Status and Perspectives of Vacuum-based Photon Detectors

Albert Lehmann (Universität Erlangen-Nürnberg)

- Introduction
- Status and innovations of basic photo detector elements
- Status, applications and perspectives of
 - Single and multi-anode dynode PMTs
 - Hybrid (avalanche) photo diodes
 - Microchannel-plate PMTs
- Comparison of selected performance parameters
- Summary and outlook

ΕΔΚΙ ΙΙ ΤΆΤ

Albert Lehmann

Sensor Requirements for Cherenkov Devices

Detection of (few) single photons

- Broad wavelength range (~200 nm to ~1000 nm)
- Large signals → gain ≥10⁶
- High detection efficiency (PDE = QE * CE * FF)
- Very low dark count rate (few Hz to <1 kHz/cm²)

Timing issues

- Fast time response
 - Low transit time spread (σ_{TTS} < 50 ps to few ns)
 - Good (RMS) time resolution (down to σ_t < 100 ps)
- Low probability of delayed secondary signals (afterpulses, recoil electrons, ...)
- Rate capability few Hz to ~100 MHz/cm²

Others

- Lifetime up to >>10 C/cm² integrated anode charge
- Readout rate from few Hz to >>1 MHz

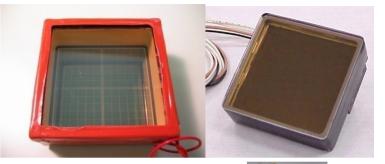
Geometrical constraints

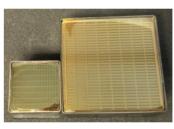
- Compact sensors because of lack of space
- Large (active) area coverage
 - Total surface coverage up to many m² (even km²)
 - Active area ratio (FF) up to >90%
- Spatial resolution
 - Down to few mm² in xy and <1 mm in one dimension (x or y)</p>
 - Down to O(~10 μm) for some applications

Environmental constraints

- Magnetic field immunity from 0 to 4 Tesla
 - Axial and/or transverse
- Radiation dose
 - Charged particles: >>1 kRad/year (= 10 Gy/year)
 - Neutrons: up to >1 x 10¹¹ cm⁻²

Photon Detectors (for Cherenkov Counters)

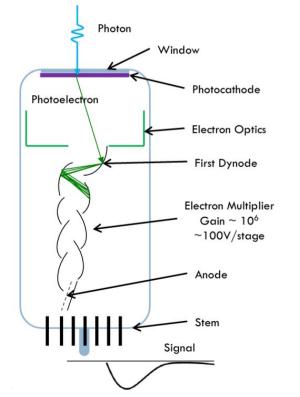

- <u>Principle:</u> Conversion of photon to electron by external or internal photo-electric effect with subsequent electron multiplication stage
- Non-vacuum photon detectors (among others)


Semiconductor devices Review

- Review Talk of A. Gola on Thursday
- CCDs, (avalanche) photo diodes, silicon photomultipliers (SiPM), ...
- Gaseous devices Review Talk of F. Brunbauer on Friday

Photosensitive (TMAE/TEA in gas) multi-stage and drift chambers
 MWPC / MPGD / (TH)GEM / ... + Csl

- Vacuum-based photon detectors
 - Covered in this talk:
 - Standard dynode photo-multiplier tube (PMT, MaPMT)
 - Hybrid photo detector (HPD, HAPD)
 - Microchannel-plate photomultiplier (MCP-PMT, LAPPD)
 - Not covered here (because not relevant for Cherenkov counters):
 - Photo triode, streak tube, etc.

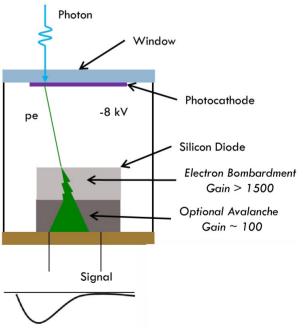


Structure of Vacuum-Based Photo Detectors

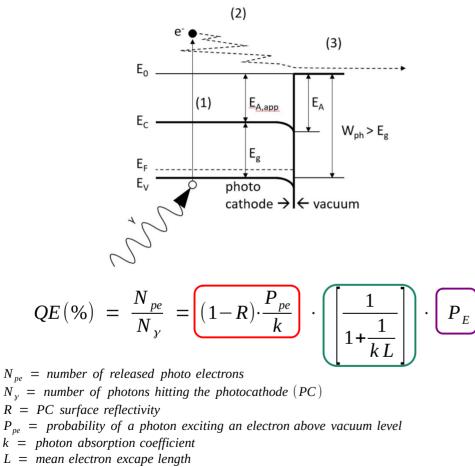
Dynode Photomultiplier

- Discrete electron multiplication stages (→ 7 – 14 dynodes)
- Often bulky glass/ceramic housings

Microchannel-Plate PMT

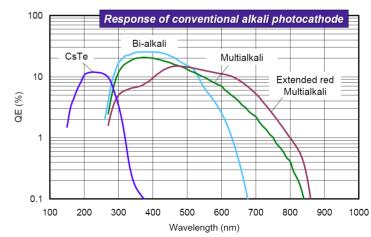

 Continuous electron multiplication in thin (Ø 3-25 µm) glass capillaries of a few hundred µm thickness
 → typically 2 microchannel-plates (MCPs) in Chevron configuration

Very compact designs possible Window Photon Photocathode Indium Seal -2000 V -1800 V -200 V Signals Metal-Ceramic Envelope **MCPs** Common to all these photon detectors: Photo cathode **Electron multiplication stage** Single or segmented anode All schematics from P. Hink, Talk at RICH2016


RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

Hybrid Photo Detector

- Direct electron acceleration in static electric field (8 to 25 kV) and electron detection with
 - Segmented PIN diode (HPD)
 - Avalanche photo diode (HAPD)
 - Silicon photomultiplier (VSiPMT)



Photon-Electron Conversion

- P_E = probability of an electron reaching the PC surface being released into the vacuum
- Albert Lehmann

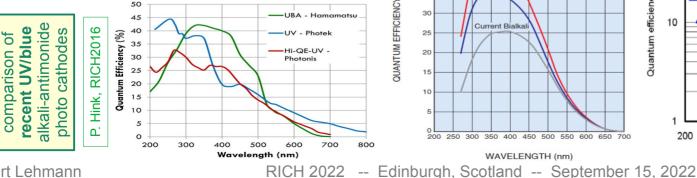
- Photon-electron conversion (3-step model)
 - (1) Photon absorption
 - (2) Electron diffusion to surface
 - (3) Electron escape to vacuum
- Often used photo-sensitive materials
 - Alkali antimonides (bialkali, multialkali [S20, S25])
 - III-V PCs (GaAsP, GaAs, GaN, InP, InGaAs, ...)
 - Solar blind PCs (CsTe, CsI, ...)

