

CLIC Luminosity Challenges at 380 GeV

CLIC Project Meeting

June 15, 2021

Daniel Schulte

C. Gohil, N. Blaskovic Kraljevic, P. N. Burrows, A. Latina, J. A. Ögren

Key Parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	N	10 ⁹	5.2	3.7	3.7
Bunch length	σ_{z}	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	ϵ_x/ϵ_y	nm	950/30		-
Estimated power consumption	P _{wall}	MW	252	364	589

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} n_b f_r$$

Need to ensure that we can achieve each parameter

CLICdp Meeting, Daniel Schulte

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

Look at beam quality first

Luminosity and Beam Quality

 $\mathcal{L} \propto H_D \; \frac{N}{\sigma_x} \; N n_b f_r \left(\frac{1}{\sigma_y} \right) \; \sigma_y = \sqrt{\beta_y \epsilon_y / \gamma}$

Damping ring main source of horizontal emittance But value is OK, as we will see

	Δε _x [nm]		Δε _y [nm]	
	Total contribution	Design limits	Static imperf.	Dynamic imperf.
Damping ring exit	√700	5	0	0
End of RTML	150	1	2	2
End of main linac	50	0	5	5
Interaction point	50	0	5	5
sum	950	6	12 🖌	12

Imperfections are the main source of final vertical emittance

Require 90% likelihood to meet static emittance growth target in each area We only have one machine

Average dynamic emittance growth should meet target we integrate over many cases

Luminosity Scaling

No imperfections: $sqrt(30/6) \times L_0 = L = 3.35 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Only static imperfections: sqrt(30/18) x $L_0 = L = 1.94 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

All but dynamic in BDS: sqrt(30/25) x $L_0 = L = 1.65 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

All imperfections:

sqrt(30/30) x $L_0 = L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

 $\sigma_y = \sqrt{\beta_y \epsilon_y / \gamma}$

	Δε _x [nm]	Δε _y [nm]		
	Total contribution	Design limits	Static imperf.	Dynamic imperf.
Damping ring exit	700	5	0	0
End of RTML	1 <i>5</i> 0	1	2	2
End of main linac	50	0	5	5
Interaction point	50	0	5	5
sum	950	6	12	12

Due to disruption the luminosity actually increases faster as the emittance decreases

But the sensitivity to dynamic imperfections increases also faster

Maximum Luminosity

 $\sigma_y = \sqrt{\beta_y \epsilon_y} / \gamma$

No imperfections

Simple scaling

L = sqrt(30/6) x L₀ = $3.35 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Simulation

= 4.3 x 10³⁴ cm⁻²s⁻¹

	Δε _x [nm]	Δε _y [nm]		
	Total contribution	Design limits	Static imperf.	Dynamic imperf.
Damping ring exit	700	5	0	0
End of RTML	150	1	2	2
End of main linac	50	0	5	5
Interaction point	50	0	5	5
sum	950	6	12	12

Due to disruption the luminosity actually increases faster as the emittance decreases

But the sensitivity to dynamic imperfections increases also faster

November 22, 2021

Static Imperfections: Main Linac

			Δ	ϵ_y [nm]		Stays well below goal (5 nm)
Imperfection	With respect to	Value	1-2-1	DFS	\mathbf{RF}	90% likelihood to stay below 1.5 nm
Girder end point	Wire reference	$12~\mu{ m m}$	12.91	12.81	0.07	\Rightarrow have some margin in the design
Girder end point	Articulation point	$5~\mu{ m m}$	1.31	1.30	0.02	average 0.9 pm
Quadrupole roll	Longitudinal axis	$100 \ \mu rad$	0.05	0.05	0.05	\rightarrow expect higher luminosity on average
BPM offset	Wire reference	$14~\mu{ m m}$	188.99	7.12	0.06	
Cavity offset	Girder axis	$14~\mu{ m m}$	5.39	5.35	0.03	
Cavity tilt	Girder axis	141 μ rad	0.12	0.40	0.27	Key contributors to emittance:
BPM resolution		$0.1~\mu{ m m}$	0.01	0.76	0.03	Bookshelfing
Wake monitor	Structure centre	$3.5~\mu{ m m}$	0.01	0.01	0.35	Wake monitors
Δ11			204 53	25.88	0.83	\Rightarrow verify them
			204.00	20.00	0.00	

Note:

Missing all imperfections by factor 2 would lead to 6 nm for 90% and 3.6 nm average Some but not huge margin

Could relax tolerance compared to 3 TeV, but do want to keep them for later upgrades

Expected Luminosity

Only static imperfections

From scaling	
Simulation average	4

L = sqrt(30/18) x L₀ = 1.94 x 10^{34} cm⁻²s⁻¹

Simulation average Simulation 90%

950

=	= 3.0 x 10 ³⁴ cm ⁻² s ⁻¹
=	= 2.35 x 10 ³⁴ cm ⁻² s ⁻¹

$$\sigma_y = \sqrt{\beta_y \epsilon_y / \gamma}$$

	Δε _x [nm]		Δε _y [nm]		Achiev
	Total contribution	Design limits	Static imperf.	Dynamic imperf.	Margir
Damping ring exit	700	5	0	0	perfor
End of RTML	150	1	2	2	But co
End of main linac	50	0	5	5	goal • bay
Interaction point	50	0	5	5	incl

12

6

Achieve 20% more than scaled value

Margin for unaccounted effects, degraded performances, ...

