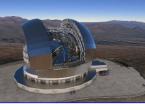
Mid-infrared ELT Imager and Spectrograph

XETIS

Jeff Lynn (METIS Consortium / NOVA (The Netherlands)) ELT Instruments Day, April 7th, 2022

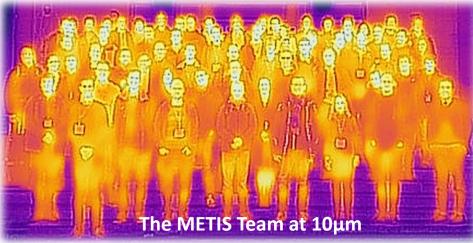
METIS on the ELT Nasmyth Platform

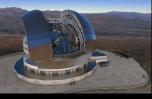

Mid-Infrared ELT Imager and Spectrograph (METIS)

Agenda:

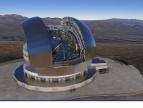
Project Overview & Science Cases Instrument Overview

2


Subsystems: Overview, Procurement Status

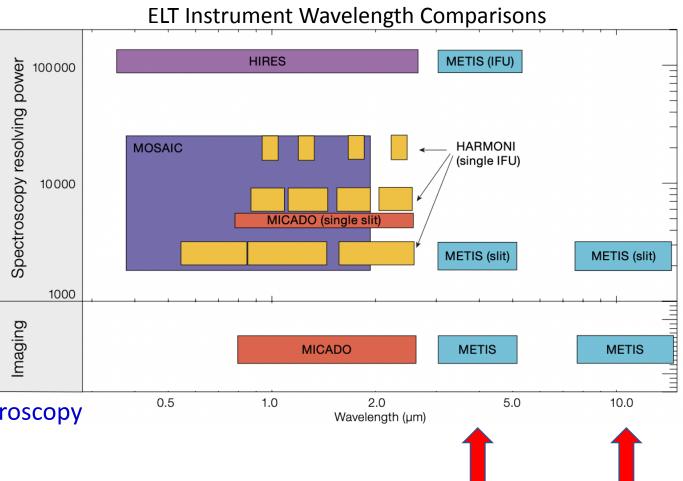

Project Overview

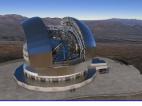
- Consortium of 12 international partner institutions (10 European, 1 US, 1 Taiwan) + ESO
- Project costs (labor + hardware) ~100 M€
- Project schedule:
 - 2015 Kick-off
 - 2019 PDR
 - 2021 OFDR
 - 2022 FDR
 - 2024–27 AIT
 - ~2028 1st-light


Case

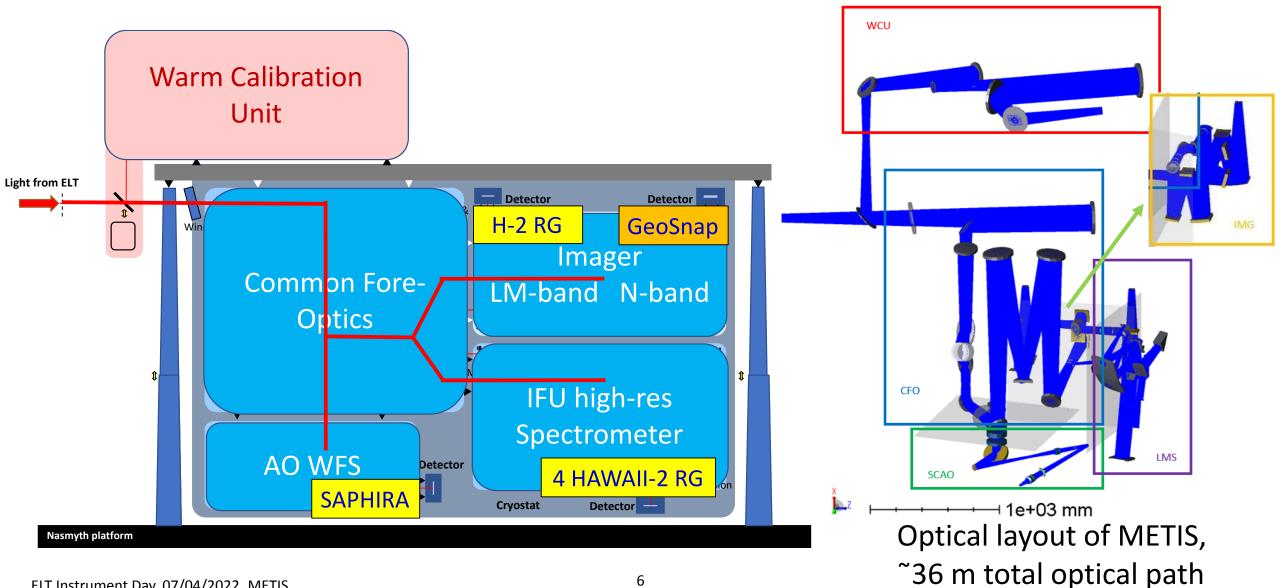
METIS

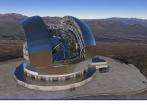
Mid-infrared ELT Imager and Spectrograph oplanets Disks -planetar drivers: proto-Main ∞

