LHeC Detector Interaction Region - Discussion (Intro)

- Accelerator Options
- SR Calculations
- Beam Pipe / Detector Dimensions

Accelerator → Detector Design

- Luminosity and acceptance depend on physics program
 - we prepare for two different interaction region setups still (hope for one setup only)
 L_{ep} ≈ 10³³ cm⁻² s⁻¹, 10° < θ < 170° - HighQ² Setup
 L_{ep} ≈ 10³² cm⁻² s⁻¹, 1° < θ < 179° - LowQ² Setup
 - Interplay of optics, synchrotron radiation and beam-beam interaction; handling of second proton beam
 - The design dominated by separation scheme e.g. head-on collisions vs. crossing angle of beams, focussing quads - major source for SR currently;
 - beam pipe dimensions;
 Dipoles integrated in inner detector structure (see below)?
 - Linked with the detector layout and design p_T measurement down to small θ (near 1° and 179°, resp.) - fwd. Toroid
 - \rightarrow An iteration needed now

LHeC – general parameters

RR	LR ERL	LR "p-140"	p- beam
60	60	140	bunch pop. [
17.1	10.1	0.44	tr.emit.γε _{x.v} [
5 - 40	90	90	spot size σ _{x.v}
26	2.0	1.6	β* _{x v} [m]
10000	300	300	bunch spacin
25	50	50	
0.58, 0.29	0.05	0.1	^{\$} smaller LR <i>µ</i>
30, 16	7	7	nominal LHC
0.18, 0.10	0.12	0.14	- reduce
0.93	0	0	- only on - new IR
0.77	0.91	0.94	
N/A	N/A	10	
N/A	N/A	5	
N/A	94 %	N/A	B.
131	6.6	0.27	
100	100	100	[Г
	RR 60 17.1 5 - 40 26 10000 25 0.58, 0.29 30, 16 0.18, 0.10 0.93 0.77 N/A N/A N/A 131 100	RRLR ERL606017.110.15 - 4090262.01000030025500.58, 0.290.0530, 1670.18, 0.100.120.9300.770.91N/AN/AN/AN/AN/A94%1316.6100100	RRLR ERLLR "p-140"606014017.110.10.445-409090262.01.6100003003002550500.58, 0.290.050.130, 16770.18, 0.100.120.140.93000.770.910.94N/AN/A10N/A94%N/A1316.60.27100100100

p- beam	RR	LR
bunch pop. [10 ¹¹]	1.7	1.7
tr.emit.γε _{x,y} [μm]	3.75	3.75
spot size σ _{x,y} [μm]	30, 16	7
β* _{x,y} [m]	1.8,0.5	0.1 ^{\$}
bunch spacing [ns]	25	25

^{\$} smaller LR *p*-β* value than for nominal LHC (0.55 m): - reduced *l** (23 → 10 m) - only one *p* beam squeezed - new IR quads as for HL-LHC

> B. Holzer, M. Klein, F. Zimmermann

CLIC-LHeC Synergies & KEK Trip Report, Frank Zimmermann, CLIC Meeting 20 August 2010

IR layout w. head-on collision

LR - Design M.Sullivan -Elliptical Beam Pipe1: inner- $\emptyset_x = 12$ cm inner- $\emptyset_y = 5$ cm outer- $\emptyset_x = 12.8$ cm outer- $\emptyset_y = 5.8$ cm \cdots thickness: 0.4cm

Beam envelopes of 100 (electrons) [solid blue] or 110 (protons) [solid green], the same envelopes with an additional constant margin of 10 mm [dashed], the synchrotron radiation fan [orange], and the approximate location of the magnet coil between incoming protons and outgoing electron beam [black].

INTERACTION-REGION DESIGN OPTIONS FOR A LINAC-RING LHEC by F.Zimmermann et.al. submitted IPAC'10

Answer: SR problematic - to be checked

how about 2nd LHC proton beam?

2nd beam must be transported across LHeC IR

two possibilities:

(1) common IR vacuum chamber; second beam unsqueezed

(2) detector with a bypass hole (c.f. Tevatron D0)

CLIC-LHeC Synergies & KEK Trip Report, Frank Zimmermann, CLIC Meeting 20 August 2010

Which version we have to live with?

