% TRIUMF

Muon and atmospheric neutron facilities in RADNEXT (with a focus on TRIUMF's capabilities)

Camille Bélanger-Champagne

Irradiation Facilities Coordinator, TRIUMF RADNEXT WP09 deputy leader

with thanks to C. Cazzaniga, E. Blackmore and M. Trinczek

Discovery, accelerated

Muons in atmospheric cascades

- Very abundant in air showers but low LET with new technologies and smaller structure size, reduced Q_c can increase rate of muon-induced SEE
- Negative muon capture process can create high LET secondaries – interesting recent results
- Muon test beam capability worldwide is limited to a few facilities (TRIUMF, RAL, PSI, RCNP, J-PARC) but they are all already involved with the radiation effects community

Source: L. Bonechi et al. *Reviews in Physics* 5 (2020) 100038

G-RAD(NEXT) 2022 – C.B.-Champagne, TRIUMF

Muons testing at RADNEXT-affiliated facilities

RAL-RIKEN muons up to 60 MeV/c 140 hours available through RADNEXT

TRIUMF-M20 positive muons up to 30 MeV/c

Neutrons in atmospheric cascades

- Dominant contribution to SEEs in atmosphere
- Flux strongly dependent on altitude, latitude
- Atmospheric neutron spectrum well-reproduced at spallation neutron sources, up to energy endpoint of primary beam

ChipIR at the ISIS Muon and Neutron Source at RAL

5

G-RAD(NEXT) 2022 – C.B.-Champagne, TRIUMF

ChipIR at the ISIS Muon and Neutron Source at RAL

- In operation since 2017
- Primary protons at 800 MeV, pulsed beam operation
- Flux: up to 5x10⁶ n_{>10 MeV}/cm²/s
- Variable collimation:
 - As low as a few cm²
 - Up to 40 cm x 40 cm
- 2 test positions, designed to make it easy to test both small boards and big, heavy systems
- Cadmium filters available to remove thermal and epithermal neutrons
- 620 beam hours available through RADNEXT

ChipIR at the ISIS Muon and Neutron Source at RAL

TRIUMF Proton and Neutron Irradiation Facilities

- H- cyclotron, extracted max proton energy: 520 MeV
- Typical operation:
 - 3 or 4 simultaneous beams extracted
 - Multiple energies 63 to 480 MeV
 - >200 µA total circulating beam
 - Continuous-wave beam
- Proton beams available for commercial radiation tests since 1995
- Neutrons beams since 2002

High-intensity neutron beam at TNF

- Symbiotic operation with highcurrent beamline 1A, 420-450 MeV protons
- Neutrons created in the 1A beam dump (water-cooled aluminium)
- Flux fixed by 1A proton beam users, typically 2-3 x10⁶ n_{>10 MeV}/cm²/s
- Fixed beam size 5 cm x 15 cm
- Narrow channel, trolley plate access
- 92 beam hours available through RADNEXT

G-RAD(NEXT) 2022 – C.B.-Champagne, TRIUMF

Main radiation test room – proton and neutron test beams

Beamline 1B – neutron mode

Atmospheric-like neutron energy spectrum

- Neutron beam created by striking thick lead target with 480-MeV proton beam
- 120 beam hours available through RADNEXT

Beamline 1B – neutron mode

Distance from beam entrance in room (cm)	Beam diameter (cm)	Max neutron flux (cm ⁻² s ⁻¹)
4	16	5.2x10 ⁵
104	32	1.3x10 ⁵
204	48	5.6x10 ⁴
354	72	2.6x10 ⁴

Proton testing on beamline 1B

- 2 standard extracted proton energies:
 - 480 MeV (preferred)
 - 355 MeV
- Max proton flux approx. 4x10⁷ p/cm²/s
 - Flux adjustable down to 10² p/cm²/s, by user request to cyclotron control room
- Max beam size at standard location
 - 7.5 cm x 7.5 cm
- No degrader capability, limited collimation options: highly penetrative beam

Proton testing on beamline 2C1

- Initially developed for proton radiotherapy
 - Ocular melanoma cancer treatments
 - Clinical treatments 1995-2018
- 2 standard extracted proton energies:
 - 63 MeV
 - 105 MeV
- Remote-controlled continuous-energy degrader system down to ~15 MeV
- Max proton flux approx. 1x10⁸ p/cm²/s
 - Flux adjustable down to 10² p/cm²/s, by user request to cyclotron control room
- Max beam size at standard location
 - 5 cm x 5 cm
 - 7.5 cm diameter
- Beam parameters highly customizable (size, energy, flux) to support testing for a wide range of applications

Proton beams to support neutron beam testing

 In proton beams of sufficient energy (> 50 MeV), the overlap in available nuclear reaction processes means mono-energetic proton beams can be substituted to broad spectrum neutron beams for certain tasks

 Allows faster screening of individual components with good accuracy, increasing confidence that system-level test will be successful

Summary

- Main source of SEEs in avionics and aerospace applications are neutrons created in atmospheric cascades
- Spallation neutron facilities like ChipIr and TRIUMF provide broad-spectrum neutron beams with excellent energy spectrum matching for electronics testing and qualification
- Acceleration factors as high as 10⁹
- Spallation neutron facilities have dedicated areas for electronics testing and expert support staff
- Muons are also present in abundance in atmospheric showers
- Low LET low likelihood to create SEEs
- Interest in electronics testing with muons beams mostly driven by academic groups, understanding of basic mechanisms of radiation effects
- Facility capability exists, but no dedicated infrastructure like what exists for other types of test beams