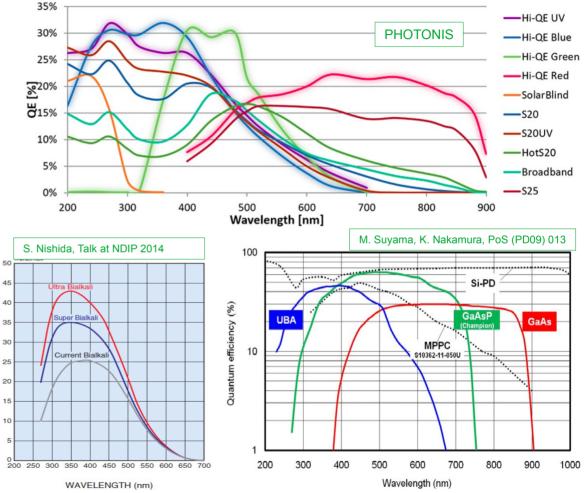
Photo Cathode (PC) and QE

(%)

QUANTUM EFFICIENCY

• QE of latest PCs


Photonis


- HiQE (>30%) in different wavelength bands
- Originally developed for image intensifiers, now also available for MCP-PMTs
- Hamamatsu
 - Bialkali: SBA/UBA (35%/45%) for MaPMTs and HAPD, reached by better PC quality (not yet in MCP-PMTs)
 - III-V: GaAs (30%) and GaAsP (>60% in visible range)
 - \rightarrow reached by better crystallinity
 - \rightarrow improved absorption, diffusion, and emission

Photek

of

Albert Lehmann

Conventional Electron Multiplication

INCIDEN LIGHT

cage type

Circular

Fine mesh

dynode

Standard dynode configurations

- Up to 14 dynode stages, usually single anode
- Venetian blind, box, linear focused, circular cage, etc. types and configurations
- Very poor B-field tolerance

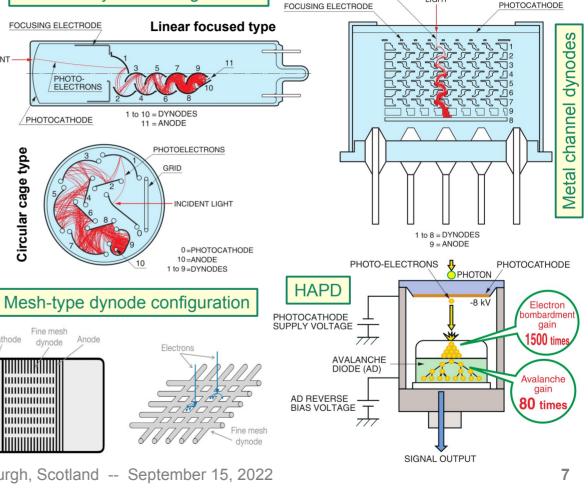
Mesh dynodes

- Up to 15 mesh stages, cross wire readout
- Good B-field tolerance (up to ~1 Tesla)
- Very good spatial resolution (cross wire anodes)

Metal channel dynodes (MaPMTs)

Multi-anodes PMT with good position resolution Limited B-field tolerance (<50 mT)</p>

Hybrid photo detectors (HPD)


- One stage electrostatic electron acceleration
- e-detection (and amplification) in Si-detector
- Very good spatial resolution and B-tolerance

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

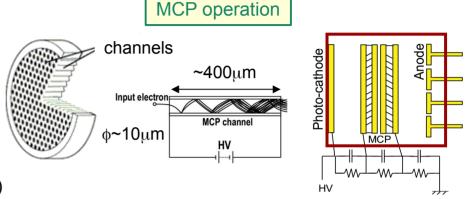
PHOTO-

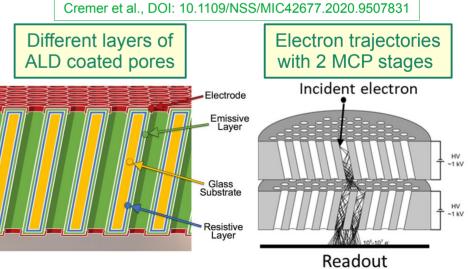
Standard dynode configurations

PHOTOELECTRONS

INCIDENT

LIGHT


Continuous Electron Multiplication

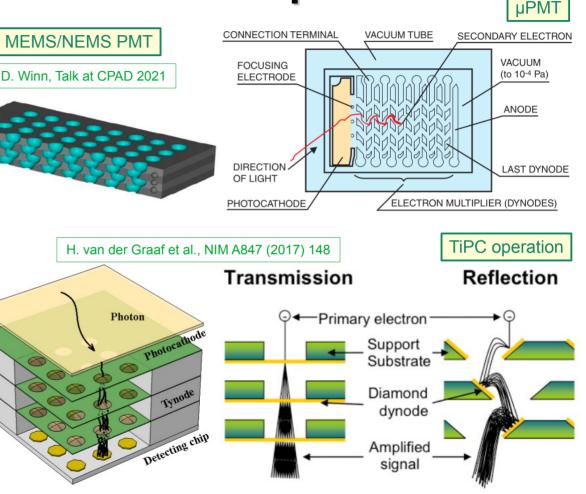

Electron multiplication in thin glass capillaries

- Standard microchannel-plates (→ MCP-PMTs)
 - Array of many such capillaries (MCP) with 3 25 mm diameter each
 - Hydrogen-fired lead glass capillaries to produce resistive surface
 - Exponential dep. of gain on aspect ratio L/D (pore length / diameter)
- High gain (>10⁶) even in strong magnetic fields (>1 T)
- Very fast (<50 ps TTS ; <100 ps RMS)</p>
- Limits: PC aging (feedback ions) and rate capability (τ = RC)

Atomic Layer Deposition (ALD) coated MCPs

- Ultra-thin films of resistive and emissive layers (MgO, Al₂O₃) applied to (borosilicate) glass capillary arrays (MCPs)
 - Technique originally developed by Arradiance Inc.
 - No PC aging up to >10 C/cm² IAC (integrated anode charge)
 - Higher gain due to higher secondary electron yield \rightarrow **lower HV**
 - Rate capability still marginal (1 10 MHz/cm² dep. on PMT size)
- PMT sizes range from 1x1/2x2 inch² (Hamamatsu, Photonis, Photek) to 20x20 cm² (LAPPD, ANL, Incom)
- ALD-coated MCP-PMTs are considered for several future Cherenkov and non-Cherenkov applications

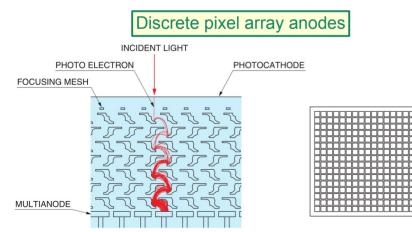
Albert Lehmann

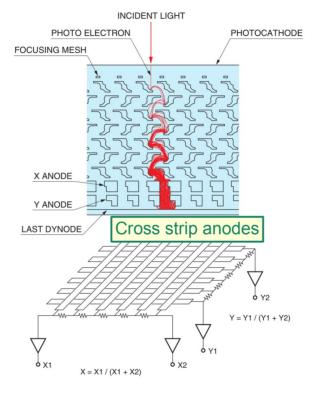

Possible Future of Electron Multiplication

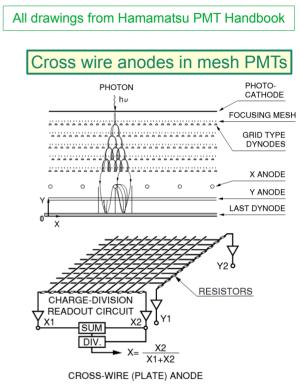
• Micromachined PMTs ($\rightarrow \mu PMTs$)

