Documentation for Production PCBs and Assembly

P. Bell, R. Berberat, S. Kaufmann

Quality & Reliability Start with Documentation

- Clear and concise
- Complete, include all information
- Up-to-date

Part of DfX: Design for Excellence

- Design for Manufacture
- Design for Reliability
- Design for Sourcing

Goals

Target	Approach
Accurate quotation	Human readable summaryEasy to read and digestHighlight key process-defining features
Within specification	Referring to industrial standardsProper tolerances
Acceptable quality	 Quality controls and reports clearly defined
Minimum cost	Easy quoting reduces margin
Retain intellectual property	 Don't allow changes which are not reflected in the design

Three Layers

Design

Generic Specification

Industry Standards

EDA or design files

Standard documents, generic for all designs

- IPC-2221A
- IPC-6011, IPC-A-600
- IPC-A-610, J-STD-001
- etc

Three Major Steps

Bare PCB Manufacturing

Bare PCB Manufacturing

The PCB is the most critical single component in an assembly
→ If the PCB fails, the entire assembly will be scrapped.

Traditionally:

- Engineering drawings, sent as Gerbers + drill file.
- Often including any notes as "fab notes", directly on the drawings.
- PDF of Gerbers if you're friendly.

Broadly classified into two categories

Specification

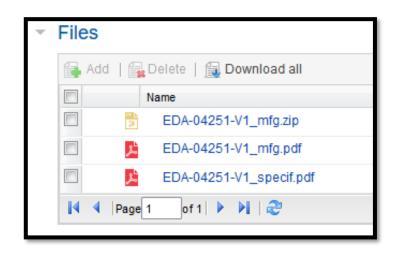
- Human readable summary
- Standardised template
- Refers to IPC
- Easy quoting
- Highlight unique features

Production Files

- Engineering Drawings
- Detailed fab notes
- Gerber files
- Drill file

EDA Template

Specification


 _specif.pdf, summary specification

Optional:

_stack-up.pdf (only when relevant)

Production Files

- _mfg.zip, CAD files (Gerbers + drill) for programming machines
- _mfg.pdf, human readable PDF of Gerbers + drill file

Specification (_specif.pdf, _stack-up.pdf)

Forms the basis of the contract

- Board dimensions, final thickness, number of layers
- Surface finish (default to ENIG)
- Minimum hole size
- Controlled impedances (yes/no)
- Press-fit components (yes/no)
- Filled and capped vias (yes/no)
- etc
- Standard template for IPC requirements, packaging requirements, quality reports, halogen free base material (CERN directive IS41), etc

Specification

Design

FIQ51-1

TE/MPE/EM Electronic Modules

PCB Fabrication Specification

Designation				
Number				
Title	Date: 26-Nov-2018			
Customer				
Contact electronics-design-office@cern.ch	Etude/Design: P. Vulliez			

PCB should be manufactured with Panasonic Megtron-6

			Mechanic	al D	escript	tion	
External Size (mm):	280.0mm	X	322.3mm			Thickness [mm]:	2.45
PCB type :	M	ultila	yers	22	Layers	Panel:	NO

Finished Copper Thicknesses Requirements				
External Layers [µm]:	50µ	Internal Layers - Planes [μm]:	17.5/70u	
Holes Walls [µm]:	25μ	Internal Layers - Signals [μm]:	17.5µ	

Board Finish Requirements				
Silkscreen On Top:	YES	Silkscreen On Bottom:	YES	
Silkscreen Colour:	White			
Soldermask On Top:	YES	Soldermask On Bottom:	YES	
Soldermask Colour:	Green			
Surface Finish: ENIG - Electroless Nickel/Immersion Gold according to IPC-4552				
Thicknesses: Ni: 3µm min - 6µm max / Au: 0.05µm min - 0.125µm max				

