Open scientific computing with Galaxy

WLCG Grid Deployment Board Presentation
February 9, 2022

www.elixir-europe.org
Objectives

• We are facing similar problems than you do!
• Very large set of data of small’ish data vs. small set of large data
• Underlying hardware and software solutions are the same
• Can we join forces? (on distributed compute!)
It will only grow…

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data lifecycle.

<table>
<thead>
<tr>
<th>Data Phase</th>
<th>Astronomy</th>
<th>Twitter</th>
<th>YouTube</th>
<th>Genomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition</td>
<td>25 zetta-bytes/year</td>
<td>0.5–15 billion tweets/year</td>
<td>500–900 million hours/year</td>
<td>1 zetta-bases/year</td>
</tr>
<tr>
<td>Storage</td>
<td>1 EB/year</td>
<td>1–17 PB/year</td>
<td>1–2 EB/year</td>
<td>2–40 EB/year</td>
</tr>
<tr>
<td>Analysis</td>
<td>In situ data reduction</td>
<td>Topic and sentiment mining</td>
<td>Limited requirements</td>
<td>Heterogeneous data and analysis</td>
</tr>
<tr>
<td></td>
<td>Real-time processing</td>
<td>Metadata analysis</td>
<td></td>
<td>Variant calling, ~2 trillion central processing unit (CPU) hours</td>
</tr>
<tr>
<td></td>
<td>Massive volumes</td>
<td></td>
<td></td>
<td>All-pairs genome alignments, ~10,000 trillion CPU hours</td>
</tr>
<tr>
<td>Distribution</td>
<td>Dedicated lines from antennae to server (600 TB/s)</td>
<td>Small units of distribution</td>
<td>Major component of modern user’s bandwidth (10 MB/s)</td>
<td>Many small (10 MB/s) and fewer massive (10 TB/s) data movement</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pbio.1002195.t001
All data-rich disciplines have issues with ...

Accessibility: Making use of large-scale data requires complex computational resources and methods. Can all researchers access these approaches? How can we make these methods available to everyone?

Transparency: Is it possible to communicate analyses and results in ways that are both easy to understand and provide all of the essential details?

Reproducibility: Can analyses be precisely reproduced, to facilitate rigorous validation and peer review, and ease reuse?
A generic, open science research environment - agnostic w.r.t. data or scientific domain
Galaxy is a collection of mature components

- Integration and maintenance of tools and workflows
- Creating and distributing containerized tools
- SDK
- Comprehensive API
- Distributed computing middleware
- Abstraction layers for storage, vis, AAI ...
- World-wide training hub
Why use Galaxy for scientific computing?

The brief explanation

So scientists can choose replicable tools and automated workflows for their analyses... ...in addition to a command line if they need it.
Galaxy: Open Computing for Researchers

- Generic Research Environment
 - Compose platform via AppStore (8k+ tools)
- Easily adapted: Used in many data rich disciplines.
 - Genomics; Images; ML; Climate; Chemoinfo,...
- Free open analysis services or local server
- Integrated training
- >11k citations
- Active, supportive community
Open, repeatable scientific computing

Scrutiny, replication required for scientific trustworthiness

- Open source - framework, utilities and tools
- Shareable jobs, workflows and completed analyses
 - for collaboration or peer review
 - for support - bugs also replicable!
- Capture all provenance to enable full computational replication
What Service Providers see

- Efficient use of large hardware allocations
- Global Community providing support, training and advice
- Professional, open software engineering
- Automated tool/dependency management
- Any command line package → shareable tool
- API for local service integration
- *Highly available open computing services for scientists*
What Scientists see

- On line analysis platform with integrated training
- Deploy locally or use public open analysis services
- An active, supportive community
- Manage own data, workspaces and workflows
 - Web browser GUI. Jupyter notebook option
 - Replicable computational jobs
 - Shareable data, workflows, analyses
- Easy access to open computing analyses
Galaxy relies on CERN components