- First developed by Hamamatsu ~2010
 - Pro: easy mass production and customization
 - Con: poor active area ratio and B-field tolerance
- Improved MEMS/NEMS PMTs (R&D)
 - MEMS: micro-electro-mechanical systems
 - Compact: dynode stage thickness 100 500 μm
 → PMT thickness of <3 mm with 8 10 dynodes
 - High time/spatial resolution and minor crosstalk
 - High rate capability and B-field tolerance

■ Tynodes (→ Time Photon Counter)


- Transmission mode dynode \rightarrow tynode
- Fabrication of tynodes (MgO ALD, diamond) using MEMS technology
- "Anode" is a CMOS chip (e.g., TimePix)
- Very promising properties
 - Very compact; high B-field tolerance; very fast
 - Very low DCR; very good 2D spatial resolution




Anode Designs and Readout

Dynode and Mesh PMTs

- Direct charge readout of discrete anode pads
 - Single and multi-anode
 - Pixel arrays in 1D and 2D (up to 32x32 pads)
- Cross strip anode readout in MaPMTs
- Cross wire anode readout in Mesh PMTs
- Position resolution
 - Good for MaPMTs (few mm)
 - Excellent for mesh PMTs for many photons (<< mm)

HPDs

- Anode replaced by (segmented) Si-detector
- Readout very similar to conventional Si-strip or pixel detectors

Albert Lehmann

Anode Designs and Readout

MCP-PMTs (position resolution)

- Resistive Anode Strips (few to many channels)
 - Wedge Strip Zig (WSZ) charge division readout (a)
 - Cross Strip (XS) readout (c)
- Delay line readout (few to many channels)
 - Transmission line readout → t, x, Q
 - (XDL) charge propagation readout (b)
- **Pixelated readout** (up to >1000 channels)
 - Direct readout of discrete anode pixel arrays (d)
 - Specially shaped readout elements \rightarrow allows accurate charge centroiding despite larger pixel dimensions
- Capacitively coupled readout

Talk of A. Kiselev on Thursday

- Charge collected inside PMT and capacitively coupled to segmented conductors at PCB outside of PMT
- More flexibility in backplane design

MCP-PMTs (timing)

- Backplane has to be well designed to keep the excellent timing properties of the PMT
- Avoid reflections and interferences (Tremsin, Va'vra, ...)

Albert Lehmann

Tremsin et al., NIMA 949 (2020) 162768 Siegmund et al. (2004) doi:10.1117/12.562696 Wedge MCP Stack (c) Charge cloud Charge distribution on strips J. Vav'ra, NIM A876 (2017) 185 design Photonis MCP-PMT pixel shown backplane Ž former Planacon

POOL

Kiselev, BNL-222830-2022-COPA RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

Alignment axes of X-pixels

Coherent excitation from 6-7 single photons

(arriving within ~ 1ns)

Readout and Signal Processing

Readout requirements

- High count rate per channel
- High speed
- High signal-noise-ratio

Digitizing electronics in HEP Cherenkov Counters

- Refined ASIC or TDC FE boards followed by FPGA logic cards
 - Waveform sampling, time stamping, Time-over-Threshold (ToT), etc.
- Table below shows used photo detectors and readout designs
 - Red color: applications not running yet

Application	#PMTs	Photo detector	Pixel size (mm ²)	Readout	
COMPASS RICH	576	4x4 ch. R7600-03-M16 MaPMT	4.5 x 4.5	CMAD FE + DREISAM F1 TDCs	
CLAS12 RICH	2344	8x8 ch. H8500/H12700 MaPMTs	6 x 6	MAROC3 FE + digital FPGA board	
GLUEX DIRC	180	8x8 ch. H12700 MaPMT	6 x 6	MAROC3 FE + digital FPGA board	
LHCb RICH Upgrade	3072	8x8 ch. R13742/R13743 MaPMTs	2.8x2.8 / 5.6x5.6	CLARO ASIC chip + further FE boards	
CBM RICH	1100	8x8 ch. H12700 MaPMT	6 x 6	DiRICH: FPGA-TDC board	
Belle2 iTOP	512	4x4 ch. Hamamatsu MCP-PMT	5.3 x 5.3	IRSX waveform sampling ASIC	
Belle2 ARICH	420	12x12 ch. Hamamatsu HAPD	4.9 x 4.9	4 ASICs + Spartan6 FPGA	
Proto-TORCH	11	8x128 or 64x64 ch. MCP-PMT	6x0.4 or 0.8x0.8	Customised: NINO + HPTDC + FPGA	
PANDA Barrel DIRC	128	8x8 ch. Photonis MCP-PMT	~ 6 x 6	DiRICH: FPGA-TDC board	
PANDA Endcap DIRC	96	3x100 or 6x128 ch. MCP-PMT	0.4-0.5 x 16	TOFPET ASIC	
EIC mRICH		LAPPD or SiPM		Still open, with waveform sampling ASICs being considered	
EIC hpDIRC	open	Commercial MCP-PMTs / HRPPD	open		
EIC dRICH		LAPPD of SiPM			

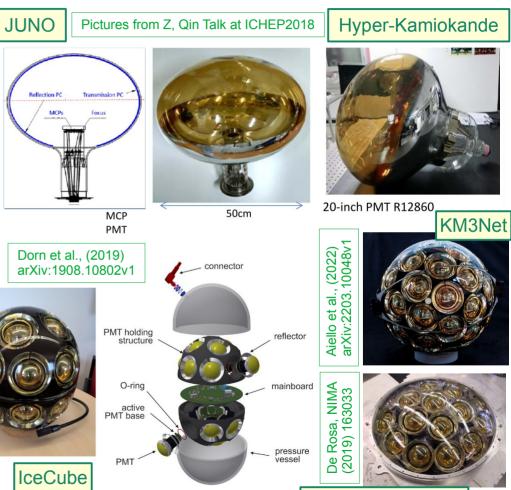
Very Large PMTs and Optical Modules

Latest 20-inch PMTs

Talk of J. Kisiel on Tuesday

- Box&Line PMT Hamam. R12860 for Hyper-Kamiokande
 - Twice the PDE and faster than R3600 used in SuperK
- 20-inch MCP-PMTs (>12500)

Talk of S. Qian on Thursday


- New type of photomultiplier developed for JUNO
- ~4 π PC effective area and amplification in small MCP unit

Trend: set of 3" PMTs replaces large diameter PMT

- single glass sphere contains PMTs / HV / electronics
- KM3NeT multi-PMT (starting 2024/26)
 - 31 3" PMTs with HV, calib. dev., and electronics in same housing
 - Larger PC area, sensitivity to incident photon direction, broad angular coverage, accurate timing, etc.
 - Added value first time demonstrated in 2013
- IceCube-Gen2 Upgrade mDOM (from 2026)
 - 24 3" PMTs with integrated HV and readout system
 - Deployment of first 700 modules (phase 1) in 2022/23
- Hyper-Kamiokande (starting 2027)
 - mPMTs (19 3" PMTs) as option for Far Detector (HK-FD) and Intermediate Water Cherenkov Detector (IWCD)

Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

Hyper-Kamiokande 13

PMTs in Neutrino and Astroparticle Physics

Most data taken from S. Lubsandorzhiev, PoS(ICRC2021)1104; this list is by far not complete!!

