$$H o \pi_{
m v} \left(o b ar{b}
ight) \pi_{
m v} \left(o b ar{b}
ight)$$
 at 350 GeV

analysis summary

Mateusz Goncerz Marcin Kucharczyk

status

- previous presentations (latest first)
 - https://indico.cern.ch/event/1069993/contributions/ 4508785/attachments/2303477/3918548/CLIC_HVHiggs_4.pdf
 - https://indico.cern.ch/event/1027612/contributions/ 4323275/attachments/2228603/3775742/CLIC_HVHiggs_3.pdf
 - https://indico.cern.ch/event/987017/contributions/ 4222769/attachments/2185726/3693068/CLIC_HVHiggs_2.pdf
 - https://indico.cern.ch/event/895818/contributions/ 3788995/attachments/2007112/3353099/CLIC_HVHiggs.pdf
- updates:
 - TMVA redone with combined background and for each signal separately
 - weight of each background sample taken as $\sigma \cdot \epsilon(>=2DV)/N_{events}$
 - even split for training and testing
 - switched to BDTG for best significance across all samples

samples

description	ID	σ [fb]	# events	>= 2 DV events [%]
25 GeV, 1 ps	10953	93.44	\sim 240 K	77
25 GeV, 10 ps	10944	93.44	\sim 240 K	93
25 GeV, 100 ps	10932	93.44	\sim 240 K	98
25 GeV, 300 ps	10962	93.44	\sim 240 K	96
35 GeV, 1 ps	10956	93.44	\sim 240 K	75
35 GeV, 10 ps	10947	93.44	\sim 240 K	92
35 GeV, 100 ps	10453	93.44	\sim 240 K	98
35 GeV, 300 ps	10965	93.44	\sim 240 K	98
50 GeV, 1 ps	10959	93.44	\sim 240 K	72
50 GeV, 10 ps	10950	93.44	\sim 240 K	89
50 GeV, 100 ps	10935	93.44	\sim 240 K	99
50 GeV, 300 ps	10968	93.44	\sim 240 K	99
qq	4698	24405.4	\sim 2 KK	12
pppp	2871	5847	\sim 1.44 KK	8
$qq\nu\nu$	2862	324.6	\sim 306 K	12
WWZ	1439	10	\sim 40 K	13
tī	1369+1434	450	~(21+220) K	2 3

Higgs

4

Hidden Valley pions (35 GeV, 10 ps)

displaced vertices (35 GeV)

• 35 GeV, 10 ps signal and combined background

TMVA – BDT response

TMVA – number of events

TMVA – signficance

Summary

- this study is a follow-up to an analysis at 3 TeV
- it uses the same custom SV reconstruction algorithms
 - corrects SV track multiplicity
 - provides a variable with good signal/background separation
- all relevant backgrounds have been considered (including WWZ and $t\bar{t}$) and are heavily suppressed by the requirement of at least 2 displaced vertices
- signal significance determined for each sample and combined background
 - 1 ps samples have significantly lower significance
 - significance grows with π_{HV} mass and with a given mass is highest for 100 ps lifetimes
- the last step (if we get a green light) is to calculate upper limits and write an analysis note