

UNIVERSITÀ **DEGLI STUDI DI GENOVA**

NLL small-x resummation for Higgs induced DIS

Milan Christmas meeting - 2021

Anna Rinaudo

Paper in preparation with Simone Marzani and Giovanni Ridolfi (INFN Genova) and Marco Bonvini and Federico Silvetti (INFN Roma)

21-23 December 2021

Motivation

n

Perturbative QCD

 $\overline{}$ 1 − *x*

Perturbative QCD

n

 $\overline{}$ 1 − *x*

Perturbative QCD

Perturbative QCD

 $\overline{}$

1 − *x*

$\left(\frac{k}{x}\right)$ $k = 0, \ldots, n$

Threshold limit High energy limit $x \rightarrow 1$ $x \rightarrow 0$

$O^{(n)} \sim \alpha_s^n \left[\ln^n(x) + \ln^{n-1}(x) + \ldots \right]$

LL NLL $O^{(n)} \sim \alpha_s^n \left[\ln^n(x) + \ln^{n-1}(x) + \ldots \right]$

$O^{(n)} \sim \alpha_s^n \left[\ln^n(x) + \ln^{n-1}(x) + \ldots \right]$

Theoretical prediction are no longer reliable
TTP MITT rifeor.encer his rifeor.

Spoil the convergence of the perturbative series

$O^{(n)} \sim \alpha_s^n \left[\ln^n(x) + \ln^{n-1}(x) + \ldots \right]$

Spoil the convergence of the perturbative series

Theoretical prediction are no longer reliable

Solution? Find out the all-order structure of these logarithmic contributions by writing them as a series and summing it

Resummation

How much does small-x resummation improve theoretical predictions?

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli (**2018**) The European Physical Journal C.

NNPDF3.1sx

Small-x resummation: How does it work?

Small-x resummation: How does it work?

- Resummation Factorization

We need some factorisation properties

Small-x resummation: How does it work?

- Resummation Factorization

$g(N, Q^2)$) ⁼ [∫] 1 0

We need some factorisation properties

 $dx x^N g(x, Q^2)$ ln^k(*x*) →

- Mellin Transform

 \mathcal{L}

$C_i (N, \alpha_s(Q^2)) f_i (N, Q^2)$

$C_i (N, \alpha_s(Q^2)) f_i (N, Q^2)$

Coefficient function

 $C_i (N, \alpha_s(Q^2)) f_i (N, Q^2)$

Coefficient function

Parton distribution function (PDF)

 $C_i (N, \alpha_s(Q^2)) f_i (N, Q^2)$

Coefficient function

Parton distribution function (PDF)

ln(*x*)

 $C_i (N, \alpha_s(Q^2)) f_i (N, Q^2)$

function

Coefficient Parton distribution function (PDF)

Our goal: resum NLL logarithms in the coefficient function

High energy factorization theorem *σ*(*N*, *Q*²) ⁼ [∫] ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{s}\right) \mathscr{F}_{g}\left(N, k_{\perp}^2\right)$

Off- shell coefficient function

High energy factorization theorem *σ*(*N*, *Q*²) ⁼ [∫] ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{s}\right) \mathscr{F}_{g}\left(N, k_{\perp}^2\right)$

7

Off- shell coefficient Unintegrated function

PDF

High energy factorization theorem *σ*(*N*, *Q*²) ⁼ [∫] ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{s}\right) \mathscr{F}_{g}\left(N, k_{\perp}^2\right)$

7

Off- shell coefficient Unintegrated function

 $\mathscr{F}_{g} (N, k_{\perp}^2) = \mathscr{U}(N, k_{\perp}^2, \mathcal{Q}^2)$ $\int f_g(N, Q^2)$)

PDF

High energy factorization theorem *σ*(*N*, *Q*²) ⁼ [∫] ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{s}\right) \mathscr{F}_{g}\left(N, k_{\perp}^2\right)$

7

High energy factorization theorem *σ*(*N*, *Q*²) ⁼ [∫] ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{s}\right) \mathscr{F}_{g}\left(N, k_{\perp}^2\right)$

 $\mathscr{F}_{g} (N, k_{\perp}^2) = \mathscr{U}(N, k_{\perp}^2, \mathcal{Q}^2)$ $\int f_g(N, Q^2)$)

Off- shell coefficient Unintegrated function

 $C_g(N, \alpha_s) =$ ∞ 0 $dk_\perp^2 \mathscr{C}\left(N,k_\perp^2,\mathcal{Q}^2,\alpha_s\right) \; \mathscr{U}\left(N,k_\perp^2,\mathcal{Q}^2\right)$)

PDF

Bonvini, Marzani, and Peraro (**2016**) The European Physical Journal C.