PMT	size	Experiments	Photocathode	QE	Dynode	
Various PMTs	≤1.5-inch	HESS, MAGIC, MAGIC-II, VERITAS, etc.	(super-)bialkali,	20% – 35%		
R12992, R11920	1.5-inch	СТА	super-bialkali	>35%	Linear-focused (LF)	
R14374, R12199-02	3-inch	KM3NeT multi-PMT Optical Module (OM)	bialkali		Circular & LF	
R15458-02	3-inch	IceCube Upgrade mDOM	bialkali			
XP72B22, XP82B20	3-inch	JUNO, Hyper-Kamiokande		~25%		
R1408	8-inch	IMB, IMB-3, MACRO, SNO, SNO+	bialkai			
R5912	8-inch	MILAGRO, Daya Bay, HAWC,	bialkali K ₂ CsSb 28 – 30%		Box & Line	
R5912-100		Super-Kamiokande, TAIGA, LHAASO	super-bialkali	35 – 40%	BUX & LINE	
ETL9350	8-inch	MACRO, SNO, Borexino, GERDA, Tunka- 133, Neutrino-4, etc.	bialkali K2CsSb or Rb2CsSb (green)	<25 – 28%		
R14688-100	8-inch	New development	super-bialkali	~35%	Box & Line	
R7081		Ice-TOP, TAIGA-HiSCORE, etc.	bialkali	25 – 30%	Box & Line	
R7081-100	10-inch	Double-Chooz, RENO, STEREO, etc. IceCube, ANTARES, GVD, etc. + LBNT	super-bialkali	35 – 40%		
R7250	17-inch	KamLAND, KamLAND-Zen	bialkali		Box & Line	
R1449, R3600	20-inch	Kamiokande, Super-Kamiokande	bialkali		Venetian blind	
R12860	20-inch	Hyper-Kamiokande, JUNO	bialkali	25 – 30%	Box & Line	
MCP-PMT	20-inch	JUNO	bialkali	33 – 35%	MCP	

Albert Lehmann

Dynode PMTs in RICH and DIRC Applications

Detectors with single-anode PMTs

Overview of Cherenkov imaging detectors using MAPMT photo-tubes.

- DELPHI RICH
- Hermes RICH
- SELEX (E781) RICH
- BaBar DIRC

Table 2

NA62 RICH (still online)

Applications using multi-anode PMTs

- Various high-performance MaPMTs available in different designs (see experiment table below)
 - Only producer: Hamamatsu; and hardly new developments
- Tracking Ring Imaging Cherenkov Detector (TRICK)
 - Prototype: **5D readout** (position, time, and particle ID)
 - Attempt to combine $\textbf{RICH+TPC} \rightarrow 3D$ spatial resolution ~100 μm

Poster of G. Mezzadri

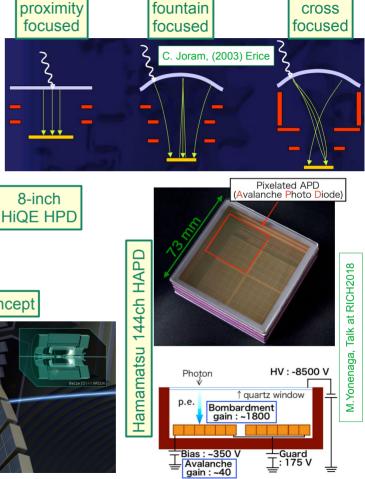
	0 0 0	1					
	HERA-B	LHCb prototype	COMPASS	CLAS12 ^a	GlueX ^b	LHCb upgrade ^c	CBM
MAPMT type	R5900-M4, R5900-M16	R7600-03-M64	R7600-03-M16	H8500, H12700	H12700	R13742, R13743	H12700
pixel size (mm)	9, 4.5	2.3	4.5	6, 6	6	2.9, 6	6
Use of lenses	Yes	Yes	Yes	No	No	No	No
Start of operation	1999	≈ 2000	2006	2018	2019	2020	≈ 2025
A_{active} (m ²)	2.9	0.006	1.3	6	0.42	1.6, 2.1	2.4
N _{dev}	750, 1500	9	576	2344	180	384, 2688	1100
σ_{ph} (mrad)	1.0, 0.7		1.2	6 (prel.)	8	0.78, 0.45	
N_{pe} (for $\beta=1$)	33	n.a.	56	not yet published	20–30	40, 22	24 ^d
^a One sector installed in 2018. Numbers are for full detector (6 sectors). ^b Performance figures based on simulation.			AMS RICH is n 680 MaPMTs R7	u		Talk of G. Cavallero on Friday	
$^{\rm c}$ Numbers / expectations are for RICH 1 and RICH 2 detectors. $^{\rm d}$ Beam test. Demonstrated 20% more by coating MAPMTs with wavelength shift			h shifter.	Table taken from T. Gys and C. Joram, NIM A970 (2020) 163373			

Albert Lehmann

Currently Available Hybrid PDs

Standard HPDs

- HEP experiments (e.g., LHCb RICH)
 - Various sizes and (focusing) designs possible
 - Highly segmented "anodes" (spatial resolution down to <1 mm)</p>
 - Moderate time resolution (>1 ns)
- Neutrino and astroparticle experiments
 - Latest developments: Hamamatsu 8" R12112 and 20" R12850


Hamamatsu 144ch HAPD

- Developed for Belle-II Aerogel RICH (ARICH) on Monday
 - >4σ K/π separation @ 0.5 to 4 GeV/c in 1.5 T B-field
 - High radiation tolerance (n,y) needed
 - The only running Cherenkov imaging application using HAPDs
- Sensor characteristics and performance
 - Proximity focused design (~2 cm between PC and APD)
 - 4 APDs with 36 channels each (420 HAPDs for whole ARICH) read out by 4 ASICs and Spartan6 and Virtex5 FPGA
 - Peak QE up to >30%; sensitive area ~65%; gain ~70k
 - Excellent photo electron separation even in B-field of 1.5 T
 - Radiation tolerance tested up to 5x10¹¹ n/cm²
 - Problems with large pulses in B-field and APD leakage current