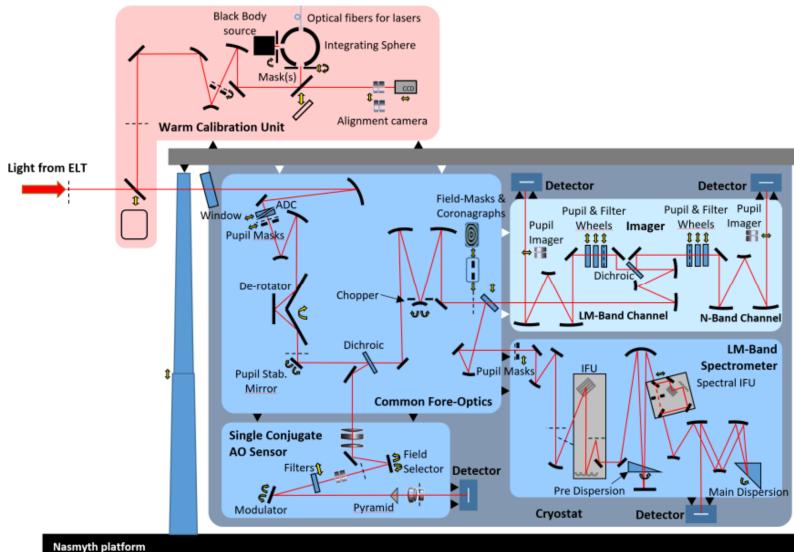

METİS

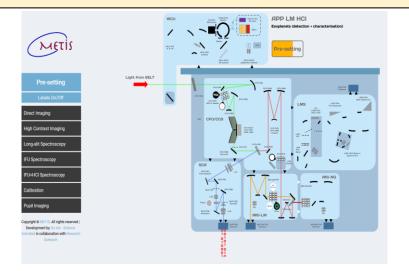


Instrument Overview

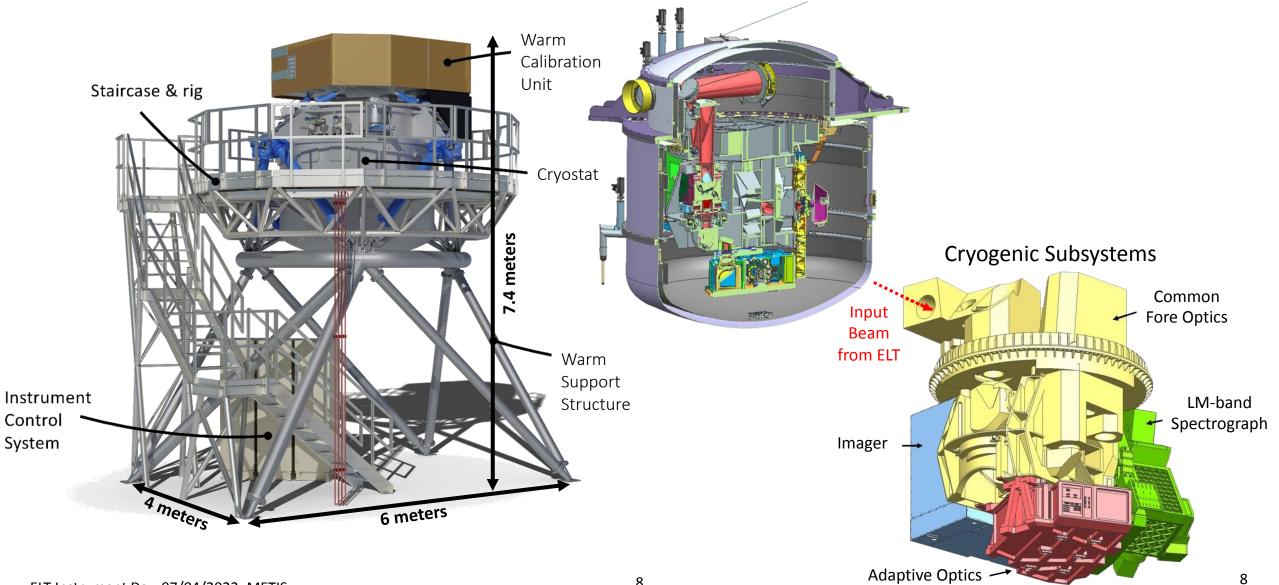

- High resolution (R ~ 100,000) integral-field spectroscopy at 3 – 5 μm, over a field of view of ~ 0.93" × 0.58", including:
 - A mode with extended $\Delta \lambda_{instant}$ ~ 300 nm
 - Coronagraphy for high contrast IFU spectroscopy
- Imaging over a field of view of $10.5'' \times 10.5''$ (3 – 5 µm) and $13.5'' \times 13.5''$ (8 – 13 µm), including:
 - Low resolution (R ~ few 100s) long-slit spectroscopy
 - Coronagraphy for high contrast imaging
- All observing modes work at the diffraction limit of the 39 m ELT with a Single Conjugate Adaptive Optics subsystem




Optical Concept



Optical Overview


Want to understand how METIS works? Check out the METIS App: <u>http://metis-app.strw.leidenuniv.nl/</u>

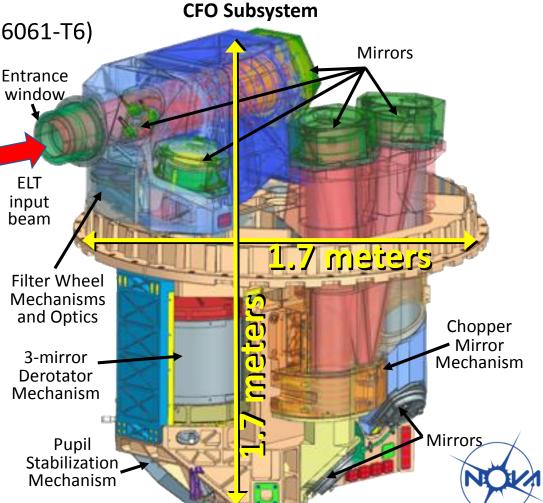
Mid-infrared ELT Imager and Spectrograph