- CVFMS serves project wide resources
 - 1000’s of reference genomes - e.g. mouse
 - Container images for tools
 - Minimises duplication at a *global scale*
- Zenodo/Invenio
 - GTN data and resources
 - Citation harvesting:
 https://galaxyproject.org/publication-library/
IaaS → PaaS → SaaS

Worldwide resources

200 public Galaxy servers

8,000 tools available in AppStore

Galaxy

PULSAR

BIOCONDA

CONDA-FORGE

docker

AnVIL
Free open analysis services

usegalaxy.org
usegalaxy.org.au
usegalaxy.eu
usegalaxy.fr
usegalaxy.be
usegalaxy.ee
usegalaxy.es
usegalaxy.it
Many research scenarios

- 10’s of thousands of large datasets | VGP
- 100’s of thousands of datasets | COVID-19
- Analysis of protected human data | AnVIL
- ML using large image datasets | Tumor maps in Cancer Research
The **PULSAR** Network

- Distributing the computational load of continental Galaxy servers
- Access to diverse hardware e.g. GPU cluster in UK
- E.g. to analyse COVID-19 data

[Link](https://pulsar-network.readthedocs.io/en/latest/project/partners.html)
Very useful place to start
Galaxy administrator training week coming up!
On-line expert tutors; self directed learning materials available in the GTN
Questions?

The contributor community sustaining Galaxy
Align technologies across domains where possible
Future of federated analysis
Future of distributed storage
Sensitive data
Abstraction layers

- Data provenance storage
 (SQL-DB)

- Storage (Posix, ObjectStore, iRODS ...)

- Tools (8000)

- Tool installation
 (modules, Docker, Singularity, Conda, ...)

- Data Types and metadata

- User Interfaces
 (different communities)

- Data exports
 (bag-it, RO-crate ...)

- Compute
 (HPC, Cloud-Computing, GPGPU ...)

- Reference data

- Data imports

- Visualisations

- Authentication & Authorization
US secured deployment

- Galaxy used for protected human data analyses in AnVIL
- Inverted model: Compute → Data saves downloading
- National Human Genome Research Institute (US NIH)
- US FISMA certified for this secure use

Open computing: Vertebrate Genomes Project

- Plan to sequence and assemble 70,000 high fidelity genomes
- ~1TB input data, 5000 core hours for a typical genome assembly
- Commercial assembly compute cost ~ sequencing cost
- Collaboration: Tools wrapped; Workflows in Galaxy
- Can now use AnVIL Galaxy described above
Open Computing: Cancer Informatics

- Distributed analysis of omics and imaging cancer datasets across commercial clouds and institutional HPCs
- Used in U.S. NIH Cancer Moonshot initiative for precision oncology
- Galaxy-ML: a suite of tools for no-code machine and deep learning
- Subcellular microscopy image analysis → 2D and 3D tumor maps

Gu et al. (2021) PLoS Computational Biology. https://doi.org/10.1371/journal.pcbi.1009014
Boxes OS.: Centos8
Galaxy: 40 cores, 256GB, 240GB SSD
Database: 40 cores, 256GB, 2TB Raid1 SSD
Jenkins: 40 cores, 128GB, 240GB SSD
Reproducibility stack

1. Conda
 - Trimmomatic
 - HISAT2
 - StringTie
 - Ballgown

2. Containers
 - Trimmomatic
 - HISAT2
 - StringTie
 - Ballgown

3. Virtualization
 - Virtual Machine
 - Conda package
 - Container
 - Conda package
 - Container
 - Conda package
 - Container

Least reproducible / secure

- git clone hisat2
- make
- sudo make install
- hisat2 --version

Most reproducible / secure

- conda install hisat2
- hisat2 --version
- docker run --rm quay.io/biocontainers/hisat2 --version
Galaxy as an enabler in Australia

• A highly accessible platform for our 30,000 life sciences researchers (+200,000 students)
 • opened the door for many non-technical users
• Enabled aggregated national compute power
 • bypassing life-sciences-unfriendly allocation mechanisms
 • accessible portal to resource-hungry applications - 1TB nodes
• Standardised vehicle for real-time distribution of global tools and workflows - effectively a global marketplace
• Training as outreach mechanism locally & regionally