Albert Lehmann

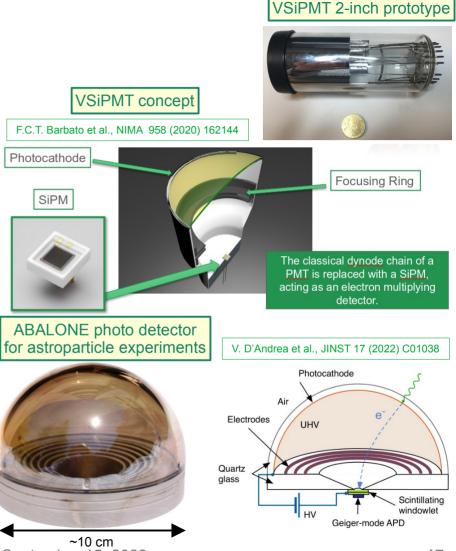
RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

<---- 80 mm ->

New HPDs with SiPMs

Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

- Hybrid PD with SiPM as electron multiplier
 - Goal: increase SiPM surface
 - R&D was started in 2007 for future astroparticle experiments
 - One amplification stage: photo electron is accelerated to ~2 keV to trigger a Geiger avalanche in the SiPM (for electron multiplication)


Performance

- Higher gain (>10⁶) than other HPDs and faster than dynode PMTs
- Compact and simple
- Weak point: high DCR \rightarrow single photon sensitivity questionable

ABALONE photo detector

- Hybrid PD read out by scintillating window and outside SiPM
 - Goal: build photon detector with few components \rightarrow radio purity
 - Two amplification stages: electron accelerated to scintillator layer
 → creates N(ph) proportional to ~25 keV electron energy → SiPM
- Performance
 - Very high gain of up to 10⁸ [10⁶ from SiPM and 10² from N(ph)]
 - Excellent single photon sensitivity
 - Very low afterpulse rate (~5x10⁻³) and low DCR (~1 Hz/cm²)

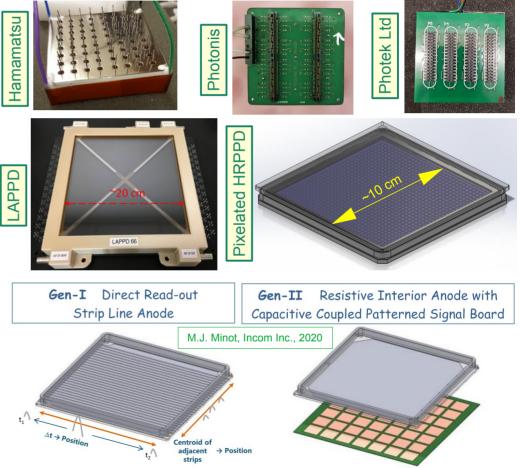
Albert Lehmann

Currently Available MCP-PMTs

Talk of J. Milnes on Thursday

- Photonis, Hamamatsu, Photek
 - 1- and 2-inch PMT types in various configurations
 - Segmented anode (4x4, 8x8, 16x16, 3x100, 8x128, etc.)
- Fast MCP-PMTs (China) Talk of S. Qian on Thursday

R&D for 8x8 pixel 2-inch PMT (prototypes produced)


- LAPPD, ANL and Incom
 - MCP-PMTs designed for large area coverage
 - I APPD Collaboration formed in 2009
 - Commercialization process transferred to Incom Inc. in 2013
 - ongoing R&D in collaboration with ANL and Univ. of Chicago
 - Now available: sizes of 6x6 (ANL), 10x10 or 20x20 cm²
 - Anode and readout options
 - Gen-I: strip line (delay line) anode with ~1.5 mm resolution
 - Gen-II: anode capacitively coupled to highly segmented external readout board provides <<1 mm² 2D-resolution
 - Gen-III: pixel anode design studied for EIC applications
 - Working on Gen-III HRPPD (10x10 cm²)

Design optimized for high rates and B-field tolerance

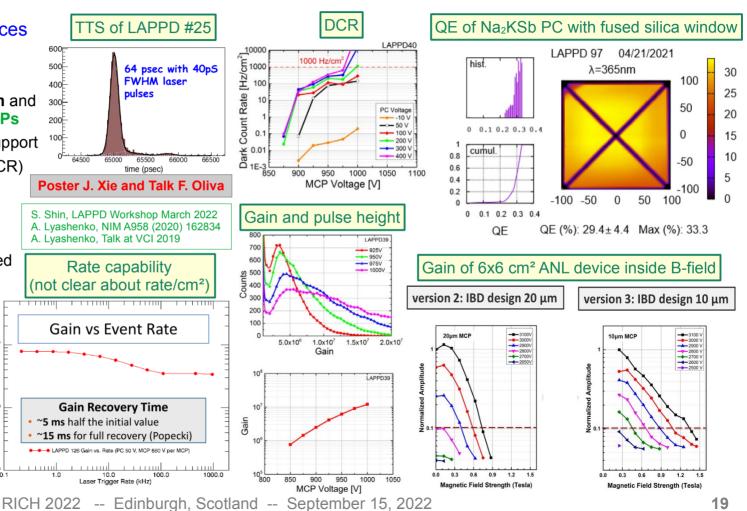
Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15. 2022

Backplane design of some commercial 2-inch MCP-PMTs

18

Some LAPPD Performance Parameters


S. Shin, LAPPD Workshop March 2022

- Parameters for recent 8-inch devices
- Bialkali (e.g., K₂NaSb) photocathode
- Peak QE ~ 30% @ 365 nm
- Glass and ceramic bodies with 10 µm and 20 µm borosilicate 2-layer ALD MCPs
- 97% active area with new internal support
- Low (<1 kHz/cm²) dark count rate (DCR)
- ~30 ps single photon TTS resolution
- ~1x10⁷ gain
- O(mm) position resolution
- Direct (Gen-I) and capacitively coupled (Gen-II) readout available

10

Personal Remarks

- B-tolerance seems still marginal
- Gain uniformity?
- Rate/cm² or current/cm² info would help to compare to other data
- Seems unlikely that 8x8" devices can stand MHz/cm² rates as required in high rate experiments

Possible Future MCP-PMTs

Monolithic MCP from amorphous Si (a-Si:H)

- Goal: overcome complicated fabrication process and long channel dead time of conventional glass MCPs
 - Possibility of much higher rate capability and spatial resolution
- Fabricated by chemical vapor deposition of a-Si:H laver (80 µm) on any substrate and deep reactive-ion etching
 - Reactive-ion etching process \rightarrow pores with aspect ratio (L/D) >20
 - Aspect ratio ~25 led to gain of 1500 (~8000 with ALD coating)
 - Readout electronics can be embedded into Si-wafer
 - Funnel-shaped AMCPs with ~95% open area being tested