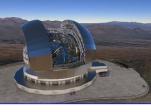
Opto-mechanical Realization

ELT Instrument Day, 07/04/2022, METIS

METIS Subsystems and Associated Partners

- Common Fore-Optics (CFO) \rightarrow NOVA / ASIAA
- Imager (IMG) \rightarrow MPIA
- Single Conjugate Adaptive Optics (SCAO) \rightarrow MPIA
- LM-band Spectrometer (LMS)→UK-ATC
- Cryostat (CRY) → ETH Zürich
- Warm Calibration Unit (WCU) \rightarrow UzK
- Instrument Control Subsystem (ISC) \rightarrow KU Leuven
- Warm Support Structure \rightarrow centra
- ICAR / Derotator Mechanisms \rightarrow CEA
- Coronagraphic Masks / Filters \rightarrow U. Liége
- Detectors \rightarrow ESO
- Science pipeline \rightarrow A*

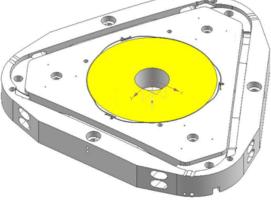


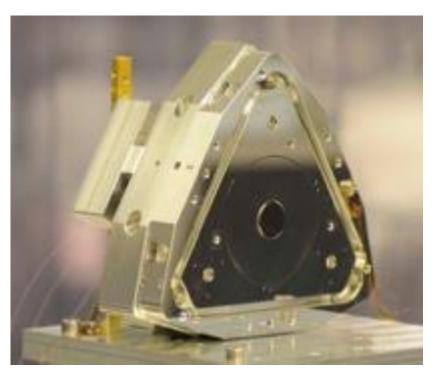

Common Fore-Optics Subsystem (NOVA)

10

- Common Fore-Optics (CFO) is the first set of optical components and mechanisms within the METIS cryostat
 - All-Aluminum backbone structure (EN AW 6082-T4 / EN AW 6061-T6)
 - 45+ optical elements including:
 - 16 precision-polished all-Aluminum mirrors
 - Optical coronagraphic masks
 - Dichroic to split off the AO beam
 - 7 cryogenic mechanisms with 10+ year lifetime
 - 12-meter light path to the science subsystems
 - Operating temperature of 67 K
 - Technical challenges:
 - Diffraction limited cryogenic optics with low surface shape error / roughness (< 25 nm / < 2 nm)
 - Micron alignment for a 12 m optical light path

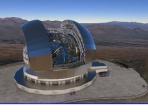
Mid-infrared ELT Imager and Spectrograph


CFO Procurement- Already Ordered



- Mirror raw material: RSA-6061-T6 Aluminum
- Cold Chopper Mechanism

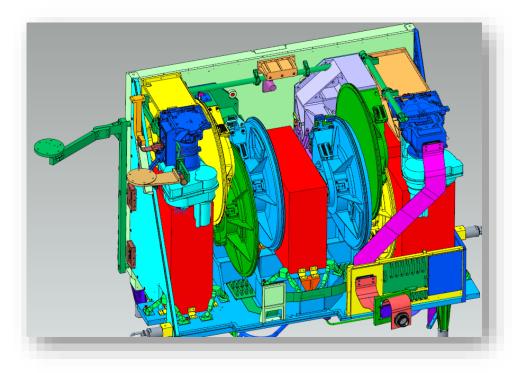
• Cryogenic Linear Actuators (CLAs)

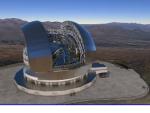


CFO Procurement- To be Ordered

Mid-infrared ELT Imager and Spectrograph

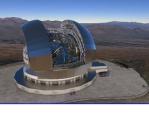
- 4 ADC prisms
 - Substrates: 2 CaF2 and 2 BaF2
 - Antireflective coating in the 1450 nm to 5500 nm band
 - Diameter: 88 mm (CaF2) and 94 mm (BaF2)
- Raw Material- CFO main body and structures
 - 6082 T4 Aluminium, various sizes from 1.6 to 2.1 tons, forged blocks, \sim 7 ton total
 - + 6061 T4 Aluminium, various sizes from 18 Kg to 1.1 tons, forged blocks, \sim 3.5 ton total
 - 6061 T6 Aluminium, various sizes (< 350 Kg), extruded bar, \sim 1 ton total
 - Miscellanea EN AW 6061-T6 and EN AW 6082-T4 wrought, various sizes, ${\sim}1$ ton total
- Specialty AIV test equipment & services:
 - LASER tracker
 - Electronic auto collimator & alignment telescope
 - 3D scanning
 - Double pass infrared interferometer / Wavefront sensor
- Gold coating: Aluminium mirrors (16 mirrors + prototypes + witness samples)
- Please contact Ivan Lloro <u>lloro@astron.nl</u> for the detailed specifications




Imager Subsystem (MPIA)

Mid-infrared ELT Imager and Spectrograph

- Diffraction-limited imaging at 3-13.5 μm
- 11" x 11" field of view
- Low resolution slit spectroscopy
- Coronagraphs for high contrast imaging
- Design, all at 40 K:
 - Cold optics with free-form mirrors
 - LM-band arm (3-5 μm) camera, Hawaii-2RG detector
 - N-band arm (7-13 μm) camera, GeoSnap detector
 - 6 motorized wheels with science filters, grisms, masks, ..
 - Cold dichroic to split the two arms
 - Pupil Imager Lenses
- Technical challenges:
 - Diffraction limited cryogenic optics with low surface roughness
 - N-band detector performance