Higgs induced DIS: What do we want to compute?

$- n_f = 0$

- Higgs gluon effective vertex: $M^{\mu\nu} = i c \delta^b_a \left[k_2^{\mu} k_1^{\nu} - g^{\mu\nu} k_1 \cdot k_2 \right]$

$- n_f = 0$

- Higgs gluon effective vertex: $M^{\mu\nu} = i c \delta^b_a \left[k_2^{\mu} k_1^{\nu} - g^{\mu\nu} k_1 \cdot k_2 \right]$

 $- n_f = 0$

 $k_1^2 = -k_1^2$ - Off-shell coefficient function

We want to resum NLL terms in the coefficient function

$dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_{\mathrm{s}}\right) \; \mathscr{U}\left(N,k_{\perp}^2, \mathcal{Q}^2\right)$ $\begin{array}{c} \end{array}$

We want to resum NLL terms in the coefficient function

 $dk_{\perp}^2 \mathscr{C}\left(N, k_{\perp}^2, \mathcal{Q}^2, \alpha_s\right) \; \mathscr{U}\left(N, k_{\perp}^2, \mathcal{Q}^2\right)$ $\begin{array}{c} \end{array}$

We have to compute the one-loop off-shell coefficient function

Key points

1. We have to work in axial gauge: $A \cdot n = 0$

Key points

The off-shell coefficient function is free from logs if we work in axial gauge

1. We have to work in axial gauge: $A \cdot n = 0$

Key points

2. We have to define the sum over polarisation of an off-shell gluon

The off-shell coefficient function is free from logs if we work in axial gauge

Axial gauge

 $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ $k^2 k \cdot n$

 $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ *k*² *k* ⋅ *n*]

Axial gauge

 $\prod_{a}^{\mu\nu}$ $\binom{\mu\nu}{a,b}(k,n) = i \delta_{a,b}$

- Non covariant loop integrals

 $d^d k$

 $(2\pi)^d$

 $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ *k*² *k* ⋅ *n*]

1 $k^2(k - k_1)^2(k - k_2)^2(k \cdot n)$

Axial gauge

^I ⁼ [∫]

 $\prod_{a}^{\mu\nu}$ $\binom{\mu\nu}{a,b}(k,n) = i \delta_{a,b}$

 $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ *k*² *k* ⋅ *n*]

1 $k^2(k - k_1)^2(k - k_2)^2(k \cdot n)$

Axial gauge

- Non covariant loop integrals

 $d^d k$

 $(2\pi)^d$

^I ⁼ [∫]

 $I_n =$ $d^d k$ $(2\pi)^d$ $f(k\cdot n)$ $D_1 D_2 ... D_n$

$I_n =$ $d^d k$ $(2\pi)^d$ $f(k\cdot n)$ $D_1 D_2 ... D_n$

Covariant denominators

$I_n =$ $d^d k$ $(2\pi)^d$ $D_1 D_2 ... D_n$

Covariant denominators

Non-covariant part

$I_n =$ $d^d k$ $(2\pi)^d$ *f* (*k* ⋅ *n*) $D_1 D_2 ... D_n$

1 $(k \cdot n)$ → *k* ⋅ *n* $(k \cdot n)^2 + \delta^2$ Non-covariant part

Covariant denominators

1000000000000

Non covariant loop integrals

*k*1

*k*1

 k_2 k_2

 $q \sim q$

 $k_{1}% \sqrt{\sum_{i=1}^{n-1}(t_{i}-t_{i})}$

 k_1^2 $\frac{2}{1} \neq 0$

 $I_2 =$ $d^d k$ $(2\pi)^d$ *f* (*k* ⋅ *n*) $k^2(k-l)^2$

 $k_{1}^{}$

 k_2 k_2

 $q \sim q$

 $k_{1}^{}$

 k_2 k_2

 $q \sim q$

k_1^2 $\frac{2}{1} \neq 0$

 $I_2 =$ $d^d k$ $(2\pi)^d$ *f* (*k* ⋅ *n*) $k^2(k-l)^2$ = *i* $16\pi^2$

 $l_+ = l \cdot n$

 $k_{1}^{}$

 k_2 k_2

 $q \sim q$

k_1^2 $\frac{2}{1} \neq 0$

 $I_2 =$ $d^d k$ $(2\pi)^d$ *f* (*k* ⋅ *n*) $k^2(k-l)^2$ = *i* $16\pi^2$

 $l_+ = l \cdot n$

=

Non covariant loop integrals

*k*1

q

 k_{2}

 $I_3 =$ ∫ $d^d k$ $(2\pi)^d$ $f(k\cdot n)$ $k^2(k-k_1)^2(k-k_2)^2$

*k*1

q

 k_2

 $I_3 =$ ∫ $d^d k$ $(2\pi)^d$ $f(k\cdot n)$ $k^2(k-k_1)^2(k-k_2)^2$ $(1 - x)$ *ϵ* ∫ 1 *x* $dy f (k_1 + y) (b - y)$ −1−*ϵ* $(1 - y)$ (*x*) *ϵ* ∫ *x* 0 $dz f(k_1 + z) z^{-\epsilon} (b - z)^{-1 - \epsilon}$ [

