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Muons in atmospheric cascades
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Muons testing at RADNEXT-affiliated facilities
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Neutrons in atmospheric cascades

t TAit-Ouamer (10-100 MeV)
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= Dominant contribution to SEEs in atmosphere § o
= Flux strongly dependent on altitude, latitude £

= Atmospheric neutron spectrum well-reproduced  3..
at spallation neutron sources, up to energy 2 o1

Preazier (10-100 MeV)

Mendall (1-10 MeV)
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ChipIR at the ISIS Muon and Neutron Source at RAL

= |In operation since 2017

= Primary protons at 300 MeV, Atmospheric Fast
pulsed beam operation T

= Flux: up to 5X106 n>10 MeV/sz/S ChipIR hole

= Variable collimation: Tungsten target |

= As low as a few cm?
= Upto40cm x40 cm

= 2 test positions, designed to make
it easy to test both small boards
and big, heavy systems

= Cadmium filters available to
remove thermal and epithermal
neutrons

= 620 beam hours available through Proton Beam (800MeV)
RADNEXT

Secondary Scatterer

Kk Fast Neutron Beam

Be reflector
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ChipIR at the ISIS Muon and Neutron Source at RAL

Patch Panel
~

G-RAD(NEXT) 2022 — C.B.-Champagne, TRIUMF



TRIUMF Proton and Neutron Irradiation Facilities

= H- cyclotron, extracted max ® Proton or neutror[beam /
proton energy: 520 MeV ]
, , ® Neutron beam E— S~
= Typical operation:
= 3 or 4 simultaneous beams Main Office Building WL &
extracted L I ] :O o
= Multiple energies 63 to 480 MeV | s e’ B8
= >200 pA total circulating beam ] —I_ -
* Continuous-wave beam 2 TRIUME Sy [I - |
= Proton beams available for .
commercial radiation tests m
. Meson Hall :
since 1995 i g
= Neutrons beams since 2002

G-RAD(NEXT) 2022 — C.B.-Champagne, TRIUMF



High-intensity neutron beam at TNF

Symbiotic operation with high-
current beamline 1A, 420-450 MeV
protons

Neutrons created in the 1A beam
dump (water-cooled aluminium)

Flux fixed by 1A proton beam users,
typlcally 2-3 x106 N>10 MeV/sz/S

Fixed beam size 5¢cm x 15 cm
Narrow channel, trolley plate access

92 beam hours available through
RADNEXT

Vertical access
through shielding Access floor 16 ft

above neutron
beam line

Concrete
shielding

Steel shielding

0

TNF | |
Water

450 Mev
protons

Neutron monitor
BF3 / polyethylene

P
T

Aluminum plate

Proton beam beam dump

vacuum pipe

Neutron
Neutron channel beam
located 15cm Device to be
below ¢ of test mounted Steel shield
proton beam dump on plate and

lowered into beam
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Beamline 1B — neutron mode

11

= Atmospheric-like neutron energy spectrum

- = Neutron beam created by striking thick
lead target with 480-MeV proton beam

= 120 beam hours available through
RADNEXT
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Beamline 1B — neutron mode
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Distance from Beam diameter | Max neutron

beam entrance | (cm) flux (cm-2s-1)
in room (cm)
4 16 5.2x10°
104 32 1.3x10°
204 48 5.6x104
354 72 2.6x104
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Proton testing on beamline 1B

= 2 standard extracted proton energies:
W = 480 MeV (preferred)
= 355 MeV

Max proton flux approx. 4x107 p/cm?/s

= Flux adjustable down to 102 p/cm?/s, by user
request to cyclotron control room

= Max beam size at standard location
= 7.5cmx7.5cm

No degrader capability, limited collimation
options: highly penetrative beam
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Proton testing on beamline 2C1
R = |nitially developed for proton radiotherapy b

= Qcular melanoma cancer treatments
= Clinical treatments 1995-2018

= 2 standard extracted proton energies:
= 63 MeV
= 105 MeV

= Remote-controlled continuous-energy degrader
system down to ~15 MeV

= Max proton flux approx. 1x108 p/cm?/s
= Flux adjustable down to 10?2 p/cm?/s, by user
request to cyclotron control room
= Max beam size at standard location

= 5cmx5cm
= 7.5 cm diameter

= Beam parameters highly customizable (size,
energy, flux) to support testing for a wide range
of applications
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Event rate (SEE/cm?/day)

Proton beams to support neutron beam testing

= In proton beams of sufficient energy (> 50 MeV), the overlap in available nuclear reaction N

processes means mono-energetic proton beams can be substituted to broad spectrum neutron
beams for certain tasks
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= Allows faster screening of individual components with good accuracy, increasing confidence
that system-level test will be successful
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Summary

Main source of SEEs in avionics and aerospace applications are neutrons created in 16
atmospheric cascades

Spallation neutron facilities like Chiplr and TRIUMF provide broad-spectrum neutron beams
with excellent energy spectrum matching for electronics testing and qualification

Acceleration factors as high as 10°
Spallation neutron facilities have dedicated areas for electronics testing and expert support staff

Muons are also present in abundance in atmospheric showers
Low LET - low likelihood to create SEEs

Interest in electronics testing with muons beams mostly driven by academic groups,
understanding of basic mechanisms of radiation effects

Facility capability exists, but no dedicated infrastructure like what exists for other types of test
beams
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