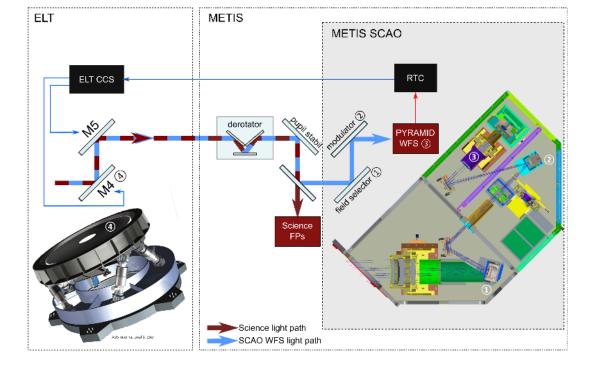


IMAGER Procurement- Already Ordered

- Detectors (ESO procurement)
 - Hawaii 2RG for LM-band camera
 - GeoSnap for N-band camera
- Cold optics for collimator and the two cameras
 - EU wide tender closed, evaluation ongoing

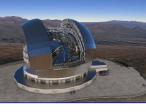
IMAGER Procurement- To be Ordered

- Dichroic substrates (to be ordered within the next month)
 - Material CaF₂, demanding polishing requirements
- Dichroic (to be ordered within the next month)
 - High transmission/reflexion values requested
- Science filters (to be ordered within the next month)
 - Steep transmission profiles required for close by line/continuum filters
- Neutral Density filters (to be ordered within the next month)
 - Wide wavelength range and high dynamic range, difficult to verify for long wavelengths
- Grisms (to be ordered within the next month)
 - Diffraction limited performance for diffractive elements not guaranteed
- Pupil Imager Lenses (to be ordered within the next month)
 - Torroidal surface for IR material (ZnSe, ZnS)
- Test cryostat for IMAGER subsystem testing at MPIA @ 40 K
 - To be ordered within the next months. Some components already procured (e.g. cooler)
- Please contact Peter Bizenberger <u>biz@mpia.de</u> for the detailed specifications

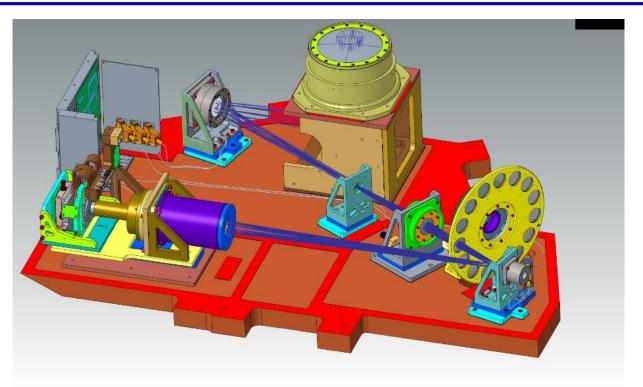


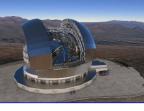
Adaptive Optics- SCAO Subsystem (MPIA)

- SCAO = Single Conjugate Adaptive Optics
- Corrects atmospheric distortions

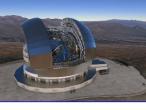

-> enables diffraction limited observations

- Consists of a wavefront sensor, the control software, and the Real Time Computer (RTC)
 - Wavefront sensor measures disturbed incoming wavefront
 - Sensor signal is processed by RTC
 - RTC sends control signals to the deformable ELT mirror M4



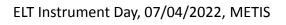

SCAO Wavefront Sensor (MPIA)

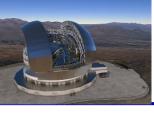
- Main specifications:
 - Cryo @ 70 K, 1.4-2.5 μm
- Design:
 - Pyramid wavefront sensor
 - Three lenses units
 - Folding mirror
 - IR detector
 - Filter wheel
 - Two mechanical actuators
- Technical challenges: mechanical actuators
 - Cryogenic modulator: operation @ 70 K
 - Field-selector: combination of large stroke and high resolution



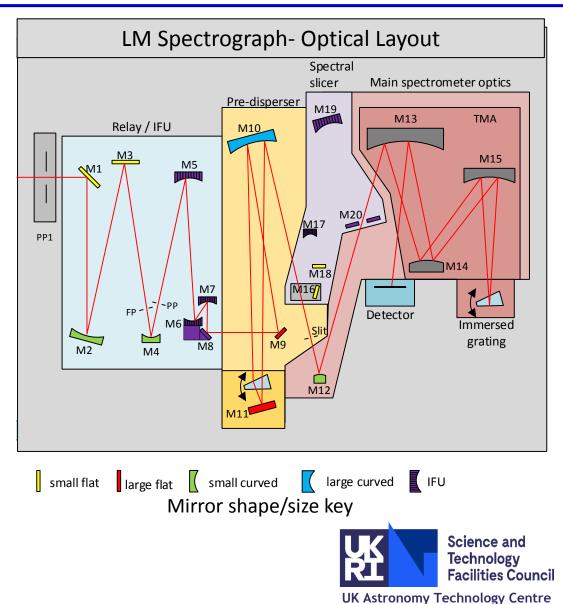
SCAO Procurement- Already Ordered

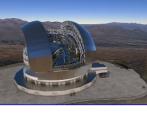
- IR detector (Saphira)
- Modulator prototype
- Field-selector prototype
- Wavefront sensor lenses (8)
 - Specific requirements on surface error, conical chamfers, material and coating to ensure
 - Minimal chromatic aberration
 - Lenses system will be aligned once at ambient and has to stay aligned after cool-down to 70 K
 - Anti-reflective coating and material must survive cryo testing



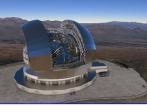

SCAO Procurement- To be Ordered

- Optical components for wavefront sensor: Cryo @ 70 K, 1.4-2.5 μm
 - Pyramid:
 - Base angle of four pyramid facets $1.893^{\circ} \pm 5$ arcsec, i.e. variability of ≤ 10 arcsec
 - Orthogonality error of facets ≤ 5 arcsec
 - Infrasil 301 material, Anti-reflective coating
 - To be ordered within the next 1-2 months
 - 4 Filters:
 - K, K ND1.2, HK, H
 - To be ordered within the next 4-5 months
 - Fold mirror: to be ordered in ~6 months
- RTC hardware: GPUs
 - Prototype hardware in house
 - Final hardware to be order in ~ 5 years
- Test cryostat for SCAO subsystem testing at MPIA @ 70 K
 - To be ordered within the next 1-2 months