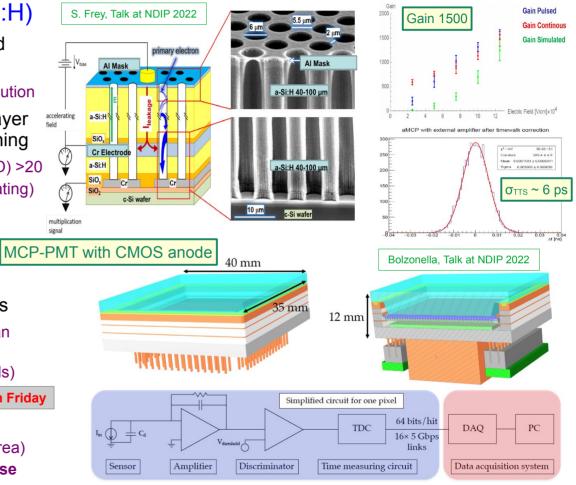
MCP-PMT with CMOS anode

- Conceptual design for 4D detection of single photons
 - Hybrid concept: MCP-PMT where the pixelated anode is an ASIC (CMOS) embedded inside the vacuum
 - Prototype with Timepix4 ASIC as anode (array of 23k pixels)
- Envisaged performance

Talk of M. Fiorini on Friday

- <100 ps time resolution and 5-10 µm spatial resolution</p>
- Rate capability of >100 MHz/cm² (<2.5 Ghits/s @ 7 cm² area)
- Low gain (~10⁴) operation possible \rightarrow x100 lifetime increase

Albert Lehmann


RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

accelerating

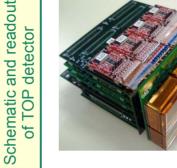
Ý

multiplicatio

field

20

First DIRCs Applying MCP-PMTs (from ~2005)


Belle-II TOP detector

Talk of R. Okubo on Friday

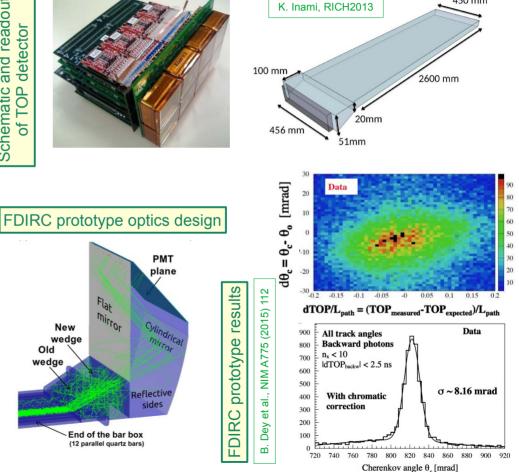
- Imaging Time-of-Propagation (iTOP) DIRC
 - 16 radiator bars read out by linear array of MCP-PMTs to measure x and TOP (~50 ps resolution required)
 - Ring image from 3D information (x, y, TOP)
- Photon sensors and readout
 - For each bar: 2x16 MCP-PMTs (1x1 inch² 4x4 chan. Hamamatsu R10754X MCP-PMTs)
 - >1 C/cm² integrated anode charge (IAC)
 - ASIC waveform sampling readout of "IRS" series

Focusing DIRC (FDIRC) for SuperB

- Tested MaPMTs (H8500, H9500) and MCP-PMT (Burle Planacon) sensors with different anodes
- 3D readout (x, y, t) used for chromatic corrections (needs excellent timing) in the Cherenkov angle
 - Only a prototype was built and tested, but FDIRC studies paved the road for other focusing DIRCs.
 - J. Va'vra: "Combining precise angular and time measurements are likely to provide the ultimate performance in the future DIRC detectors."

Flar

End of the bar box

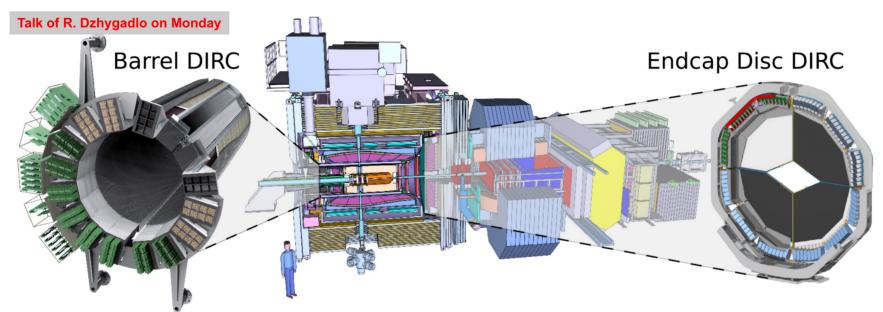

(12 parallel quartz bars)

New

wedge

Old

wedge



Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

450 mm

MCP-PMTs for PANDA DIRCs

Barrel DIRC

16 sectors with three 5.3 cm wide radiator bars

Readout

Lenses and prism

Talk of S. Krauss on Thursday

- 128 8x8 pixel 2-inch Photonis MCP-PMTs in ~1 T B-field
- ~200 kHz/cm² photon rate and 5 C/cm² IAC lifetime
- GSI-designed DiRICH/TRB FPGA readout electronis

Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

Endcap Disc DIRC

- Dodecagon-shaped radiator disc split in 4 quadrants
- Readout
 - 24 (or 27) special focusing light guides
 - ~100 ≥3x100 pixel 2-inch MCP-PMTs in ~1 T B-field
 - Up to 1 MHz/cm² photon rate and >5 C/cm² IAC lifetime
 - TOFPET ASIC frontend electronics

Sensors at EIC Cherenkov Imaging Detectors

High performance DIRC (hpDIRC)

Efficient and fast single photon detection in high B-fields

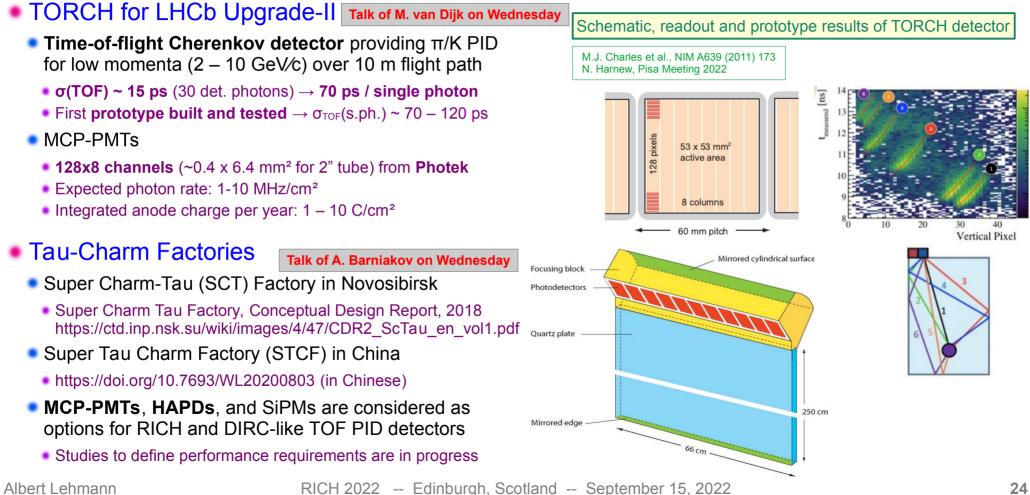
- π/K separation from 1 GeV/c to 6 GeV/c
- ~1 mm spatial and 100 ps time resolution
 - \rightarrow MCP-PMTs (commercial or LAPPD) or SiPMs
- Waveform-sampling ASIC and/or FPGA-based readout

