

A dual Beam Delivery System for two Interaction Regions at CLIC

Vera Cilento, Rogelio Tomás, Angeles Faus-Golfe, Benoit Cure, Barbara Dalena and Yngve Levinsen

Outline

- Motivation of the study
- Introduction
- > Update of the CLIC 3 TeV performance including the detector solenoid effects
- Development of the Model to construct the Dual BDS for CLIC
 - CLIC 380 GeV
 - CLIC 3 TeV
- Simulation Results for the Dual BDS for CLIC
 - Beam size and Luminosity
 - Detector Solenoid Effects
- Conclusions and Outlook

Motivation of the study

- Two Interaction Regions (IRs) would make CLIC design more comparable with other future circular accelerator projects
- The two IRs possibility was studied already in ILC* and NLC*

* BEAM DELIVERY SYSTEM IN ILC. G. A. Blair#, John Adams Institute at RHUL, London. TW20 0EX. UK. Proceedings of EPAC 2006, Edinburgh, Scotland. * BEAM DELIVERY LAYOUT FOR THE NEXT LINEAR COLLIDER. Andrei Seryi, Yuri Nosochkov, Mark Woodley SLAC, Stanford, CA 94309, USA. Proceedings of EPAC 2004, Lucerne, Switzerland.

Introduction

- > The BDS* design taken into account are the
 - CLIC 380 GeV with L*= 6 m
 - CLIC 3 TeV with L*= 6 m

CLIC	380 GeV		3	TeV
	CDR	Current	CDR	Current
L* [m]	4.3	6	3.5	6
BDS length [m]	1728	1949	2795	3117
Norm. emittance $\gamma \varepsilon_x$ [nm]	950	950	660	660
Norm. emittance $\gamma \varepsilon_y$ [nm]	30	30	20	20
Beta function (IP) β_x^* [mm]	8	8	7	7
Beta function (IP) β_v^* [mm]	0.1	0.1	0.068	0.12
IP beam size $\sigma_r^*[nm]$	144	144	40	40
IP beam size $\sigma_{v}^{*}[nm]$	2.9	2.9	0.7	0.9
Bunch length $\sigma_{z}[\mu m]$	70	70	44	44
rms energy spread $\delta_p[\%]$	0.3	0.3	0.3	0.3
Bunch population N_e [10 ⁹]	5.2	5.2	3.72	3.72
Number of bunches <i>n</i> _b	352	352	312	312
Repetition rate <i>f_{rep}</i> [Hz]	50	50	50	50
Crossing Angle [mrad]	18.3	16.5	20	20
Luminosity \mathscr{L}_{TOT} [10 ³⁴ cm ⁻² s ⁻¹]	1.5	1.5	5.9	5.9

* Optics optimization of longer L* Beam Delivery System designs for CLIC and tuning of the ATF2 final focus system at ultra-low β* using octupoles. Fabien Plassard. CERN-THESIS-2018-223. PhD : U. Paris-Saclay : 2018-06-06.

Introduction

The BDS* design taken into account are the

- CLIC 380 GeV with $L^*= 6$ m
- CLIC 3 TeV with $L^* = 6 \text{ m}$

0.2

* Optics optimization of longer L* Beam Delivery System designs for CLIC and tuning of the ATF2 final focus system at ultra-low β* using octupoles. Fabien Plassard. CERN-THESIS-2018-223. PhD : U. Paris-Saclay: 2018-06-06.

Introduction

➤ CLIC MDI

• SiD Detector (used in CLIC with L*= 3.5 m-CDR design)

• CLICdet (used in CLIC with L*= 6 m-current design)

Update of the CLIC 3 TeV performance including the detector solenoid effects

• Tracking procedure in PLACET* including the detector solenoid map

* Y. Inntjore Levinsen, B. Dalena, R. Tomás, and D. Schulte. «Impact of detector solenoid on the Compact Linear Collider luminosity performance». Phys. Rev. ST Accel. Beams 17, 051002 – Published 27 May 2014; Erratum Phys. Rev. ST Accel. Beams 17, 079901 (2014)

Update of the CLIC 3 TeV performance including the detector solenoid effects

Results

-	σ_{x}^{*} [nm]	ideal	w/ SR	
	baseline	41.4	50.3	
	σ_y^* [nm]	ideal	w/ SR	
	baseline	1.06	1.69	
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	ideal	w/ solenoid	w/ SR	w/ sol+ SR
baseline	9.40	8.65	6.50	6.22

- The detector solenoid effect was never evaluated for the CLIC with L*= 6 m, while for the L*= 3.5 m was ~ 4%.
- The evaluation of the beam size and the luminosity (ideal and w/ SR) has been done with the direct PLACET tracking procedure.
- The evaluation of the luminosity including the detector solenoid effects has been done with the forwardbackward-forward PLACET tracking procedure (ideal, w/ sol, w/ sol+ SR).
- The luminosity loss from the solenoid field for the the current design with L*= 6 m is about 4%.