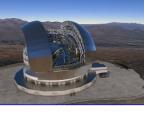

Please contact Silvia Scheithauer <u>scheithauer@mpia.de</u> for the detailed specification



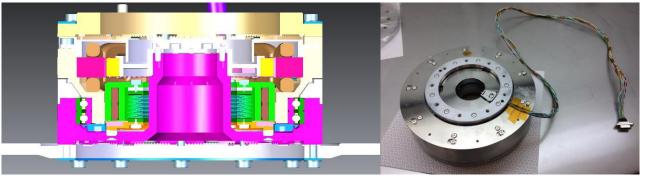
- High resolution (R \approx 100,000) over the range 2.7-5.3 μm
- ~ 0.93" × 0.58" field of view
- A mode with extended $\Delta\lambda$ instant ~ 300 nm
- Coronagraphy for high contrast IFU spectroscopy
- Operational temperature of 70 K

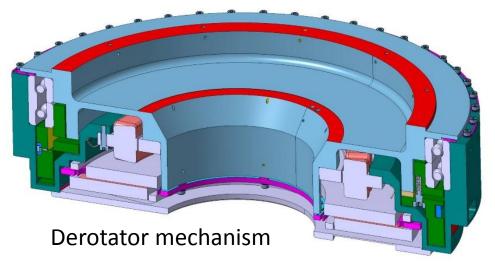


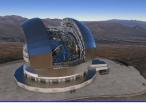
- Detector- Hawaii 2RG (ESO procurement)
- Germanium Immersed Grating (via NOVA procurement)
- Three Mirror Anastigmat Assembly
- Integral Field Unit Mirrors
- Also (not part of LMS but UK ATC responsibility)
 - ZnSe instrument window (diam 235, waveband 0.6 to 13.5 $\mu m)$
 - ZnSe AO dichroic filter (diam 180, waveband 0.6 to 13.5 $\mu m)$



LMS Procurements- To be Ordered


- Pre-disperser prism (ZnSe, 140 x 50 x 90 mm, waveband 2.7 to 5.3 $\mu m)$
- Aluminium mirrors, gold coated:
 - "Small" (3 curved, 4 flat < 100 mm)
 - "Large" (1 curved, 2 flat > 100 mm)
- These tenders to be launched between 11^{th} and 20^{th} April
- Please contact phil.parr-burman@stfc.ac.uk for the tender link




- ICAR= Indexed Cryogenic Actuator for Rotation
- Operating environment [55; 310] K, vacuum
- Accuracy 63 μrad (derotator), repeatability 20 μrad (ICAR)
- METIS: 12 ICAR units +2 spare units, 1 derotator unit
- Challenges: performance over a wide T° range, heat dissipation, reliability, cost

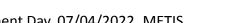
ICAR design and prototype

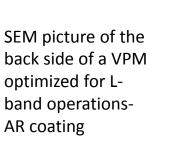
- ICAR main procurements
 - Cryogenic stepper motors
 - Cryo/vac prepared ball bearings: stainless steel rings, ceramic balls, polymer cages
 - Precision mechanical parts: cylindrical/planar grindings, water jet cutting, laser cutting, Hirth teeth, Tolerances down to 5μm

- Derotator main procurements
 - Cryogenic "arcsec class" position sensor
 - Custom 3-phase cryogenic synchronous motor
 - Cryo/vac prepared ball bearings (350 mm diameter): stainless steel rings and balls, polymer separators.
 - Precision mechanical parts: cylindrical/planar grindings, wire cutting, laser cutting. Tolerances down to 5 μm.

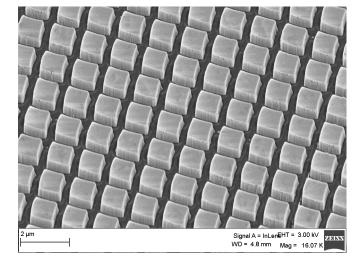
ICAR mechanical parts

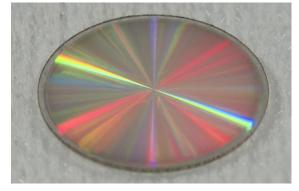
High-contrast Imaging Components- Already Ordered


- Vortex phase mask: transmissive optical component that creates a 4 π helical phase ramp along the optical axis.
- Key specifications:
 - Subwavelength grating etched on a CVD diamond substrate of optical grade


EHT = 5.00 kV Date :23 Feb 201:

WD = 4.0 mm Time :9:38:34

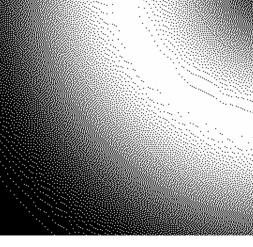

- 15 20 mm ± 0.1 mm diameter, 0.3 ± 0.05 mm thickness
- AR grating
- Wavelength range : 2.9-4.1 μm , 3.9-5.3 μm , 8.1-13.1 μm
- Coronagraphic performance: peak null depth < \sim 1e-2

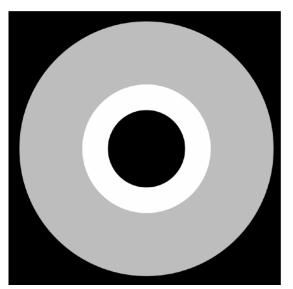

SEM picture of the front side of a VPM optimized for L-band operationssubwavelength grating