Dual radiator RICH (dRICH)

- Aerogel and gas radiators
- Cherenkov photons reflected by spherical mirror to dedicated sensor areas (in ~1 T B-field)
- Forward π/K/p separation from 3 GeV/c to 50 GeV/c
- Moderate radiation dose expected: <10¹¹ 1 MeV n_{eq}/cm²
- ~3 mm pixel sensors: SiPMs or MCP-PMTs (LAPPD?)
- Readout not decided yet

Modular aerogel+lens RICH (mRICH)

- Consists of several identical compact aerogel RICH modules with Fresnel lens and sensor plane
- Backward π/K (e/ π) separation from 3–10 (< 2) GeV/c
- ~3 mm pixel sensors: MCP-PMTs (LAPPD?) or SiPMs
- Readout not decided yet

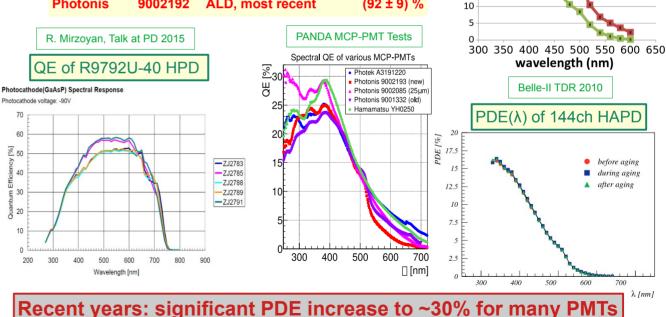

Talk of G. Kalicy on Wednesday Talk of R. Preghenella on Thursday dRICH L. Barion et al., JINST 15 (2020) C02040 hpDIRC Aerogel Gas Hits on detector Spherical Mirror Photon impact an mirror(s) Sensor Surface Talk of X. He on Thursday mRICH L. Barion et al., JINST 15 (2020) P10031 Sensor plane lens Aerone 10 10 Incident particle

Geant4 Simulation

~ (aerogel thickness + lens focal length)

Albert Lehmann

MCP-PMTs in Cherenkov TOF Counters


Particle Detection Efficiency (PDE = QE*CE*FF)

Quantum efficiency (QE)

- PMT: ~35% for SBA (R13743, H12700)
- HPD: >50% for GaAsP (R9792U [MAGIC])
- HAPD: ~32% @ 360 nm for SBA
- MCP-PMT and LAPPD
 - Varying from 20% to >30% @ ~400 nm
- Collection efficiency (CE)
 - (Ma)PMTs and HPDs: up to >95%
 - MCP-PMTs: typically 60 70 %, but
 90 95 % for most recent devices
- Active area coverage (FF)
 - MaPMTs: up to 90%
 - 144ch HAPD: ~65%
 - MCP-PMTs
 - 1-inch: 69% (R10754-M16)
 - 2-inch: 70% (Photek) 80% (Photonis)
 - LAPPD: ~97% for most recent 8" design

Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

S. Shiizuka. Talk at VCI 2010

 $QE(\lambda)$ of 144ch HAPD

🛑 Super Bialkali

bialkali

Conventional

360nm

40

35

30

25

15

8 20

Ж

32%

25%

360nm

Gain inside Magnetic Field

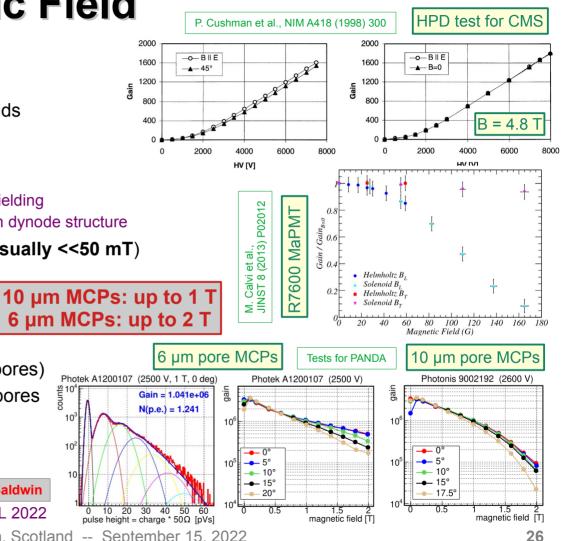
H(A)PD

- Basically no gain loss in axial B-fields (up to 5 T)
- Image translation and distortions for transverse B-fields

MaPMT

- More tolerance in transverse than in axial B-fields
 - Axial/longitudinal: ~50% gain loss at <10 mT / better with shielding</p>
 - Transverse: minor gain loss up to ~20 mT, but dependent on dynode structure
- B-field tolerance depends on type of MaPMT (but usually <<50 mT)</p>

MCP-PMTs


- ALD PMTs more sensitive to B-field than non-ALD
- Very good Peak/Valley ratio up to >1 T
- Gain ratio ~3 between 0 and 1 T (for 6 and 10 µm pores)
- Gain ratio between 1 T and 2 T more dependent on pores
 - 2 5 for 6 µm pores dependent on tilt angle
 - 10 20 for 10 µm pores dependent on tilt angle
- First simulations of magnetic field effects available Poster of E. Baldwin
 - L. Li et al., JINST 15 (2020) C03048
 - L. Li Jr. et al., IEEE Trans. Nucl. Sci., VOL. 69, NO. 4, APRIL 2022

