
CernVM Workshop Summary

Laura Promberger (CERN), Jakob Blomer (CERN) GDB, 12 October 2022

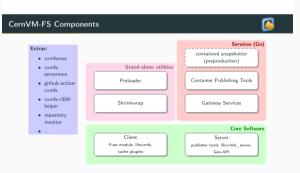
Overview

- 2-day event in Nikhef, Amsterdam: 12-13 September 2022
 - Indico Page
- Organizers
 - Dennis Van Dok, Nikhef
 - Jakob Blomer, CERN
 - Mary Hester, Nikhef
- 22 talks from 21 speakers
 - Productive Open Discussion Session on Monday morning
- Total registrations: 72
 - 25 people on-site
- On Monday evening: Walking tour and dinner

Group Picture

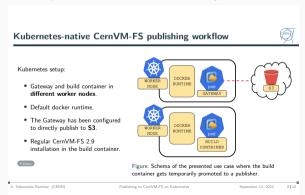
Grouping of the Talks

- CVMFS-Related News and Status
- CVMFS Users Scientific Community
- CVMFS Infrastructure Providers Scientific Community
- CVMFS Users Industry and HPC


CVMFS-Related News and Status - Overview

	Talk	Speaker
1)	CernVM-FS: Status and Plans	Jakob Blomer
2)	CernVM-FS publisher on Kubernetes	Andrea Valenzuela Ramirez
3)	CernVM 5: A fully containerized CernVM	Jakob Karl Eberhardt
4)	Harbor Registry at CERN: Status and Enhancements	Ricardo Rocha
5)	CSI Driver for CernVM-FS	Robert Vasek

CVMFS-Related News and Status I


1) CernVM-FS: Status and Plans – Jakob Blomer

- Version 2.10 will be soon released (currently pre-production testing)
- Focus on scalability and client performance (e.g. work on better kernel cache utilization, network optimization such as proxy sharding)
- Growing container deployment on the grid through unpacked.cern.ch service

CVMFS-Related News and Status II

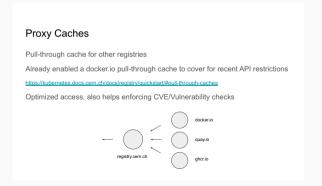
- 2) CernVM-FS publisher on Kubernetes Andrea Valenzuela Ramirez
 - Proof of Concept: Ephemeral shells/containers for cvmfs publishing service
 - Serverless model
 - Any client can be a publisher if it has the correct keys

CVMFS-Related News and Status III

3) CernVM 5: A fully containerized CernVM – Jakob Karl Eberhardt

- ullet Until now: CernVM was a full VM o CernVM5 extends it to containers
- Phase-out CernVM online CernVM 3 and 4 stay available
- CernVM 5 features: derivable image, resiliant to environment changes by experiment stacks
- Planned release date: Q4/2022

Cern\/M	5.	Resulting	Rase	Laver	Image
CEITIVIVI	J.	Nesulting	Dasc	Layer	IIIIage

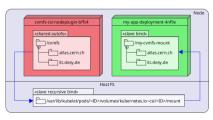

	CernVM 5 Base Layer Image	Naively Derived Image	Naively Derived Image + System Applications
Volume (uncompressed)	805MB	1030MB	1450MB
Volume (compressed)	284MB	382MB	523MB
Installed Packages	457	502	612
Image Layers	single	multiple	multiple
Standard Derivability	yes	yes (but not a true base layer)	yes (but not a true base layer)

- + Better control over installed packages → smaller image, easier to distribute
- + Improved build time and caching
- + Single layered → less complex, faster to construct, true to concept of base layers
- + Compared to ≤ 4: Derivable image

CVMFS-Related News and Status IV

4) Harbor Registry at CERN: Status and Enhancements - Ricardo Rocha

- Allows for sophisticated container image management
- Mature project with vendor support
- CVMFS unpacked.cern.ch takes advantage of proxying