VPM

ELT Instrument Day, 07/04/2022, METIS

Key specifications


custom (& partial) transmission pattern


- Dimensions: between 20 and 70 mm diameter
- AR-coated ZnSe substrate
- Chrome layer deposited on substrate
- 9 components with binary pattern (transmissive vs not transmissive);
 3 components with partial transmission (via microdot pattern)

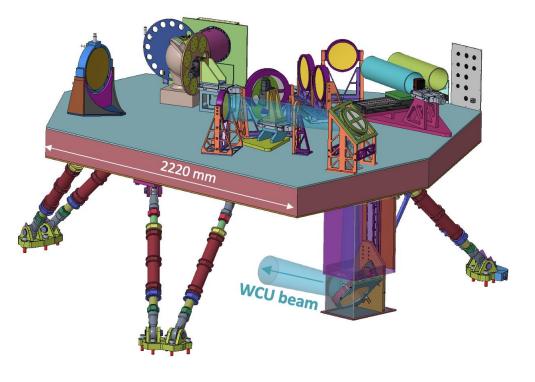
• Series of transmissive masks: ~12 transmissive components with

- Wavelength range from $^{\rm \sim}2-5.3~\mu m$
- Cryogenic conditions (e.g. need good 'stickiness' of the chrome layer pattern)
- Timeline:
 - RFQ : expected for end of 2022
 - Leadtime : < 6 months
- Please contact Olivier Absil <u>olivier.absil@uliege.be</u> for more details.

26

Theoretical ring apodizer

Example of a microdot pattern

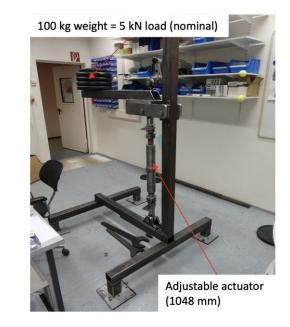


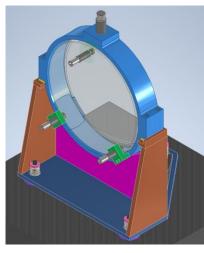
High-contrast Imaging Components- To be Ordered

Warm Calibration Unit Subsystem (UzK)

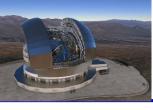
- WCU specifications
 - Calibration sources covering 3 μm 13.5 μm (blackbody source + lasers)
 - Diffraction-limited over the 3-13.5 µm band
 - Artifical sources in the form of back illuminated pinholes
 - Flat-field and detector linearity capabilities
 - Installed on top of METIS cryostat with calibration sources injected via a retractable pick-off mirror
 - Designed for imaging and spectral calibration ٠
 - Acts as a ELT simulator delivering 29" field of view and F# 17.75 beam
- Technical challenges:
 - Operating at ambient temperature (0° C to 15° C) implying temperature dependent flexure
 - Maintaining high optical quality through an athermal design ۲
 - Combination of low CTE material and CTE compensation elements
 - Demanding tolerances at the opto-mechanical level

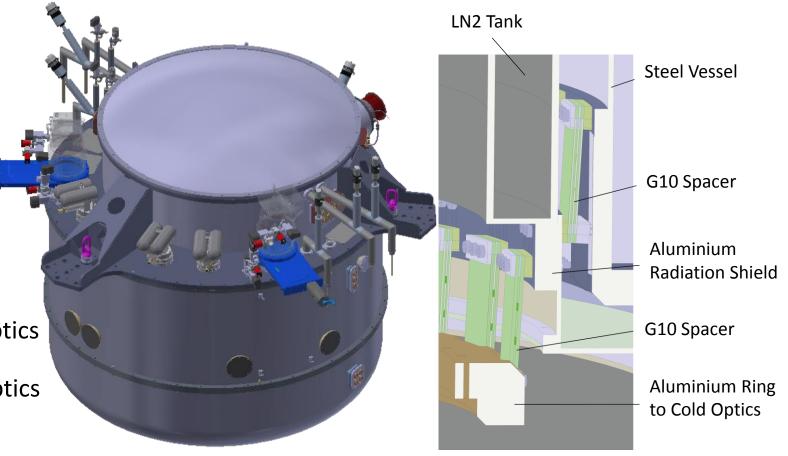
WCU Procurement- Already Ordered



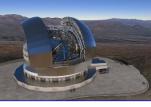

- Sources elements (He-Ne laser from Newport, wavemeter in the 3 μm range from Bristol)
- Blackbody source
- In-house fabrication of the hexapod links

WCU Procurement- To be Ordered


- Zerodur protected gold-coated mirrors
 - Largest mirror of ~28 cm diameter, demanding polishing (2 nm) and SFE requirements (15 nm)
- CFRP bench
 - Large dimension ~2.5 x 2.5 m, low weight (~220 kg), high-precision inserts
- Mirror mounts
 - Material Invar 36, pocketing for optimized weight and option of shimming
 - ~30 μm manufacturing tolerance for positional locations at the bench interface
- Translation stages with maximum 305 mm travel range
- Please contact Monika Rutowska <u>rutowska@ph1.uni-koeln.de</u> for detailed specifications

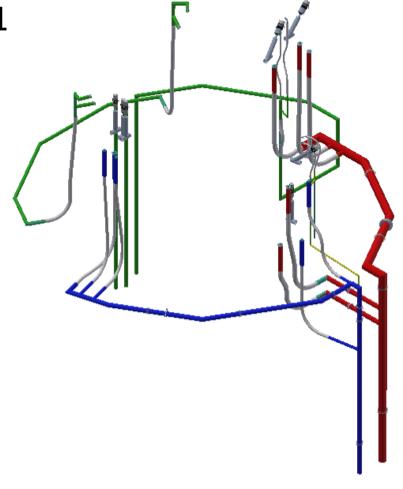


Cryostat Subsystem (ETH)