5 Remaining Options for Ring-Ring

aperture (vertical)	aperture (horizontal)	(for two beams)	BIOCK COII	Niirror
7400 A	7400 A	4600 A	4600 A	4900 A
MQY cable	MQY cable	MQY cables	MQY (non-keyst.)	MQY cables
95 mm	100 mm	107 mm	56 mm	65 mm
0.2 E -3 T	0.2 E -3 T	0.016 T	0.07 T + quad comp.	0.03 T

Comparison Q1 for Ring-Ring and Linac-Ring

Ring-Ring option. Single aperture magnet for two proton beams, 127 T/m, 4600 A, MQY cable

4600 A MQY cable	4900 A MQY	NbTi: 6700 A, 248 T/m at 88% LL Nb3Sn (HFM46): 8600 A, 311 T/m, at 83% LL	NbTi: 4500 A, 145 T/m, 3.6 T at 87% Nb3Sn (HFM46): 5700 A, 175 T/m, 4.7 T at 82% on LL (4 layers)
35 mm aperture 107 mm beam sep.	35 mm (half) app. 65 mm beam sep.	23 mm app. 87 mm beam sep.	46 mm (half) app. 63 mm beam sep.
0.016 T fringe field in electr. pipe	0.03 T	0.03 T, 3.5 T/m 0.09 T, 9 T/m	0.37 T, 18 T/m 0.5 T, 25 T/m

Two Options - RR

- In the above diagram two options are presented.
 Both options obtain a separation of ~50 mm of the interacting proton beam and electron beam at the absorber surface.
- The first option includes two 1.2 meter dipoles located inside the detector with opposite polarity. This option requires a uniform dipole field of 0.024 T to obtain the desired separation. In this case the simulation was done with a generic uniform field and so the radial placement of the detector dipoles is not fixed.
- The second option does not include any dipoles inside the detector however the field in the remaining elements must be raised to 0.028 T to obtain the same separation.
- In both cases the quadrupole triplets obtain an effective dipole field through offsets.

Synchrotron Radiation Results - Using GEANT4, Nathan Bernard, LHeC Design Meeting, 31-8-10 *based on the optics of LThompson

Beam Pipe Contents*

• The proton centroid was provided by Luke Thompson.

• The electron centroid was found by simulations in GEANT4 using modified MAD-X optics to achieve ~50 mm of separation at the absorber.

- The SR fan is the output of GEANT4 simulations
- The beam pipe is designed from preliminary tolerances however the required tolerance for the SR fan needs to be made clear !

120

100

80

60

40

20

Beam Pipe

SR Fan

Proton Centroid

Electron Centroid

 $\emptyset_x = 73$ mm used

*Simulations performed with GEANT4

Synchrotron Radiation Results - Using GEANT4, Nathan Bernard, LHeC Design Meeting, 31-8-10 *based on the optics of L.Thompson

25

Elliptical Beam Pipe:

inner- $\emptyset_x = 7.3$ cm outer- $\emptyset_x = 8.1$ cm inner- $\emptyset_y = 5.8$ cm outer- $\emptyset_y = 6.6$ cm

0.8cm wall thickness allows a sandwich structure of the beam pipe e.g. Be-Nomex-Be or Al-Nomex-Al or any combination of both. (Nomex= honeycomb of Rohacell_Airex X0=1380cm compared to Be X0= 35cm)

From: Raymond Veness

Subject: RE: Beam Pipe - short info

- Date: 4, October, 2010 12:09:08 PM GMT+02:00
 - To: peter kostka
- Cc: Alessandro Polini , jonathan.bosch@cern.ch

Hi Peter,

We have some preliminary results for the beampipe.

Can we meet to go through this together?

Perhaps some time on Wednesday?

Best regards,

Ray

Strong Focussing Magnet System (dark blue) inner R = 8. cm; outer R = 15 cm (guess) ΔZ = 160. cm -- t.b.defined

Questions to be answered

- Synchrotron Radiation geometry, intensity, backscattering - Optic ?
- Second proton beam?
- Dipoles inside the detector needed?

SR Characteristics using GEANT4 Simulations

Characteristic	Detector Dipole	No Detector Dipole
E [GeV]	60	60
I [mA]	100	100
Detector Dipole Length [m]	2.4	0
B [T]	0.024	0.028
θ _{Initial} * [mrad]	3.6	3.8
θ _{Crossing} * [mrad]	1.108	1.104
Ec [keV]	102.79	108.05
E _µ [keV]	31.65	33.27
Eσ[keV]	57.47	60.41
λ [m]	2.585	2.579
γ/e-	7.7025	8.2043
P [kW]	24.3756	27.2986
Separation** [mm]	49.067	49.795

 $^{*}\theta$ is the angle between the electron and proton momentum vectors

** The separation is the displacement between the proton and electron centroids at the absorber

Synchrotron Radiation Results - Using GEANT4, Nathan Bernard, LHeC Design Meeting, 31-8-10 *based on the optics of LThompson