Albert Lehmann

RICH 2022 -- Edinburgh, Scotland September 15, 2022 ---

sounts

10

Rate Capability

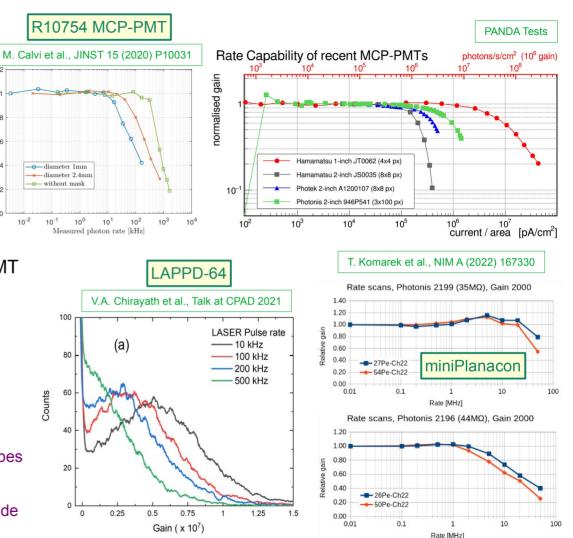
MaPMT

MaPMT R13742: no gain loss to 10 MHz/mm²

MCP-PMTs

- Gain decreases at high photon rates (T = RC)
 - 8-inch LAPPD-64: ~100 kHz at 4.6 mm Ø laser spot
 - 2-inch MCP-PMTs: ~1 MHz/cm² (with 10⁶ gain)
 - I-inch Hamamatsu R10754 PMTs: ≥10 MHz/cm²
- I HCb: miniPlanacon XPM85112–S–R2D2 MCP–PMT
 - Rate capability depends on MCP resistance
 - Up to 20 MHz (for ~25 p.e.) in low gain operation mode
- Increasing rate capability in MCP-PMTs
 - Lower MCP resistance (ranging at tens of $M\Omega$)
 - Lower capacitance
 - E.g., subdivision of MCP layers into smaller partial areas
 - Second MCP layer was divided in previous Hamamatsu tubes
 - Low gain operation (for single photon detection)
 - May be possible with amplifiers included directly in the anode (e.g., monolithic or CMOS designs)

Albert Lehmann


RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

Counts

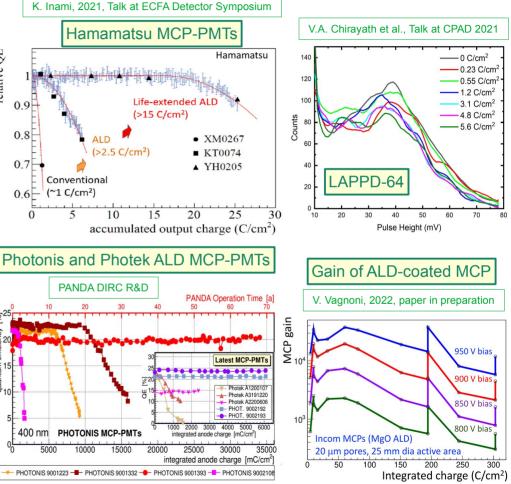
0.8

0.6

ĕ 0.4

PC and MCP Aging and Lifetime

- Photo cathode aging due to ion feedback (IFB) is one of the main concerns in high intensity experiments relative QE
- Dynode PMTs and H(A)PDs
 - PMT and MaPMT: main aging effect is a gain drop over time
 - HPD (LHCb): "glow light" from IFB damages $PC \rightarrow Iower QE$
 - HAPD (ARICH): no QE loss seen; IFB rate decreases over time
- Aging of MCP-PMTs
 - Aging of PC \rightarrow much shorter lifetime than dynode PMTs
 - Main issue for high intensity experiments is QE degradation
 - Lifetime was poor (<200 mC/cm² IAC) until ~12 years ago
 - ALD coating of MCP pores \rightarrow ~100x PC lifetime increase
 - Little QE degradation in LAPPD 8-inch up to 5.6 C/cm² [V. A. Chirayath, CPAD2021]
 - Hamamatsu 1-inch YH0205 (>20 C/cm²) [K. Inami, 2021]
 - No QE degradation for Photonis MCP-PMT (R2D2) to >34 C/cm²
 - Aging of MCPs → private comm. V. Vagnoni (LHCb)
 - MgO ALD MCPs: gain as function of integrated charge \rightarrow Gain drop of factor 5 – 6 at 300 C/cm²
 - Baspik lead glass MCPs: factor ~2 gain drop at 120 C/cm²



RICH 2022 -- Edinburgh, Scotland -- September 15, 2022

0.9

0.8

0.7

Radiation Tolerance

MaPMT

- Recently tested for CBM (H12700 and H8500)
 - Irradiation dose up to 3x10¹¹ n/cm² and 150 Gy gammas
 - Few kHz increase of DCR but recovers after few months
 - UV glass: 1-2% transmission loss @ 400 nm up to 1 kGy
 - No negative effects on gain and pulse height spectrum
 - Neutron activation of Kovar metal alloy is a minor effect

H(A)PD

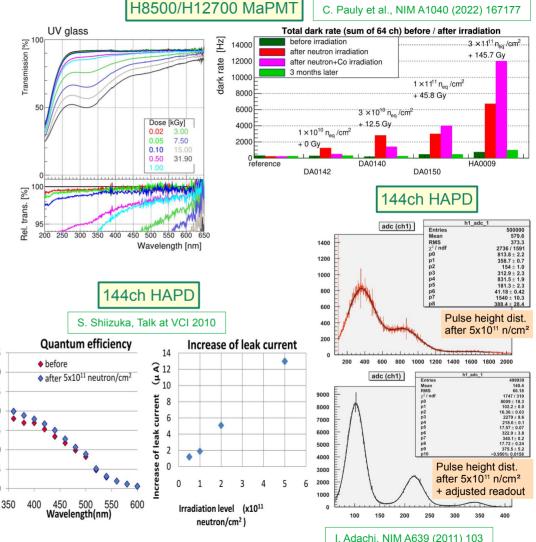
- Radiation tolerance dominated by silicon detector
- Intensively studied for 144ch HAPD for ARICH
 - Basically no QE loss at 5x10¹¹ n/cm²
 - Increase of APD leakage current leads to significantly worse S/N ratio: ~17 before, ~3 after irradiation
 - S/N ratio partly regained by adjusted readout parameters

MCP-PMT

- Entrance window: should be similar to other PMTs
- MCPs: currently no data existent
 - \rightarrow irradiation tests are highly desirable

Albert Lehmann

RICH 2022 -- Edinburgh, Scotland -- September 15, 2022


35

30

25

10

(%)20 15

Summary and Outlook

Summary

Vacuum-based PMTs are still very important photon detection devices even 90 years after their "invention"

- Recent developments led to significant improvements in QE, CE and FF
- Latest PMTs produced with QE > 30% and CE ≈ 95% leading to PDE ≈ 30%
- In neutrino and astroparticle physics experiments single-anode dynode PMTs are still widely used
- The usage of MaPMTs and H(A)PDs seems to decline in new experiments
- Since ~2010 there is a clear trend towards multi-anode MCP-PMTs for HEP Cherenkov imaging devices
 - MCP-PMTs with <10 µm pores can be operated up to ~2 T magnetic fields
 - ALD-coating of MCP pores increased lifetime to ~35 C/cm² integrated anode charge
 - Rate capability is not yet enough for very high rate experiments
 - No irradiation tests for MCP-PMTs available

Outlook with respect to MCP-PMTs

- Currently there are several types of 1- and 2-inch high-quality MCP-PMTs commercially available (Hamamatsu, Photek, Photonis), also in highly segmented anode designs
- LAPPDs (up to 8-inch) are promising candidates for low-cost photon sensors in HEP (and other) experiments
- Despite the success of SiPMs, vacuum PMTs will probably remain important devices for many neutrino and astroparticle experiments and for detecting single photons (RICH, DIRC, etc.) in high radiation environments