
Kubernetes activities
at UChicago

Lincoln Bryant
Pre-GDB
07 June 2022

ATLAS Analysis Facility

● We recently opened our doors to users
for a new ATLAS Analysis Facility at
UChicago

● About 1,000 cores / 1 PB of usable disk
● Traditional batch SSH access, as well

as web-based Jupyter notebooks
● HTCondor workers, Ceph storage,

other various applications managed
via Kubernetes

2

UChicago AF Architecture

3

HTCondor - Execute

● Completely managed by Kubernetes
● 80 logical cores per Worker, partitionable slots
● HTCondor pods are dynamically configured based on values from the

Kubernetes downward API, e.g.
resources:
 limits:
 cpu: "84"
 memory: "400G"
 ephemeral-storage: "10G"
 requests:
 cpu: "80"
 memory: "384G"
 ephemeral-storage: "10G"

● CPU is a slightly trickier expression because Kubernetes can schedule
at a sub-core level while HTCondor uses whole cores

$ condor_status slot1@c001 -af Memory
366211

- name: _CONDOR_MEMORY
 valueFrom:
 resourceFieldRef:
 containerName: execute
 resource: requests.memory
 divisor: 1Mi

4

Jupyter Notebooks

● Users can deploy Jupyter notebooks that run on K8S
● Instead of using JupyterHub, we built a simple

in-house system that:
○ Allows users to specify CPU, Memory, GPUs, container image
○ Instantiates containers with JupyterLab, the CephFS mount,

CVMFS, and the user's real UID and group membership
○ Sets a time limits on how long people can use a notebook and

automatically culls old containers
5

Access to applications

● Jupyter users can access two
Kube-native services on the AF
today:
○ ServiceX

■ Data filtering and delivery service
■ Delivers slimmed/skimmed input data as

PyArrow awkward arrays or flat ROOT files

○ Coffea Casa
■ Service for low-latency columnar analysis
■ Users can submit jobs through Coffea, which

use Dask to send workloads to HTCondor
6

CVMFS experience in K8S

● We tried a number of options for CVMFS with various degrees of
success
○ CVMFS CSI

■ Last tried a year or so ago - some issues with zombie processes, haven't tried
recently enough to comment beyond that.

○ cvmfsexec
■ Only works for a single user (pilot-style) batch configuration

○ OSG K8S CVMFS
■ Encountered some race conditions where pods would be ready before CVMFS

● We've found that the most stable solution for CVMFS has been to
simply install it normally on the workers and bind mount it.

7

GitOps (Flux, Argo, etc)

● We have found that GitOps is completely essential to using Kubernetes in
production
○ In my opinion, K8S without GitOps is the equivalent of system administration without configuration

management (Puppet, Chef, Ansible, etc).

● We are using 2 GitOps solutions for anything we do on Kubernetes
○ Flux v2 for all our clusters at UChicago
○ a custom GitOps solution for SLATE

● Why GitOps?
○ Track when changes are made
○ Review and approve changes in the usual PR model
○ Easily roll back bad deployments
○ ~Single source of truth for the cluster state
○ Immensely useful in disaster recovery scenarios 8

Components managed by Flux

● Kubernetes requires a lot of add-in
functionality to get the most out of it

● On top of a normal kubeadm
installation, we add:

○ Sealed Secrets Operator
○ Rook (Ceph)
○ Prometheus
○ Ingress controller(s)
○ Certificate Management
○ Priority classes
○ … and so on

9

● Creating tools and a trust framework to
create distributed platforms such as CDNs to
reduce operational costs and innovate more
quickly

● SLATE (Services Layer At The Edge)
implements distributed service operation
and a trust model (close as we can get to a
NetFlix model given institutional boundaries)

● Helm packaged applications
○ OSG Entrypoints (both), HTCondor-worker, Frontier Squid,

Globus, FTS, XCache, PerfSonar-test, Open OnDemand
and more

○ https://github.com/slateci/slate-catalog
■ usable via Helm even if you don't use SLATE 10

● SLATE-flavored GitOps
○ Deploy, manage SLATE applications via a

single Git repository

Implementing a federated operations model

slateci.io

https://github.com/slateci/slate-catalog
https://slateci.io

Services running in SLATE / FedOps

● In the US, we have 2 applications that are run across the Tier 2
facility under the Federated Operations (FedOps) model
○ XCache
○ Frontier Squid

● Ideal services for deploying through SLATE
○ Focused on caching
○ Failure won't take the site offline, but will probably get you a

GGUS ticket
■ Keeps us accountable!

11

What has become easier?

● Applications are generally easier to
deploy, maintain, and upgrade
○ For the most part, getting the latest & greatest

container version is really as simple as:
■ slate instance restart <instance id>

● Comparing configuration, versions, etc is
all very simple.

● When urgent action is needed (e.g.,
security updates), it is very easy to get
everyone up to date.

$ diff atlas-squid-uchicago-prod-3/values.yaml
atlas-squid-mwt2-iu-1/values.yaml
1c1
< Instance: "mwt2-uc-1"

> Instance: "mwt2-iu-1"
5c5
< Hostname: sl-uc-xcache1.slateci.io

> Hostname: iut2-slate.mwt2.org
14a15,17
> Pod:
> UseHostTimezone: True
>
17,18c20,22
< CacheMem: "32768"
< CacheSize: 25000

> CacheMem: "8192"
> CacheSize: "25000"
> MaximumObjectSizeInMemory: "1048704"
21d24
< MaximumObjectSizeInMemory: "1048704"
29c32
< Logfile_Rotate: "20"

> Logfile_Rotate: "5"

Compare instacces by simply
diff'ing high-level Helm config 12

Tradeoffs and improvements
● Site admins give up a bit of autonomy

under a SLATE-like model, have to
coordinate with FedOps teams for
changes

○ e.g. hardware replacement, network changes, etc

● New deployment and management
mechanisms = new monitoring needed
for when they fail

● Team receives regular emails when:
○ Any changes merged into SLATE GitOps
○ Kubernetes certificates are about to expire
○ K8S instances have restarted or otherwise dropped

off of the network
13

Deploying into FABRIC

14

Working with FAB (FABRIC Across Borders) to demonstrate ServiceX deployment at CERN, delivery of analysis objects to
analysis facilities in the U.S.

FAB

ServiceX

Coffea
Dask

Laptop, ML platform, cloud

Panda DataFrames,
Awkward Arrays

Histograms

https://af.uchicago.edu

https://af.uchicago.edu

CERN->FABRIC->Analysis Facility->Notebook

15
All code can be found here.

ServiceX on

FABRIC-NCSA

QueryOutput

CERN data

source

Notebooks on analysis facilities

IRIS-HEP Analysis Grand Challenge Tools Workshop Example

https://github.com/ivukotic/servicex-example.git

Summary

● We are using Kubernetes more and more, and we see others
doing the same

● We are having success with the Federated Operations model in
the US

● Undoubtedly Kubernetes is a force multiplier for developers
● We have to be careful not to underestimate the investment

needed to operate K8S clusters
○ especially on premises
○ especially at scale

16

