Asymmetric dark matter via Leptogenesis

Enrique Fernández Martínez

CERN theory group retreat, 4 November

Work in collaboration with M. Blennow, B. Dasgupta and N. Rius

Research Interests

- Neutrino phenomenology
 - Measurement of unknown neutrino parameters
 - Phenomenology of models of neutrino masses
 - Non standard neutrino interactions
- Dark Energy
 - Extracting info on the DE eos from SN and BAO
- Dark Matter

Asymmetric DM: Motivation

Baryonic Matter

baryon mass $m_B \sim 938 \text{ MeV}$

matter-antimatter asymmetry:

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-10}$$
 WMAP + BBN

To give $\Omega_B = 0.0455$

Asymmetric DM: Motivation

WIMP Dark Matter

WIMP mass $m_{DM} \sim 1000 \, \mathrm{GeV}$

Thermal abundance of heavy weekly interacting particle gives abundance such that:

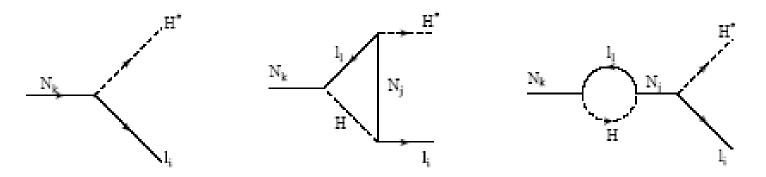
$$\Omega_{DM} = 0.227$$
 "WIMP Miracle"

$$\frac{\Omega_{DM}}{\Omega_B} pprox 5$$
 but $\frac{n_{DM}}{n_B} pprox 10^{-3}$

are DM and baryon abundances and masses related?

Asymmetric DM

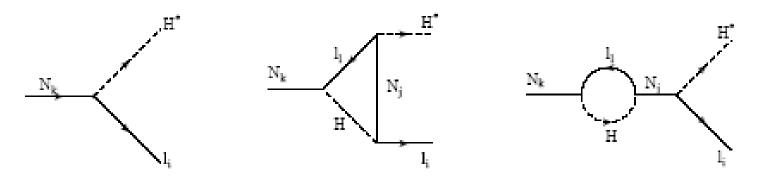
If DM is a Dirac fermion it can have an accidental global symmetry, DM number X, just like B and L in the SM


A DM asymmetry will be stable, like the baryon asymmetry, no need to impose R or KK parity

If the DM and baryon asymmetries have the same origin they can be similar, explaining the $\Omega_{\rm B}$ - $\Omega_{\rm DM}$ coincidence

typically $m_{DM} \sim 5 \text{ GeV}$

Nussinov 1985; Barr, Chivukula and Farhi 1990; Kaplan 1992; Kuzmin 1997; Kusenko 1999; Kitano and Low 2004 and 2005; Hooper, March-Russell and West 2004; Farrar and Zaharijas 2004 and 2005; Agashe and Servant 2004; Cosme, Lopez Honorez and Tytgat 2005; Suematsu 2005; Banks, Echols and Jones 2006; Page 2007; Nardi, Sannino and Strumia 2009...


Decay of Majorana right-handed neutrino N_R produces L asymmetry

M. Fukugita and T. Yanagida 1986

SM sphaleron processes partially convert L into B conserving B-L

Decay of Majorana right-handed neutrino N_R produces L asymmetry

M. Fukugita and T. Yanagida 1986

SM sphaleron processes partially convert L into B conserving B-L

Cant couple 5 GeV DM to SM sphalerons we need new sphalerons

We expand all SM generations with N_R and DM fermions x_L and x_R

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: $SU(3)_{DC}$ and $SU(2)_{H}$

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: $SU(3)_{DC}$ and $SU(2)_{H}$

 x_L and x_R are triplets of $SU(3)_{DC}$ so that they form "dark baryons" With masses similar to the SM baryons

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: $SU(3)_{DC}$ and $SU(2)_{H}$

 x_L and x_R are triplets of $SU(3)_{DC}$ so that they form "dark baryons" With masses similar to the SM baryons

 $SU(2)_H$ is a horizontal chiral symmetry that provides new sphalerons $SU(2)_H$ doublets:

$$\begin{pmatrix} \mu \\ e \end{pmatrix}_R \qquad \begin{pmatrix} s \\ d \end{pmatrix}_R \qquad \begin{pmatrix} c \\ u \end{pmatrix}_R \qquad \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}_R$$

 N_R and x_L are singlets to prevent the Witten anomaly

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

```
SU(2)<sub>L</sub> sphalerons violate B, L and X in the direction: \Delta B = \Delta L, \Delta X = 0 SU(2)<sub>H</sub> sphalerons violate B, L and X in the direction: \Delta B = 2\Delta L = 2\Delta X
```

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

```
SU(2)<sub>L</sub> sphalerons violate B, L and X in the direction: \Delta B = \Delta L, \Delta X = 0 SU(2)<sub>H</sub> sphalerons violate B, L and X in the direction: \Delta B = 2\Delta L = 2\Delta X
```

B – L – X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

B – L – X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X After $SU(2)_H$ and symmetry $SU(2)_L$ breakings asymmetries are frozen

$$X = -\frac{11}{14}B$$
 $m_{DM} = 5.91 \text{ GeV}$

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

B – L – X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X After $SU(2)_H$ and symmetry $SU(2)_L$ breakings asymmetries are frozen

$$X = -\frac{11}{14}B$$
 $m_{DM} = 5.91 \text{ GeV}$

Symmetric DM component from thermal freeze out form "dark mesons" below the $SU(3)_{DC}$ phase transition which decay into SM particles via the $SU(2)_{H}$ interaction