 $x =$ $k_2 \cdot n$ $k_1 \cdot n$ $b = -\frac{k_1^2}{2}$ 1 $2k_1 \cdot k_2$

$$
= \frac{i}{16\pi^2} \left(\frac{4\pi}{-2k_1 \cdot k_2} \right)^{\epsilon} \frac{1}{-2k_1 \cdot k_2} \frac{\Gamma(1+\epsilon)}{\epsilon}
$$

$$
E_2 F_1 \left(1+\epsilon, -\epsilon; 1-\epsilon; \frac{b-x}{x} \frac{z}{b-z} \right) +
$$

$$
E_1 y)^{-\epsilon} {}_2F_1 \left(1+\epsilon, -\epsilon; 1-\epsilon; \frac{(1-y)(b-x)}{(b-y)(1-x)} \right)
$$

*k*1

q

 k_2

 $I_3 =$ ∫ $d^d k$ $(2\pi)^d$ $f(k\cdot n)$ $k^2(k-k_1)^2(k-k_2)^2$ $(1 - x)$ *ϵ* ∫ 1 *x* $dy f(k_1 + y)(b - y)$ −1−*ϵ* $(1 - y)$ (*x*) *ϵ* ∫ *x* 0 $d(f(k_1+ z)) z^{-\epsilon} (b-z)^{-1-\epsilon}$ [

 $x =$ $k_2 \cdot n$ $k_1 \cdot n$ $b = -\frac{k_1^2}{2}$ 1 $2k_1 \cdot k_2$

$$
= \frac{i}{16\pi^2} \left(\frac{4\pi}{-2k_1 \cdot k_2} \right)^{\epsilon} \frac{1}{-2k_1 \cdot k_2} \frac{\Gamma(1+\epsilon)}{\epsilon}
$$

$$
E_2 F_1 \left(1+\epsilon, -\epsilon; 1-\epsilon; \frac{b-x}{x} \frac{z}{b-z} \right) +
$$

$$
E_1 y)^{-\epsilon} {}_2F_1 \left(1+\epsilon, -\epsilon; 1-\epsilon; \frac{(1-y)(b-x)}{(b-y)(1-x)} \right)
$$

 $\prod_{a}^{\mu\nu}$ $\binom{\mu\nu}{a,b}(k,n) = i \delta_{a,b}$

 $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ *k*² *k* ⋅ *n*]

1 $k^2(k - k_1)^2(k - k_2)^2(k \cdot n)$

^I ⁼ [∫]

Axial gauge

- Non covariant loop integrals

 $d^d k$

 $(2\pi)^d$

kμ 1 $= k^{\mu} + k^{\mu}_t$ *t* $k_1^2 = k_t^2$

*k*2

q

μ

ν

b

a

 $k₁$

kμ

 $k_t^2 \rightarrow 0$

Sum over polarisation of an off-shell gluon *dμν CH* $=$ $(d - 2)$ $k_t^{\mu}k_t^{\nu}$ k_f^2 1 $= k^{\mu} + k^{\mu}_t$ *t* $k_1^2 = k_t^2$ t lim $\langle d_{CH}^{\mu\nu} \rangle = g_{\perp}^{\mu\nu}$ *k*2 *q ν b*

Works at tree level

μ

a

 $k₁$

dμν CH $=$ $(d - 2)$

 $k_t^2 \rightarrow 0$

kμ 1 $= k^{\mu} + k^{\mu}_t$ *t* $k_1^2 = k_t^2$ t lim

Have to be modified when we study one-loop amplitudes Works at tree level *a* *k*2

q

μ

ν

b

 $k₁$

dμν CH $=$ $(d - 2)$

 $k_t^2 \rightarrow 0$

kμ 1 $= k^{\mu} + k^{\mu}_t$ *t* $k_1^2 = k_t^2$ t lim

We are testing different definitions of the sum over polarisation of an off-shell gluon

Have to be modified when we study one-loop amplitudes

Works at tree level

*k*2

q

μ

ν

b

a

 $k₁$

- Most general two indices symmetric tensor that satisfies $A \cdot n = 0$

Numerator of the propagator in light-cone gauge

- Gluon tensor from squared amplitude

Possible ways to define $d^{\mu\nu}$:

- Most general two indices symmetric tensor that satisfies $A \cdot n = 0$

Numerator of the propagator in light-cone gauge

- Gluon tensor from squared amplitude

Possible ways to define $d^{\mu\nu}$:

∑ pol $|\mathcal{M}(k)|$ 2 $=\mathcal{M}_{\mu}(k,n)\mathcal{M}_{\nu}^{*}(k,n) d_{\text{off}}^{\mu\nu}$

 $\frac{\partial u}{\partial f}(k, n)$ *M(k, n)*

k + *q*

k

q

μ

∑ pol $|\mathcal{M}(k)|$ 2 $=\mathcal{M}_{\mu}(k,n)\mathcal{M}_{\nu}^{*}(k,n) d_{\text{off}}^{\mu\nu}$

 $d_{\text{off}}^{\mu\nu}(k,n) = \Delta^{\mu\rho}(k,n) \Delta^{\nu\sigma}(k,n) T_{\rho\sigma}(k,n)$ ^μ $\Delta^{\mu\nu}(k, n) = \Delta^{\mu\rho}(k, n)\Delta^{\nu\sigma}$ $\int (k,n) T_{\rho\sigma}(k,n)$

 $\frac{\partial u}{\partial f}(k, n)$ *M(k, n)*

k + *q*

k

q

∑ pol $|\mathcal{M}(k)|$ 2 $=\mathcal{M}_{\mu}(k,n)\mathcal{M}_{\nu}^{*}(k,n) d_{\text{off}}^{\mu\nu}$

$d_{\text{off}}^{\mu\nu}(k,n) = \Delta^{\mu\rho}(k,n) \Delta^{\nu\sigma}(k,n) T_{\rho\sigma}(k,n)$ ^μ $\Delta^{\mu\nu}(k, n) = \Delta^{\mu\rho}(k, n)\Delta^{\nu\sigma}$ $\int (k,n) T_{\rho\sigma}(k,n)$

k + *q*

k

q

Gluon propagator

∑ pol $|\mathcal{M}(k)|$ 2 $=\mathcal{M}_{\mu}(k,n)\mathcal{M}_{\nu}^{*}(k,n) d_{\text{off}}^{\mu\nu}$

k + *q*

k

q

Gluon propagator Vertex

∑ pol $|\mathcal{M}(k)|$ 2 $=\mathcal{M}_{\mu}(k,n)\mathcal{M}_{\nu}^{*}(k,n) d_{\text{off}}^{\mu\nu}$

 $d_{\text{off}}^{\mu\nu}(k,n) = \Delta^{\mu\rho}(k,n) \Delta^{\nu\sigma}(k,n) T_{\rho\sigma}(k,n)$ $\Delta^{\mu\nu}(k, n) = \Delta^{\mu\rho}(k, n)\Delta^{\nu\sigma}$ $\left(k, n\right)T_{\rho\sigma}(k,n)$

k + *q*

k

q

dμν $\frac{d\mu\nu}{d\sigma}$ $(k,n) = -\frac{A}{k^4}$ $\frac{1}{k^4}$ (−*g*^{$\mu\nu$} + $k^{\mu}n^{\nu} + k^{\nu}n^{\mu}$ *k* ⋅ *n* + 2*D A* k^2 $(k \cdot n)^2$ *nμn^ν* $\overline{}$

 $\frac{\partial u}{\partial f}(k, n)$ *M(k, n)*

Gluon propagator Vertex

Where are we?

 $C_g(N, \alpha_s) =$ ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N,k_{\perp}^2, \mathcal{Q}^2, \alpha_s\right) \mathscr{U}\left(N, k_{\perp}^2, \mathcal{Q}^2\right)$)

Where are we?

 $C_g(N, \alpha_s) =$ ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N, k_{\perp}^2, \mathcal{Q}^2, \alpha_{\mathrm{s}}\right) \mathscr{U}\left(N, k_{\perp}^2, \mathcal{Q}^2\right)$)

- Solved main issues due to the choice of axial gauge - Still some unclear aspects in the sum over polarisation an off-shell gluon - Final stages of the calculations

Where are we?

 $C_g(N, \alpha_s) =$ ∞ 0 $dk_{\perp}^2 \mathscr{C}\left(N, k_{\perp}^2, \mathcal{Q}^2, \alpha_{\mathrm{s}}\right) \left(\mathscr{U}\left(N, k_{\perp}^2, \mathcal{Q}^2, \alpha_{\mathrm{s}}\right)\right)$)

- Solved main issues due to the choice of axial gauge - Still some unclear aspects in the sum over polarisation an off-shell gluon - Final stages of the calculations