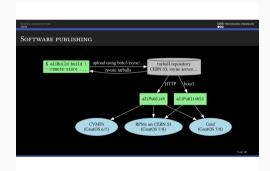

CVMFS-Related News and Status V

5) CSI Driver for CernVM-FS – Robert Vasek

- Container Storage Interface is used for external storage in container orchestrators
- Cvmfs-csi exposes cvmfs as kubernetes-native external storage
- Cvmfs-csi version 2
 - Supports: autofs, client configuration during runtime, and any type of local cache volume

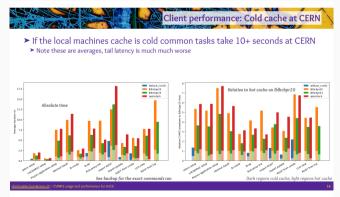
Getting autofs to work in containers

- ▶ Driver runs in host's PID namespace, to make automount daemon visible
- ► Mount propagation needs to be set-up properly



CVMFS Users – Scientific Community – Overview

	Talk	Speaker
1)	ALICE's software infrastructure	Timo Wilken
2)	CVMFS usage and performance for LHCb	Ben Couturier
3)	CVMFS at GSI	Sören Lars Gerald Fleischer
4)	CMS deployments on CernVM-FS	Andrea Valenzuela Ramirez
5)	ATLAS Installations on CVMFS	Oana Vicky Boeriu
6)	ATLAS Cloud R&D, Kubernetes and CVMFS	Fernando Harald Barreiro Megino
7)	CVMFS for KM3NeT	Mieke Bouwhuis
8)	Software infrasructure of XENONnT	Joran Angevaare


CVMFS Users - Scientific Community I

- 1) ALICE's software infrastructure Timo Wilken
 - Summary of the ALICE build & test system
 - CVMFS challenge
 - ALICE software framework uses many processes, thus puts more load on the cvmfs client

CVMFS Users - Scientific Community II

- 2) CVMFS usage and performance for LHCb Ben Couturier
 - 3 CVMFS repositories
 - Software (8.9 TB), Nightlies (publish around 500 GB/day), Detector condition data
 - Large Python stacks cause long startup delays with CVMFS cold cache

CVMFS Users - Scientific Community III

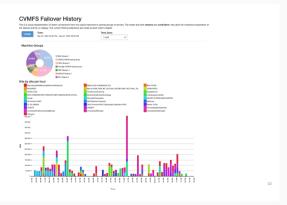
- 4) CMS deployments on CernVM-FS Andrea Valenzuela Ramirez
 - 3 repositories (each has 1 single release manager)
 - CMSSW, continuous integration and integration builds
 - Has 500+ CMSSW container images in unpacked.cern.ch
 - About to switch to parallel publishing/gateway (as well as ATLAS nightlies)

CVMFS Users - Scientific Community IV

6) ATLAS Cloud R&D, Kubernetes and CVMFS – Fernando Harald Barreiro Megino

- Harvester kubernetes integration for batch allows K8S to run jobs like any Grid site
- 3 commonly used "blueprints" for cvmfs on k8s
 - CERN CSI driver, CERN Sciencebox driver, PRP OSG driver
- Case for an official CVMFS deployment for k8s

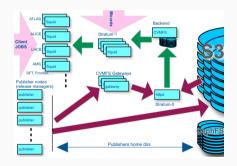
CVMFS plugin stress test: fast scale out on GCP



CVMFS Infrastructure

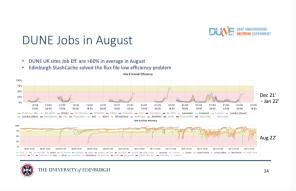
	Talk	Speaker
1)	WLCG Stratum 1 Status and Plans	Dave Dykstra
2)	CVMFS Mix at CERN	Fabrizio Furano
3)	A new UK StashCache at Edinburgh for DUNE	Wenlong Yuan
4)	CVMFS in Canadian Advanced Research Computing	Ryan Taylor