Development of the Model to construct the Dual BDS for CL

- 1. The novel optics design have been done in MAD-X starting from the current BDS with one IR
- 2. 8 more cells with a μ of 45° \rightarrow additional length of 300 m
- 3. The FODO cells have been filled with Dipoles + Dispersion Suppressor for the separation of the two BDS
- 4. We have different lengths of the DS → the new layout involves four different beamlines in order to provide the desired longitudinal and transverse separation at the

CLIC 380 GeV						
	I	R1	IR2			
	BDS1 e ⁺	BDS1 e ⁻	BDS2 e ⁻	BDS2 e ⁺		
	(short)	(long)	(short)	(long)		
θ [mrad]	0	0	4.83	4.83		
Ldipole[m]	0 0		218.11	218.11		
LFODO [m]	38.36	38.36	38.36	38.36		
$L_{DS}[m]$	512.89	551.24	512.89	551.24		
L _{BDS} [m]	2255.95	2294.3	2255.95	2294.3		
c.a. [mrad]	16.5	16.5	26	26		

- Four different beam lines have been constructed to provide:
 - Longitudinal separation of ~ 40 m at IP.
 - Transverse separation of 10 m at IP.
- > The θ in the DS of the BDS2 is 4.83 mrad.
- > The crossing angles at IR1 and IR2 are respectively 16.5 mrad and 26 mrad.

- Four different beam lines have been constructed to provide:
 - Longitudinal separation of \sim 40 m at IP.
 - Transverse separation of 10 m at IP.
- > The θ in the DS of the BDS2 is 4.83 mrad.
- > The crossing angles at IR1 and IR2 are respectively 16.5 mrad and 26 mrad.

Development of the Model to construct the Dual BDS for CL

- The procedure to make the new DS has been the same:
 Additional length of 1.2 km → total length of the DS is ~ 1.5 km (longer dipoles to avoid large SR)
- 2. In order to have the IRs at the exact same locations as in the CLIC 380 GeV case $\rightarrow \theta$ in the DS of the BDS2 is 2.75 mrad
- Same longitudinal and transverse dispalcement at the IP as in the case of the 380 GeV

CLIC 3 TeV						
	IF	R1	IR2			
	BDS1 e ⁺	BDS1 e ⁻	BDS2 e ⁻	BDS2 e ⁺		
	(short) (long)		(short)	(long)		
θ [mrad]	0	0	2.75	2.75		
L _{dipole} [m]	0	0	872.45	872.45		
LFODO [m]	76.72	76.72	76.72	76.72		
$L_{DS}[m]$	1486	1562.75	1486	1562.75		
L _{BDS} [m]	4190.66	4267.37	4190.66	4267.37		
c.a. [mrad]	20	20	25.5	25.5		

The crossing angles at IR1 and IR2 are respectively 20 mrad and 25.5 mrad.

- Beam Size with MAPCLASS and PTC
 - CLIC 380 GeV

• CLIC 3 TeV

• Beam Size with MAPCLASS and PTC

• Beam Size and Luminosity with PLACET and GUINEA-PIG for CLIC 380 GeV including detector solenoid effects

σ^*_{x} [nm]	ideal	w/ SR	σ_y^* [nm]	ideal	w/ SF
IR1	141	144	IR1	3.07	3.08
IR2	141	144	IR2	3.06	3.07

Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	ideal	w/ solenoid	w/ SR	w/ sol+ SR
IR1	1.515	1.512	1.492	1.412
IR2	1.491	1.475	1.466	1.392

- The beam size simulations with the different codes (MAPCLASS and PLACET) show consistency
 of the results.
- The luminosity loss can be considered negligible for the CLIC 380 GeV case.

• Beam Size and Luminosity with PLACET and GUINEA-PIG for CLIC 3 TeV including detector solenoid effects

σ_{x}^{*} [nm]	idea	al	w/ SR		σ_y^* [nm]	i	deal	w/ SR
IR1	43.	5	51.5		IR1		1.02	1.71
IR2	44.	9	64.8		IR2		1.02	1.92
Lumino [10 ³⁴ cm	osity ⁻² s ⁻¹]	i	deal	w/ solenoid	w/ SR		w/ so	ol+ SR
IR1			9.0	8.21	6.30		6	.09
IR2)		8.33	7.59	5.14		4	.17

- The beam size simulations with the different codes (MAPCLASS and PLACET) show consistency of the results.
- The impact on the luminosity performance of CLIC 3 TeV for the solenoid field is ~ 4% for the IR1 and ~ 19% for IR2.

• Mitiaation of the Detector Solenoid Effects: Anti-solenoid

- Different crossing angles imply different magnetic field near the IP. In fact, the transverse solenoid magnetic field increases with the increase of the design crossing angle.
- A simulation with the new baseline design but with the SiD configuration has been done.
- Adding an anti-solenoid to the CLIC configuration could reduce luminosity loss from 4% to 1%.

Conclusions and Outlook

- The dual BDS design is competitive up to 3 TeV with a total luminosity loss of about 30% for the extra line with larger crossing angle.
- ➤ The impact on the luminosity performance of CLIC 3 TeV for the detector solenoid field is about 4% for the baseline and for IR1 and about 19% for IR2 → adding the antisolenoid reduces the luminosity losses of at least 3%.
- Further improvements can still be performed for the dual BDS layout in order to recover part of the luminosity performance mostly due to optic aberrations:
 - \rightarrow put half of the bends (with opposite angle) in IR1 and half in IR2
 - \rightarrow make a longer BDS to reduce the SR effects.

Thank you for the attention!