Additional Information				
Minimun Track Width:	0.090mm	Minimum Track/Pad Clearance:	0.085mm	
Minimum Hole Diameter:	0.25mm	Wedge Aluminium Wire Bonding:	NO	
Buried Holes:	NO	Blind Holes:	YES	
		Filled and Capped Vias:	YES **/*	
Press-Fit Through Holes:	YES	Card Edge Connector:	NO	
Specified Stackup:	YES *	Controlled Impedance:	YES *	
Electrical Test:	YES	Test Coupons Required:	YES	

* = Voir/See http://edms.cern.ch/nav/EDA-03452-V3-0 -> Manufacturing -> EDA-03452-V3_mfg.pdf

Laminate And Copper Foils Requirements

Base material, when used, shall be flame retardant rated UL 94V-0 laminate glass fiber epoxy and conform to L94 according to IPC-4101/128, halogen-free, Copper shall be type H with pits and dent, class B. When procuring base material the following are required: minimum TG 150°C, minimum TD(5%) 350°C, minimum T-288 35min, maximum Z-axis thermal expansion coefficient above TG 280PPM/°C (alternatively Z-axis thermal expansion coefficient between 50-260°C of 3.5% maximum is acceptable).

Prepreg material shall conform to P94 according to IPC-4101/128, halogen-free and be subjected to the same requirement set forth for the laminate base material

All internal layer copper foils shall conform to IPC-4562/3 CU-E3, class 2

CERN — Organisation Européenne pour la Recherche Nucléaire — European Organization for Nuclear Research

Design

FIQ51-1

TE/MPE/EM Electronic Modules

Additional Plating Requirements

Finished external layers and plated through holes plating shall be 25um.

The copper plating shall be performed with plating chemistries/processes commensurate with the maximum aspect ratio plated hole in the board. The aspect ratio is defined as the ratio of the board thickness divided by the smallest drilled hole diameter on the board.

The quality of the copper plating shall be verified according to IPC-TM-650, 2.4.18.1 as to tensile strength and according to IPC-TM-650, 2.4.2.1 as to ductility.

Thieving may be added outside the circuit board border to compensate for high density areas on the board. For thieving within the borders of the circuit board approval is required.

Vias/Through Holes Requirements

Non functional lands shall not be removed on layers 1, 2, 3, N-2, N-1 and N. Other non functional lands may be removed as long as no removal on adjacent layers occurs.

Negative etchback is not allowed. Positive etchback is permissible to 0.2mils maximum.

All holes are located on the basic modular grid system. All holes shall be located within a 3-mils-diameter of true position. Drilling should be according to IPC-DR-572.

Via holes are specified as to drilled hole size; for these holes the finished hole size is for reference only Holes receiving component leads or pins are specified as to finished hole size.

** Holes Cap plating shall be in accordance to IPC6012C-3.6.2.11.2 Fig 3.16 and table 3-10 Class 3: Copper thickness min 12µ. Dimples over resin filling max 50µ. Bumps/protrusion over resin filling max 50µ.

Additional Board Finish Requirements

Solder mask over bare copper according to IPC-SM-840, class H. All fiducials, lands and holes, except vias. shall be free of solder mask material.

Silkscreen shall be with permanent, organic, non-conductive and RoHS compliant ink. Silkscreen ink must be capable to withstand peak temperatures of 260-270°C for a duration of 60 seconds and at least 3-4 cycles

An identification marking shall be applied on the PCB. It shall contain the PCB manufacturer logo, UL marking, date-code and surface finish according to J-STD-609. Marking shall be applied on silkscreen and located in the indicated area near the TE/MPE logo.

Additional Quality Control Requirements

The printed wiring board, and test coupon when used in lieu of a production board, shall be according to IPC-2221 and IPC-2222, type 3, class2. Date code and PCB manufacturer logo shall be present on test coupons for traceability

Acceptance of finished printed boards shall be in accordance with IPC-A-600, class 3.

