

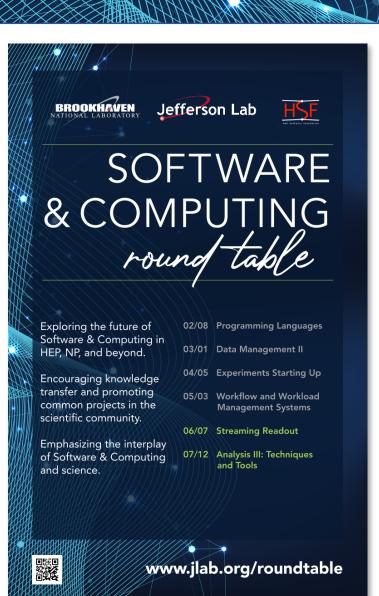
Workshop Summary

Nathan Baltzell, Jefferson Lab (on behalf of the organizers)

> GDB Meeting October 12, 2022

History

2020 - 207 participants!


Original Motivation

- New experiments coming up (CEBAF 12 GeV, EIC, FRIB, sPHENIX)
- Advance nuclear science! "The purpose of computing is insight, not numbers." Richard Hamming (1962)

Themes

- 2016
 - Examined computing strategy at a time horizon of ten years
 - Defined common vision for NP computing
 - Recommended future directions for development
- 2017
 - Resource management and the interplay of I/O compute and storage
 - Machine learning for enhancing scientific productivity
 - Software portability, usability and common infrastructure
- 2020
 - Identify what is unique about the NP community
 - How to strengthen common efforts
- Chart a 10-year path for NP Software and Computing
 Website
- https://www.jlab.org/conferences/trends2016/
- <u>https://www.jlab.org/conferences/trends2017/</u>
- <u>https://indico.bnl.gov/event/9023/</u>

Community Forum

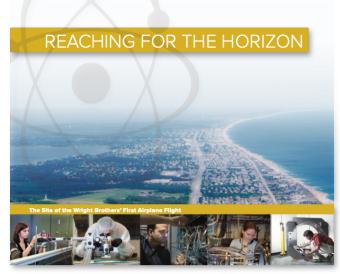
- Seminar series on the interplay of computing and science
- With O(50) participants per month
- Initiated at **Jefferson Lab** after the first "Future Trends in NP Computing" workshop in 2016 with two main goals:
 - Knowledge transfer
 - Encourage common projects
- Since 2020 jointly organized with BNL and the HSF with software & computing topics from the wider NP and HEP community.
- Recordings available on <u>YouTube</u>:

Future Trends in Nuclear Physics Computing

Software & computing are an integral part of our research

)))))))))/	s	urv	ey							
Q1 What fraction of your time do you spend on the software and computing aspects of your research, such as programming, analysis jobs, etc.?													
				Answei	red: 44	Skippe	ed: 0						
	0	10	20	30	40	50	60	70	80	90	100		

Survey among Nuclear Physics Ph.D. students and postdocs in preparation of "Future Trends in NP Computing" in 2020


- Goal We would like to ensure that scientists of all levels worldwide can participate in NP analysis actively.
- User-Centered Design: To achieve this goal, we must develop simulation and analysis software using modern and advanced technologies while hiding that complexity and engage the wider community in the development.

Rapid turnaround of data for the physics analysis and to start the work on publications

- **Goal**: Analysis-ready data from the DAQ system.
- **Compute-detector integration** with AI at the DAQ and analysis level.

2022 FTNPC Workshop

The design and development of software & computing constitute a cornerstone for the future success of the Nuclear Physics program. **Future Trends in Nuclear Physics Computing** will serve as a **forum to discuss priorities for design and development** as **input for a community white paper to inform the next Long Range Plan for Nuclear Science**. Each day of the workshop will have a theme to frame the discussion:

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Hosted by Center for Frontiers in Nuclear Science at Stonybrook University (although switched to virtual only, local COVID restrictions increased just prior) <u>https://indico.bnl.gov/event/15089/</u> - including live notes from all

Where are we as a community?

Wednesday, September 28

How can we make analysis easier?

• Thursday, September 29

Careers and DE&I

• Thursday, September 29

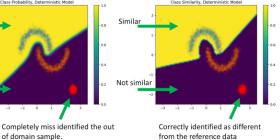
How can we scale up computing?

