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Problem

LL NLL

Spoil the convergence of the 
perturbative series

Theoretical prediction are no 
longer reliable 

Solution? Find out the all-order structure of these logarithmic 
contributions by writing them as a series and summing it 

Resummation

O(n) ∼ αn
s [lnn(x) + lnn−1(x) + …]
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How much does small-x resummation 
improve theoretical predictions?

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli (2018) The European Physical Journal C.
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Small-x resummation: 
How does it work?
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- Resummation Factorization
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- Mellin Transform 
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1

0
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1
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Collinear factorization theorem
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Collinear factorization theorem

σ(N, Q2) = ∑
i=q,g

Ci (N, αs(Q2)) fi (N, Q2)
Coefficient 

function
Parton distribution 

function (PDF)

ln(x)

Our goal: resum NLL logarithms in 
the coefficient function
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High energy factorization theorem

σ(N, Q2) = ∫
∞

0
dk2

⊥ 𝒞 (N, k2
⊥, Q2, αs) ℱg (N, k2

⊥)
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Higgs induced DIS: What 
do we want to compute?
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Higgs DIS 

We want to resum NLL terms in the coefficient function  

Cg(N, αs) = ∫
∞

0
dk2

⊥ 𝒞 (N, k2
⊥, Q2, αs) 𝒰 (N, k2
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Higgs DIS 

We want to resum NLL terms in the coefficient function  

We have to compute the one-loop off-shell coefficient function

Cg(N, αs) = ∫
∞

0
dk2

⊥ 𝒞 (N, k2
⊥, Q2, αs) 𝒰 (N, k2

⊥, Q2)
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- Growing number of terms due to gauge choice 

Πμν
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Axial gauge 
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Sum over polarisation of an off-shell gluon
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Catani and Hautmann (1994) Nuclear Physics B.
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Sum over polarisation of an off-shell gluon

dμν
CH = (d − 2)

kμ
t kν

t

k 2
t

kμ
1 = kμ + kμ

t

k2
1 = k2

t lim
k 2

t →0
⟨dμν

CH⟩ = gμν
⊥

We are testing different definitions of the 
sum over polarisation of an off-shell gluon

Have to be modified when we study one-loop 
amplitudes

Works at tree level
k1

k2
q

μ

ν
b

a

2

17

Catani and Hautmann (1994) Nuclear Physics B.



Sum over polarisation of an off-shell gluon

Possible ways to define :dμν

- Most general two indices symmetric 
tensor that satisfies A ⋅ n = 0

- Gluon tensor from squared amplitude 

- Numerator of the propagator in light-cone gauge
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- Gluon tensor from squared amplitude 
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Thank you!



Thank you!


