FCC-EE TUNING SIMULATIONS

Tessa Charles ^{1,2}, Bernhard Holzer ³, Katsunobu Oide ³, Dmirty Shatilov, Frank Zimermann ³ Rogelio Garcia ³, Leon Van Riesen-Haupt ³ and the FCC-ee optics team

University of Liverpool,
 Cockcroft Institute
 CERN

2

Assigning misalignments

- Misalignments are randomly distributed via a Gaussian distribution, truncated at 2.5 sigma.

Assigning girder misalignments

- 2 independent DX and DY misalignments for each end of the girder, and which can be used to calculate DTHETA and DPHI.

Misalignments and field errors

Type	ΔX	ΔY	ΔPSI	ΔS	Δ THETA	ΔPHI	Field Errors
	$(\mu { m m})$	$(\mu { m m})$	(μrad)	$(\mu { m m})$	$(\mu \mathrm{rad})$	(μrad)	
Arc quadrupole*	50	50	300	150	100	100	$\Delta k/k = 2 \times 10^{-4}$
Arc sextupoles [*]	50	50	300	150	100	100	$\Delta k/k = 2 \times 10^{-4}$
Dipoles	1000	1000	300	1000	-	-	$\Delta B/B = 1 \times 10^{-4}$
Girders	150	150	-	1000	-	-	
IR quadrupole	100	100	250	50	100	100	$\Delta k/k = 2 \times 10^{-4}$
IR sextupoles	100	100	250	50	100	100	$\Delta k/k = 2 \times 10^{-4}$
BPM**	40	40	100	-	-	-	-

Misalignments are randomly distributed via a Gaussian distribution, truncated at 2.5 sigma.

* misalignments relative to girder placement

 $\ast\ast$ misalignments relative to quadruple placement

FCC-ee emittance tuning results

RMS misalignment and field errors tolerances:

Туре	ΔX (μm)	ΔY (μm)	ΔPSI (μrad)	$\Delta S \ (\mu m)$	Δ THETA $(\mu$ rad)	ΔPHI (μrad)
Arc quadrupole*	50	50	300	150	100	100
Arc sextupoles ^{$*$}	50	50	300	150	100	100
Dipoles	1000	1000	300	1000	-	-
Girders	150	150	-	1000	-	-
IR quadrupole	100	100	250	50	100	100
IR sextupoles	100	100	250	50	100	100
BPM**	40	40	100	-	-	-

* misalignments relative to girder placement

 $\ast\ast$ misalignments relative to quadruple placement

Туре	Field Errors
Arc quadrupole [*]	$\Delta k/k = 2 \times 10^{-4}$
Arc sextupoles [*]	$\Delta k/k = 2 \times 10^{-4}$
Dipoles	$\Delta B/B = 1 \times 10^{-4}$
Girders	
IR quadrupole	$\Delta k/k = 2 \times 10^{-4}$
IR sextupoles	$\Delta k/k = 2\times 10^{-4}$

ttbar (182.5 GeV) 4IP lattice, after correction strategy:

FCC-ee emittance tuning results

RMS misalignment and field errors tolerances:

Туре	ΔX	ΔY	ΔPSI	ΔS	Δ THETA	ΔPHI
	$(\mu { m m})$	$(\mu { m m})$	(μrad)	$(\mu { m m})$	$(\mu \mathrm{rad})$	(μrad)
Arc quadrupole*	50	50	300	150	100	100
Arc sextupoles [*]	50	50	300	150	100	100
Dipoles	1000	1000	300	1000	-	-
Girders	150	150	-	1000	-	-
IR quadrupole	100	100	250	50	100	100
IR sextupoles	100	100	250	50	100	100
BPM**	40	40	100	-	-	-

* misalignments relative to girder placement

 $\ast\ast$ misalignments relative to quadruple placement

Туре	Field Errors
Arc quadrupole [*]	$\Delta k/k = 2 \times 10^{-4}$
Arc sextupoles [*]	$\Delta k/k = 2 \times 10^{-4}$
Dipoles	$\Delta B/B = 1 \times 10^{-4}$
Girders	
IR quadrupole	$\Delta k/k = 2 \times 10^{-4}$
IR sextupoles	$\Delta k/k = 2\times 10^{-4}$

ttbar (182.5 GeV) 4IP lattice, after correction strategy:

FCC-ee emittance tuning results

RMS misalignment and field errors tolerances:

Type	ΔX	ΔY	ΔPSI	ΔS	Δ THETA	ΔPHI
	(μm)	(μm)	(μrad)	(μm)	(μrad)	(μrad)
Arc quadrupole*	50	50	300	150	100	100
Arc sextupoles [*]	50	50	300	150	100	100
Dipoles	1000	1000	300	1000	-	-
Girders	150	150	-	1000	-	-
IR quadrupole	100	100	250	50	100	100
IR sextupoles	100	100	250	50	100	100
BPM**	40	40	100	-	-	-

* misalignments relative to girder placement

 $\ast\ast$ misalignments relative to quadruple placement

Type	Field Errors
Arc quadrupole [*]	$\Delta k/k = 2 \times 10^{-4}$
Arc sextupoles [*]	$\Delta k/k = 2 \times 10^{-4}$
Dipoles	$\Delta B/B = 1 \times 10^{-4}$
Girders	
IR quadrupole	$\Delta k/k = 2 \times 10^{-4}$
IR sextupoles	$\Delta k/k = 2\times 10^{-4}$

ttbar (182.5 GeV) 4IP lattice, after correction strategy:

After corrections, ttbar 4 IP lattice:

What's been adjusted (since last time I presented)?

- Inclusion of BPM roll angles as additive to Quad roll angle.
- Fixed error in BPM misalignment (MREX, MREY)
- Chromaticity correction added
 - Need to calculate DA with these results
 - Didn't include SY* sextupoles
- Correcting the phase advance between IPs

What I've made available (or will do in the coming days)

- Latest results (including changed from the previous slide)
- Results for half misalignment values (for certain studies, e,g, beam-beam simulations.)

What I've made available (or will do in the coming days)

- Latest results (including changed from the previous slide)
- Results for half misalignment values (for certain studies, e,g, beam-beam simulations.)

In progress

- Relaxed optics
- Weighted coupling and dispersion correction
- Applying to new FCC-ee ttbar 4 IP lattice.

Still to do (there are many things)

- BPM orthogonality errors are not included
- DA calculation
- Solenoid imperfections to be considered
- Tapering imperfections
- Local corrections need to be implemented to target spikes in Dy and coupling matrix elements.
- Non-linear corrections (with impact on DA)
- Profiling simulation and look towards speeding up algorithm
- Simulate optics measurements
- Apply correction technique to low energy, Z lattice
- Determine how to apply measure optics quickly
 - LOCO is too slow on such a large machine
 - AC dipole method may run into problems due to strong damping
- Simulation of commissioning process

Thank you for your attention.

○ FCC

Correction Strategy (1/2)

- Sextupoles strengths set to zero.
 - Gradient errors applied
 - · Weighted beta-beat correction was performed and tune re-matched
 - · Sextupole and dipole field errors introduced
 - Weighted beta-beat correction was performed and tune re-matched
 - · Misalignments applied to arc magnets and girders
 - · Tune re-matched to the nominal tune, and orbit correction performed
 - · Initial beta-beat correction and coupling correction
 - Misalignments applied to IR magnets
 - · Tune re-matched to the nominal tune, and orbit correction performed
 - Beta-beat correction applied, and if needed orbit corrected and tune rematched
 - · Coupling correction, followed by beta-beat correction and coupling correction
- Sextupoles set to 10% of their design strength

(details on next slide)

• Final correction (at 100% sextupole strength) (details on next slide)

Correction Strategy (2/2)

- Sextupoles strengths set to zero.
 - (details on previous slide)

- Orbit correction
- Combined coupling and dispersion correction
- Beta-beating correction applied.
- Sextupole strengths increased by 10% -
- Final correction (at 100% sextupole strength)
 - Additional coupling, dispersion and beta-beating correction was applied.
 - Step through corrections until beta beating threshold is reached (trade-off between beta beating and vertical emittance can be varied).

These two steps

repeated ~12

times.

Vary SV cut off values

COLORS

Green

Radian t Blue Energy

Flash

Red

Deep Blue

BACKGROUNDS

Background Blue	Background Purple
Background Yellow	Background Grey

Use for Layout

pt

GRAPHICAL ELEMENTS

Arrows

BADGES