• Thursday, October 1

Overview of Talks

Where Are We as a Community?	Making Analysis Easier	Careers and DEI	Scaling Up Computing
Where Are We as a Field? Thomas Papenbrock (UT/ORNL)	User-Centered Design Wouter Deconinck (U.Monitoba)	An NSF Perspective on Careers and DE&I Bogdan Mihaila (NF)	Computing Models that Feature Streaming Graham Heyes (JLab)
Status of Analysis - The Python Perspective Jim Pivarski (Princeton)	Differential Workflows Lukas Heinrich (T.U.Munich)	Demographic Studies of Major Conferences in Heavy-Ion Physics Christine Nattrass (U.Tennessee)	Utilizing Distributed Heterogeneous Computing Tadashi Maeno (BNL)
Status of Analysis - The ROOT Perspective Lorenzo Moneta (CERN)	Metadata Paul Laycock (BNL)	Panel Discussion	Adapting and Scaling Storage for NHEP Tejas Rao (BNL)
AI/ML for Nuclear Physics Tanja Horn (Catholic U.)	Systematics Nick Smith (FNL)		Scaling Up Towards EIC Computing David Lawrence (JLab)
Rucio-SENSE Integration Justin Balcas (Caltech)			

Example - AI/ML


Class

12

Control and Optimization of Complex Accelerators

Example 1: Superconducting RF Cavity Fault Classification

- > Anomaly detection and machine protection: ML-based solutions to challenges encountered in particle accelerators are yielding promising results.
 - ML cavity identification and fault classification models have an accuracy of ~85% and 78%

Fault Timelin

C. Tennant et al., Phys. Rev. Accel. Beams 23, 114601 (2020)

Example 2: UQ for Accelerator Anomalies

- Predict upcoming faults before they happen using a combination of uncertainty quantification and a deep Siamese architecture (focuses on similarities between beam pulses)
- Performance improved ~4x over previous published results

29

Activities in Nuclear Physics: AI for NP Workshops

6-7 September, 2022 / SURA headquarters

Organized by:

Alessandro Lovato - Joe Carlson (LANL), Phiala Shanahan (MIT), Bronson Messer (ORNL) Witold Nazarewicz (FRIB/MSU), Amber Boehnlein (JLab), Peter Petreczky (BNL) Robert Edwards (JLab), David Dean (JLab)

Tremendous interest and activity in AI/ML in the Nuclear Physics Community

Workshop Resolution

High Performance Computing (HPC) is essential to advance I experimental and theory frontiers. Increased investments in computational NP will facilitate discovery and capitalize on p Class B progress. Thus, we recommend a target program to ensure t utilization of ever-evolving HPC hardware via software and algorithmic development, which includes taking advantage of capabilities offered by AI/ML

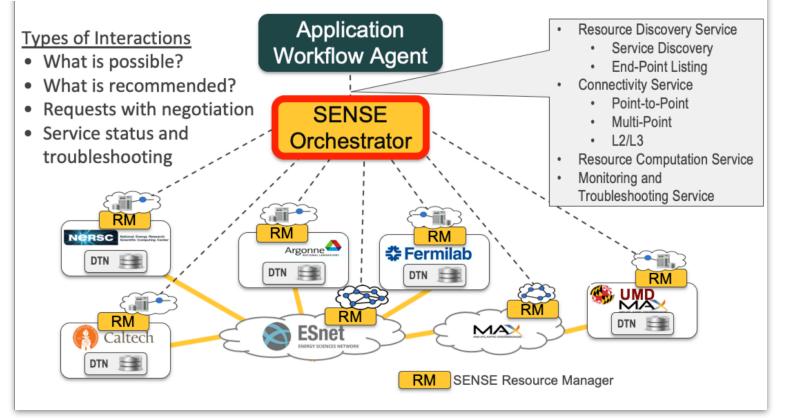
The key elements are:

- Strengthen and expand programs and partnerships to supp immediate needs in HPC and AI/ML, and also to target development of emerging technologies and other opportunities
- Take full advantage of exciting possibilities offered by new hardware and software and AI/ML within the NP community through educational and training activities
- Establish programs to support cutting-edge developments of a multi-disciplinary workforce and cross disciplinary collaborations in HPC and AI/ML
- Expand access to computational hardware through dedicated and HPC resources

Adapted from slides shown at the QCD Town meeting 2022

Tanja Horn

Example - SENSE/RUCIO Integration

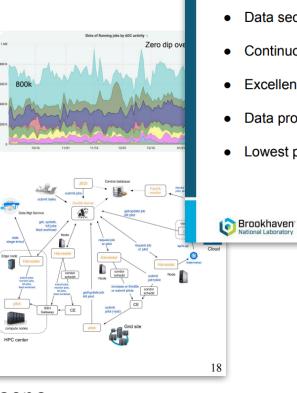

But let's keep in mind that this work is extensible to any collaboration that uses Rucio (adaptable to other data management systems too) to move data across sites

What is Rucio?

- Store, manage, and process data in a heterogeneous distributed environment
- Manage transfers, deletions, and storage
- Initially developed by the ATLAS experiment
- Designed with more than 10 years of operational experience in data management
- CMS Experiment migrated to Rucio ~3 years ago.