"Dark mesons" should decay before BBN \rightarrow lower bound on G_F^H

"Dark mesons" should decay before BBN \rightarrow lower bound on G_F^H

Lower bound on SU(2)_H for sphalerons to be in thermal equilibrium

$$\alpha^4 = \left(\frac{g_H^2}{4\pi}\right)^4 \gtrsim \frac{10 \, T}{M_{Pl}}$$

"Dark mesons" should decay before BBN ightarrow lower bound on G_F^H

Lower bound on SU(2)_H for sphalerons to be in thermal equilibrium

$$\alpha^4 = \left(\frac{g_H^2}{4\pi}\right)^4 \gtrsim \frac{10\,T}{M_{Pl}}$$

 $SU(2)_H$ interaction induces FCNC upper bound from $K^0 \rightarrow \mu \ e$

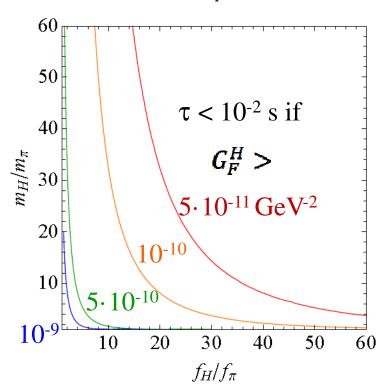
$$G_F^H < 3.6 \cdot 10^{-12} \text{ GeV}^{-2}$$

"Dark mesons" should decay before BBN \rightarrow lower bound on G_F^H

Lower bound on SU(2)_H for sphalerons to be in thermal equilibrium

$$\alpha^4 = \left(\frac{g_H^2}{4\pi}\right)^4 \gtrsim \frac{10\,T}{M_{Pl}}$$

 $SU(2)_H$ interaction induces FCNC upper bound from $K^0 \rightarrow \mu \ e$

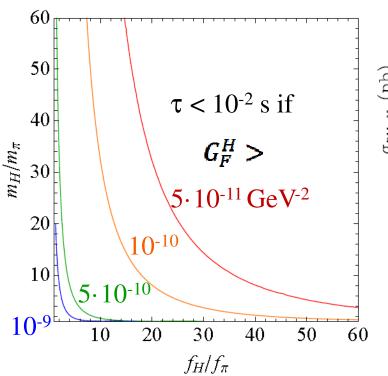

$$G_F^H < 3.6 \cdot 10^{-12} \text{ GeV}^{-2}$$

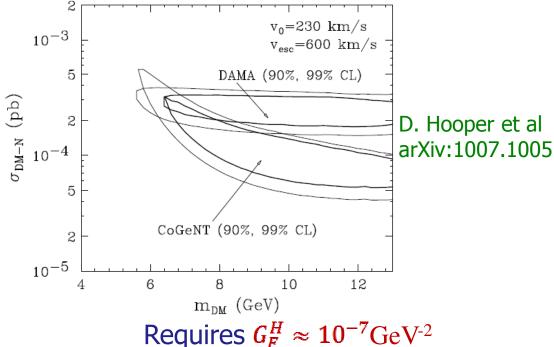
Too weak to decay before BBN, need to break the symmetry in stages or to couple mainly to 2nd and 3rd generations

Breaking the symmetry in stages

If $SU(2)_H$ symmetry broken by vev of scalar triplet along σ_3 a flavour-conserving Z' remains massless (like Georgi-Glashow model)

Milder constraints on the mass of the $Z' \rightarrow$ can mediate "dark mesons" decay before BBN

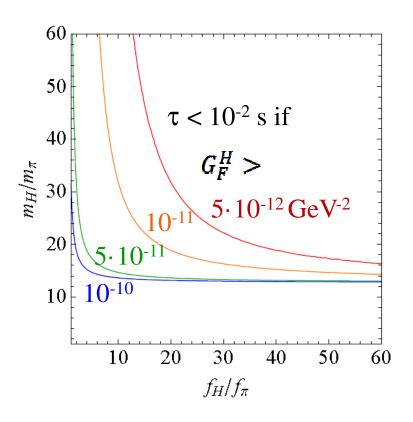



Breaking the symmetry in stages

If $SU(2)_H$ symmetry broken by vev of scalar triplet along σ_3 a flavour-conserving Z' remains massless (like Georgi-Glashow model)

Milder constraints on the mass of the $Z' \rightarrow$ can mediate "dark"

mesons" decay before BBN



tension with LEP bounds

Coupling to 2nd and 3rd generations

If SU(2)_H interaction involves mainly 2nd and 3rd generations constraints are weaker

Also provides a new source of mixing an CP violation in the B_s system that can accommodate the Tevatron dimuon anomaly with

$$G_F^H \approx 7 \cdot 10^{-11} \text{ GeV}^{-2}$$

S. C. Park, J. Shu, K. Wang and T. Yanagida arXiv:1008.4445

Conclusions and Outlook

- Extending the SM with N_R and DM fermions + $SU(2)_H \times SU(3)_{DC}$ induces asymmetric DM via leptogenesis
 - DM is stable without additional parities
 - DM mass and abundance similar to baryons
- A flavour-conserving Z' remnant of SU(2)_H can have low mass and lead to signals at colliders or direct detection experiments
- If SU(2)_H couples mainly to the 2nd and 3rd generations it can accommodate the Tevatron dimuon anomaly
- Can the SU(2)_H symmetry breaking help with the flavour puzzle?