASIC
q Electro-optical transceivers will 

link the ASIC to an FPGA-based 
board for the exchange of 
configuration (slow control) and 
the collection of event data

q Regulators, etc.
n Off-detector electronics

q FPGA far from detector
n The FPGA performs serial 

decoding and sends the data to a 
PC for data analysis and storage 
using fast serial data links
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Current test system
n Timepix4 bump-bonded to 300 𝜇m thick silicon sensor
n SPIDR4 FPGA read-out system and sensor carrier board 

q Developed by Nikhef Medipix4 group

n Dedicated DAQ system under development
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Software
n Dedicated software 

under development
n C++ based

q Low-level
q Object-oriented

n Readout and Control in 
unique CLI

n Read and Write register 
functions

n Application 
Programming Interfaces 
for Timepix4

n Packets decoder 
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Measurements with Timepix4
n Digital test pulse:

q Correct patterns, number of pulses and 
ToA-ToT

n Radioactive sources measurement:
q Density based clustering (DBSCAN)
q Preliminary ToT-charge calibration 
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Measurements with Timepix4
n Analog test pulse:

q Expected ToT gaussian 
distribution at fixed values of 
the test pulse voltage

q Average ToT changes 
accordingly to the set voltage

q Per-pixel ToT calibration 
through test pulse over the 
whole pixel matrix

q Calibration validated using 
radioactive sources

n Next steps
q Timing and spatial resolution 

measurement using digital 
pixels and laser setup
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RICH 2022

A possible application
n LHCb RICH detector Upgrade II

q Current detectors not adequate for RICH in the HL-LHC environment
q Need for a new photodetector with fine granularity (<1 mm) and time 

resolution <100 ps (the smaller the better)

LHCb Run 1-2
q ℒ ~ 4×1032 cm-2s-1
q ~2 k photons in 25 ns 
q ~100 rings

Massimiliano Fiorini (Ferrara)22

X coordinate [mm]

Y
 c

oo
rd

in
at

e 
[m

m
]

X coordinate [mm]

Y
 c

oo
rd

in
at

e 
[m

m
]

LHCb Run 5-6
q ℒ ~ 1-2×1034 cm-2s-1
q ~100 k photons in 25 ns 
q ~5 k rings

LHCb Run 3-4
q ℒ ~ 2×1033 cm-2s-1
q ~10 k photons in 25 ns 
q ~500 rings



Future RICH detectors
n Advantage of the proposed device for future RICH detectors:

q 5-10 µm position resolution à the pixel size contribution to the 
Cherenkov angle resolution becomes negligible

q High granularity (55 µm×55 µm) and rate capabilities (2.5 Ghits/s) 
crucial in applications with large detector occupancies

q <100 ps resolution per single photon excellent handle for pattern 
recognition and time-association of the individual photons

q Negligible detector-related background at room T
q Robust in magnetic fields
q Longer lifetime compared to standard applications due to low gain
q On-detector signal processing and digitization with large number of 

active channels (~230 k pixels), with limited number of external 
interconnections (~200)
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Radiation hardness
n For the LHCb Upgrade II we expect, in the RICH region:

q ~2 Mrad TID, ~3×1013 1 MeV neq/cm2, ~1×1013 HEH/cm2

n Advantages of the proposed detector:
q Optical window made of “silica” glass

n Expect no degradation of window transmittance
q 65 nm CMOS front-end technology 

n Resistant to >100 Mrad Total Ionising Dose
n Triple Modular Redundancy not implemented in Timepix4

q Single Event Upset mitigation: refresh configuration registers
q FPGA-based back-end electronics far from detector region

n Signals are digitized inside the vacuum tube
n Use radiation hard components on-detector (transceivers, etc.)

n Future improvements
q Use VeloPix2 (PicoPix) ASIC (30 ps TDC, rad. hard by design)
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Project status
n Electronics 

q Timepix4: v2 bare ASIC extensively tested; first tests with Si sensor in 
summer 2022
n Detailed study of ASIC performance and calibrations
n Calibrations with radioactive sources and test pulses
n Power measurements and cooling system development

q Development of FPGA-based control board
n Firmware almost complete

n C++ software development for ASIC configuration, DAQ and 
analysis  

n Ceramic carrier studies
q Engineering mock-ups
q Thermal simulation and measurements
q Simulation of effects of ceramics on 10 Gbps lines (signal integrity)
q Components connection
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Summary
n A detector for visible single photons, based on a bare 

Timepix4 CMOS ASIC embedded in a vacuum tube with a 
MCP is under development for the detection of up to 109

photons/s with simultaneous measurement of time and 
position with excellent resolutions
q Fully exploit both timing and position resolutions of a MCP
q High-performance data acquisition (up to 160 Gbps)

n The presented single-photon imaging technology could 
enable discovery in different fields of science
q High-energy physics, life sciences, quantum optics, etc.
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