CVMFS Infrastructure I


- 1) WLCG Stratum 1 Status and Plans Dave Dykstra
 - Full replica needs 40 TB; raid-10 for optimal write speed
 - HA-pair preferred and reverse-frontier squid proxy for monitoring
 - Cloudfare CDN: openhtc.io

CVMFS Infrastructure II

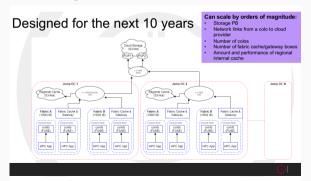
2) CVMFS Mix at CERN - Fabrizio Furano


- 4.5 billion files, >200 TB of data; 63 release managers and repositories
- CVMFS data on S3; release managers home are on CephFS

CVMFS Infrastructure III

3) A new UK StashCache at Edinburgh for DUNE - Wenlong Yuan

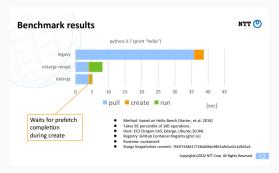
- Use case for cvmfs as a namespace for large data repositories
- Set up a new UK Stash Cache instance at Edinburgh to reduce latency & I/O wait
- ullet Increases efficiency of DUNE HTC grid jobs in the UK from <10% to >60%


CVMFS Users – Industry and HPC

	Talk	Speaker
1)	Exascale data processing with CVMFS	Matt Harvey
2)	First experiences using CVMFS in Microsoft Azure	Hugo Meiland
3)	Lazy Container Image Distribution With eStargz	Kohei Tokunaga
	And P2P Image Sharing on IPFS	
4)	Decarbonizing Scientific Computing	Andrew Grimshaw
5)	The European Environment for Scientific	Kenneth Hoste
	Software Installations (EESSI)	

CVMFS Users - Industry and HPC I

1) Exascale data processing with CVMFS - Matt Harvey


- Jump trading: privately-owned trading firm
- Data archive: Create 200 TB per week, increases 2x per year
- Before: rsync and GPFS needed support of growth size >10
- Uses cvmfs as metadata storage that tracks where the actual data is stored

CVMFS-Related News and Status I

3) Lazy Container Image Distribution With eStargz And P2P Image Sharing on IPFS – Kohei Tokunaga

- eStargz images and stargz-snapshotter allow for lazy pulling
- Foundation for the cymfs containerd snapshotter
- Potentially very big impact on container image distribution

CVMFS Users - Industry and HPC II

- 2) First experiences using CVMFS in Microsoft Azure Hugo Meiland
 - Ongoing work to make cvmfs available to Azure HPC OnDemand clouds (#10 in Top500)
 - Contribution for Azure Blob instead of S3 in CVMFS
 - Close connection to EESSI project

- Added support for Azure Blob next to S3 (okt 2021?)
- Cvmfs_server can build stratum0 directly on Azure Blob
 - · With keys in keyvault, build machine is expandable
- Using traffic manager i.s.o. geo-ip
- Sync containers i.s.o. stratum0 -> stratum1

CVMFS Users - Industry and HPC III

5) EESSI – Kenneth Hoste

- Installing scientific software is (still) a tremendous problem for HPC sites
- EESSI project consists of three main layers
 - Global distribution of EESSI software stack via cvmfs
 - Compatibility layer using Gentoo Prefix
 - Software layer, hosting optimized installations along with required dependencies

Summary

- First in-person CernVM workshop since 2019
- Very productive and pleasant event Huge thanks to NIKHEF!
- General themes:
 - Significantly growing load to cvmfs client and server due to more supported architectures, more agile software development, more complex software stacks and more cores per box
 - Ongoing efforts on client performance improvements and parallelized publishing
 - Ongoing efforts on integration with container ecosystem: easier k8s support, scaling of the container image conversion service (unpacked.cern.ch)