But could use performance prediction as goal

 have to make sure all relevant effects are included

November 22, 2021

sum

12

Potential Further Improvements

Can consider a number of improvements were in part kept as reserve for more margin

Better alignment reduces emittance Naïve model: halving imperfections reduces emittance growth by factor 4

Further improvement using tuning bumps (3 TeV shown) More complex tuning but might help

Also should consider additional tools

• e.g. high-bandwidth kicker to correct systematic offsets along bunch train

For highest luminosity pushing damping ring and RTML is important

And continued BDS effort

November 22, 2021

Realistic Luminosity Signals

An essential worry: Luminosity measurement is slow:

 bremstrahlung is not visible in background

Other signals are not strictly proportional to luminosity

- beamstrahlung depends on the know used
- pairs are proportional to luminosity but depend on other parameters as well
- but both can give directional information, e.g. which beam is larger

J. Ogren et al. J. Ogren et al. $3^{0^{-1}}$ $3^{0^{-1}}$ $3^{0^{-2}}$ 10^{-2} 10^{-3} 10^{-3} 10^{-4} 10^{-5} 10^{-5} 10^{-4} 10^{-4} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-2} 10^{-3} 10^{-2} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-1} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-1} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1}

> Detailed tuning studies using these realistic signals reach the luminosity target

- beamstrahlung for first phase
- switch to pairs as luminosity increases

Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$

Luminosity and Jitter Tolerance

Luminosity loss for rigid bunches with offset

$$\frac{\mathcal{L}}{\mathcal{L}_0} = \exp\left(-\frac{\Delta y^2}{4\sigma_y^2}\right)$$

Actual loss depends strongly on disruption

Dynamic Imperfection: Ground Motion

Luminosity and Jitter Tolerance

Goal with all imperfections $L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Including static imperfections and ground motion representing a conservative estimate: Simulation average $L = 2.8 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Simulation 90% $L = 2.3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Jitter tolerance is tighter for smaller beammore than proportional

Study of machines with ground motion and without shows

- better machines suffer more from ground motion
- need to check for other imperfections

Committing to lower budget means we have to make sure there are no unidentified contributions

Dynamic Magnetic Stray Fields

Dynamic magnetic fields are produced by

- natural sources (e.g. sun activity)
- environmental sources (e.g. power lines, trains)
- and technical sources (e.g. the drive beam in the collider itself)
- The largest field contributions are at 50 Hz
- \Rightarrow this is the reason to run at 50 Hz
- \Rightarrow grid perturbations appear (almost) static
- Tightest tolerance in BDS and long transfer line: O(0.1 nT) with no mitigation

Main linac is more relaxed

Measurements in LHC tunnel

C. Gohil et al.

Dynamic Magnetic Stray Fields

- Calculate integrated effective field
- corresponds to the field that has the same impact on luminosity

Conclusion

- feedback (and 50 Hz sampling) alone is a bit marginal
- mu-metal is sufficient
- the combination is best

Essentially no impact on luminosity if shielding is installed

Note: even in geomagnetic storm only 0.2% Iuminosity loss

Luminosity Expectation

Static imperfections, ground motion and stray fields

Goal	L	= 1.5 x 10 ³⁴ cm ⁻² s ⁻¹
Simulation average	L	= 2.8 x 10 ³⁴ cm ⁻² s ⁻¹
Simulation 90%	L	= 2.3 x 10 ³⁴ cm ⁻² s ⁻¹

 $\sigma_y = \sqrt{\beta_y \epsilon_y} / \gamma$

	Δε _x [nm]	Δε _y [nm]		
	Total contribution	Design limits	Static imperf.	Dynamic imperf.
Damping ring exit	700	5	0	0
End of RTML	1 <i>5</i> 0	1	2	2
End of main linac	50	0	5	5
Interaction point	50	0	5	5
sum	950	6	12	12

About 50% larger than goal

• Can we modify our goal to match the expectation?

Need to include all relevant imperfections

- other static effects
- other dynamic effects between corrections
- dynamic effects during operation

Recovery from Failure

J. Ogren et al.

How bad is an interruption of the operation?

Using long-term ground motion model D (our conservative standard)

Can recovers relatively quickly

- flat steering
- sextupole know scans

Quite reassuring

Doubling the Beam Power

Estimate total power to increase from 170 to 220 MW (A. Grudiev) Need to pulse all systems twice as often Might need to damp two pulses in the damping ring in parallel ⇒ No real obstacle

For ground motion gain higher sampling rate But 50 Hz pulse-to-pulse machine imperfections are a concern ⇒ magnetic stray field

clc

Dynamic Magnetic Stray Fields

Calculate integrated effective field

 corresponds to the field that has the same impact on luminosity

Conclusion

- feedback (and 50 Hz sampling) alone is a bit marginal
- mu-metal is sufficient
- the combination is best

For 100 Hz

- impact of 50 Hz is increased, not reduced
- But with mu-metal it remains sufficient

Should have two interleaved feedback loops requires fast correctors

Conclusion

- PIP performance predictions contain some margin
- But there are still some areas where robustness can be added
 - Accelerating structure wake monitors and bookshelfing
 - BDS tuning
- Luminosity increase has several components
 - 100 Hz operation
 - Reduced safety margin
 - need a more detailed assessment to ensure prediction are reliable
 - Improved static imperfections
 - less bookshelfing
 - better wake monitor
 - better BDS alignment and BPMs
 - Improved tuning
 - e.g. more bumps
 - Dealing with dynamic imperfections
 - reassessment of emittance budget
 - higher luminosity makes dynamic tolerances more stringent

Maybe a factor 3 to be gained in total

Horizontal Optimum

Use L_{0.01}/L=60% as criterion Reasonable compromise for most physics studies

Smaller horizontal emittance has same effect as smaller beta-function Cannot profit from smaller horizontal emittance N/σ_x is fixed

Vertical Optimum