Extended beyond data management:

- Data can be scientific observations, measurements, objects, events, images saved in files
- Connects with workflow management systems
- Supports both low-level and high-level policies and enforces them
- A rich set of advanced features and use cases supported
- Facilities can be distributed at various locations belonging to different administrative domain



Justas Balcas

Example - Heterogenous Computing, Storage

Production and Distributed Analysis System

- > <u>PanDA</u>: The workload management system
 - Manages 24x365 processing on ~800k concurrent cores globally for ATLAS, all workloads from evgen to analysis, all resource types, ~150 computing centers, ~1500 users, ~300M jobs/yr
 - Leveraging Rucio for fully-automated data management
 - Expanding to Vera C. Rubin (astrophysics) and sPHENIX (nuclear physics) beyond ATLAS (HEP)
- > <u>Harvester</u>: In-house resource manager
 - Delegated resource/service access
 - Flexibility and extensibility around the plugin architecture
- > <u>iDDS</u>: intelligent data delivery system
 - A joint project between ATLAS and IRIS-HEP
 - Supports arbitrarily complex fine-grained workflows defined via directed acyclic graphs (DAGs) and workflow description languages
- Have addressed the issues described up to here, while still some issues yet 30th sto be addressed → Next slides

Challenges with Enterprise storage

- Massively growing data.
- Aging storage systems and hardware refresh.
- Data security concerns.
- Continuous uptime expectations.
- Excellent performance for all workloads.
- Data protection and Data recovery.
- Lowest possible cost.

Tejas Rao

Tadashi Maeno

Example - User Centered Design - EIC

EIC SOFTWARE: Statement of Principles

 We aim to develop a diverse workforce, while also cultivating an environment of equity and inclusivity as well as a culture of belonging.

2 We will have an unprecedented compute-detector integration:

- We will have a common software stack for online and offline software, including the processing of streamed data and its time-ordered structure.
- We aim for autonomous alignment and calibration.
- We aim for a rapid, near-real-time turnaround of the raw data to online and offline productions.

3 We will leverage heterogeneous computing:

- We will enable distributed workflows on the computing resources of the worldwide EIC community, leveraging not only HTC but also HPC systems.
- EIC software should be able to run on as many systems as possible,
- while supporting specific system characteristics, e.g., accelerators such as GPUs, where beneficial.
- We will have a modular software design with structures robust against changes in the computing environment so that changes in underlying code can be handled without an entire overhaul of the structure.

We will aim for user-centered design:

- We will enable scientists of all levels worldwide to actively participate in the science program of the EIC, keeping the barriers low for smaller teams.
- EIC software will run on the systems used by the community, easily.
- We aim for a modular development paradigm for algorithms and tools without the need for users to interface with the entire software environment.

5 Our data formats are open, simple and self-descriptive:

- We will favor simple flat data structures and formats to encourage collaboration with computer, data, and other scientists outside of NP and HEP.
- We aim for access to the EIC data to be simple and straightforward.

6 We will have reproducible software:

• Data and analysis preservation will be an integral part of EIC software and the workflows of the community.

Constraints

Estimates

• We aim for fully reproducible analyses that are based as revealed software and are amenable to adjustments and new

7 We will embrace our community:

The "Statement of Principles" represent guiding principles for EIC Software. They have

- EIC software will be open source with attribution to
 We will use publicly available productivity tools.
- EIC software will be accessible by the whole commu
- We will ensure that mission critical software compon dependent on the expertise of a single developer, b maintained by a core group.
- We will not reinvent the wheel but rather aim to buil existing efforts in the wider scientific community.
- We will support the community with active training a where experienced software developers and users in users.
- We will support the careers of scientists who dedicat effort towards software development.

We will provide a production-ready software stack throughout the development:

- We will not separate software development from software use and support.
- We are committed to providing a software stack for EIC science that continuously evolves and can be used to achieve all EIC milestones.
- We will deploy metrics to evaluate and improve the quality of our software.
- We aim to continuously evaluate, adapt/develop, validate, and integrate new software, workflow, and computing practices.

Requirements Cost Schedule Value & guality

Agile

driver

Features

The Vision creates

Feature estimates

reatures/priority iter

Wouter Deconinck

Schedule

Waterfall

Plan

driven

The plan creates

cost/schedule estimates

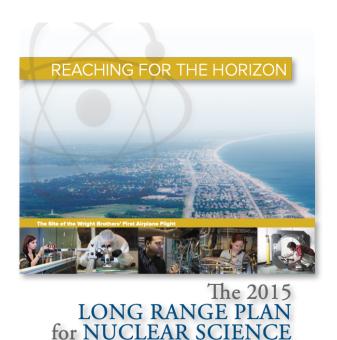
Cost

Preliminary. Pending proofing and publication.

Future Trends in Nuclear Physics Computing

10

Example - Streaming, Scaling Up Towards EIC


Summary

Productive workshop, live notes, full recordings

- Making Analysis Easier, Careers and DEI, Scaling Up Computing
- Thanks to all the speakers and everyone involved!

White Paper

- Being drafted, expect to finish by end of 2022
- To inform the next Long Range Plan for Nuclear Science

6