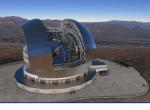


- Key characteristics
 - Height: 2.8m
 - Internal Diameter: 2.65 m
 - Volume: 12'000 Litres
 - Structural Mass: 3'500 kg
 - Steel Vessel
 - Aluminium Radiation Shield
 - with integrated LN2 Tank (350 litres distributed over 3 sections)
 - covered with MLI
- Key functions
 - Main mechanical interface to cold optics
 - Vacuum environment
 - Cooling power distribution to cold optics
- Vacuum subsystem
 - Designed per ESO standards
 - Target performance: 10-6 mbar for more than 6 months without pumping
- Cooling power provided by 3 Pulse Tube Coolers (Cryomech PT-810)

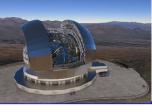
Cryostat Wall Design



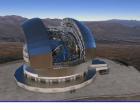
Also in ETH Work Scope

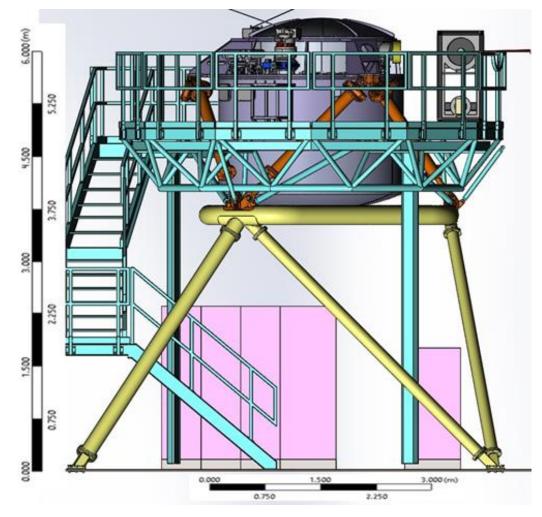


- 2 sets of supply lines (in particular for GN2 and L
 - For operation on telescope (shown here)
 - For testing and integration (to be defined)
- METIS instrument lifting frame

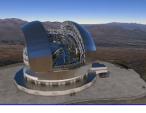


• Most of the standard vacuum components (70% of the need)



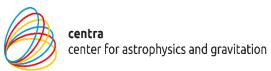


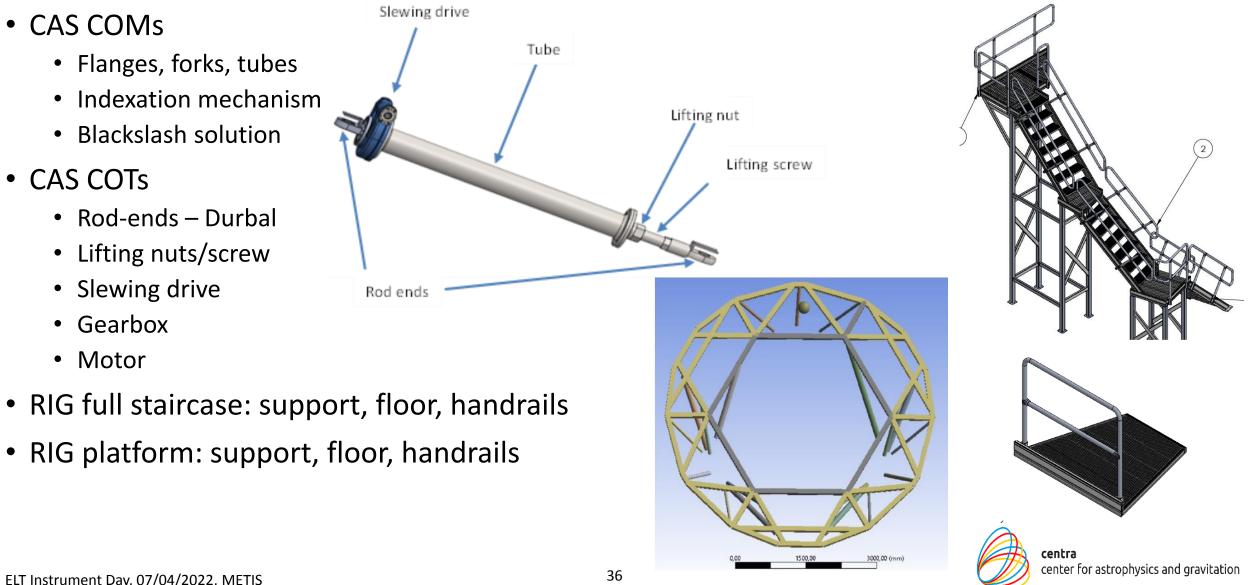
- Pulse Tube Cooler
 - Single Source Procurement Order to be placed in the coming weeks
- Cryostat Structure (Shield + Vessel + Ring to Cold Optics)
 - Tendering process completed, supplier selected
 - Order to be placed beginning 2023 (after FDR)
- Supply Lines (LN2)
 - Offers will be requested end 2022 for an order placing beginning 2023
- Please contact Emili Bouzerand <u>ebouzerand@phys.ethz.ch</u> for more details

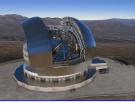

Warm Support Structure Subsystem (CENTRA)

Warm Support Structure (WSS) is the cryostat and Nasmyth platform interface with 3 sub-structures:

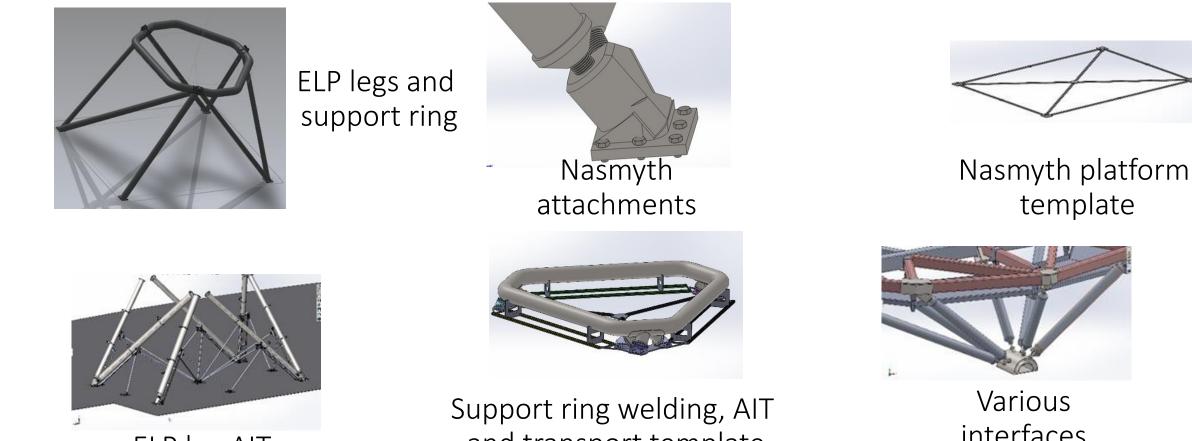
- ELP (yellow) connects to Nasmyth platform
 - 7 legs connected to 3 nodes
 - support ring supports CAS and RIG
- CAS (orange) is a hexapod holding the CRY
 - 6 movable arms, allowing for maintenance, alignment and positioning
- RIG (cyan) allows access to CRY for maintenance
 - full staircase and platform
 - cable support system for the ICS rack
 - support for WCU laser and SLAO




WSS Technical Challenges


- ELP and CAS designed to support CRY mass of 9-11 tons
- RIG platform designed to support mass of people plus tools/equipment plus 1 ton SLAO in front of the ELT beam
- WSS must withstand earthquake quasi-static acelerations of 3 g in y, z and 2.16 g in x
- CAS adjustment and absolute positioning accuracy requirement of 50 mm dec, 1 deg tilt, resolution requirement is 0.1 mm, 0.2 arcmin (x, y), 0.1 deg (z) and stability requirement (quasi-static 3 hrs) is 0.1 mm, 0.008 deg (x, y), 0.1 deg (z)
- ELT beam height at 6 m
- Land and sea transport of 4 m diameter support ring
- Assembly and integration challenges
 - All while keeping mass and costs as low as possible

WSS Procurement- Already Ordered



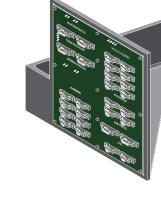
Mid-infrared ELT Imager and Spectrograph

WSS Procurement- To be Ordered

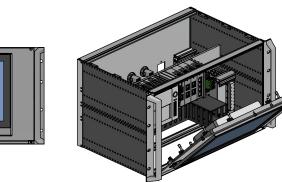
ELP leg AIT template

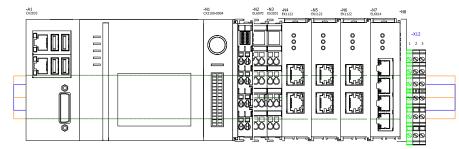
and transport template

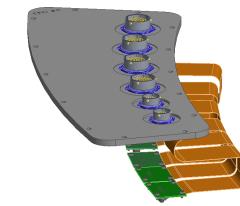
interfaces


Please contact Mercedes Filho mfilho@fe.up.pt for more details

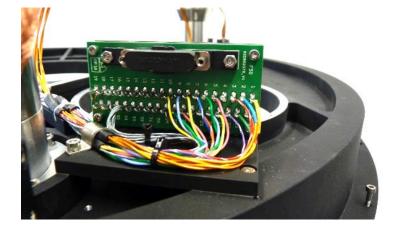
centra


Instrument Control Subsystem-ICS (KUL)


- High-level control workstation implemented in ESO control framework on intel server platform, instrument workstation temporary disk storage
- Control unit for each (~12) subsystems
 - 19" subrack, Beckhoff PLC / Touch panel, IO and driver modules, cabling & connectors
- Control units assembled in 6 cabinets with cabinet control unit (power, temperature)
- Warm harnesses (cabinets cryostat)
- Vacuum feedthroughs
- Cold/Vacuum harnesses inside cryostat
- Subsystem connector interface PCBs

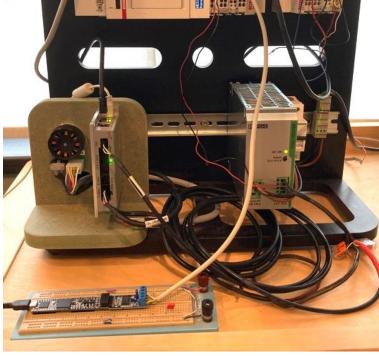


38



ICS Procurement- Already Ordered

• Only small procurements for breadboarding and prototyping



KU LEUVEN

ICS Procurement- To be Ordered

Mid-infrared ELT Imager and Spectrograph

- RQF Q1 2023, delivery Q3 2023
 - 19" control units: ~20 19" subracks, cabled
 - Beckhoff PLCs and IO
 - 5 Cabinets with control unit (power distribution, temperature control)
 - Warm harnesses
 - Cold/vacuum harnesses
 - Feedthroughs (Flex PCB)
 - Interface panels (PCBs)
- Please contact <u>bart.vandenbussche@kuleuven.be</u> for more details

Thank You!

Character and pairs