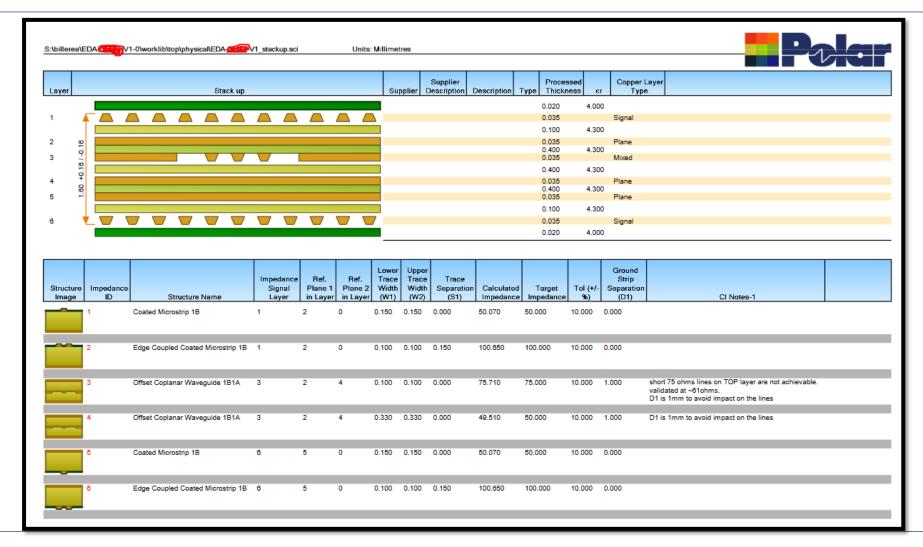
Fabrication and inspection shall be according to IPC-6011 and IPC-6012, class 3.

The maximum allowable bow and twist shall be 0.75%.

All quality controls shall be performed per IPC-TM-650 procedures and per IPC-4552.

Packing Requirements

Boards shall be wrapped in sulfur-free neutral PH wrapping paper and shipped in vacuum-sealed anti-static bags. A humidity indicator and desiccant may be inserted in the bags.


Quality Documentation To Be Delivered

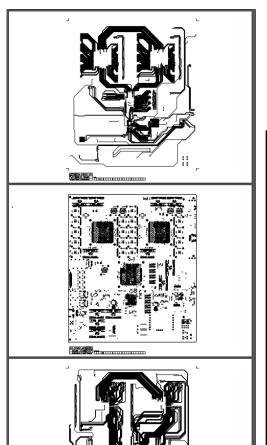
A certificate of conformity shall be delivered with the PCB's. It shall declare all material used (laminate exact type, soldermask, silkscreen, etc) and their respective lot numbers.

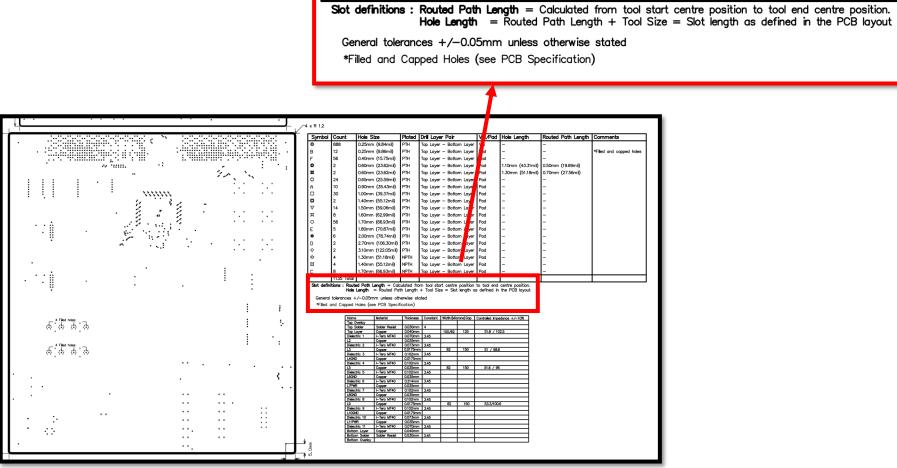
CERN - CH1211 Genève 23 TE/MPE/EM Design Office - FIQ51-1 (05/11/2018) Page 1 of 2

CERN - CH1211 Genève 23 TE/MPE/EM Design Office - FIQ51-1 (05/11/2018)

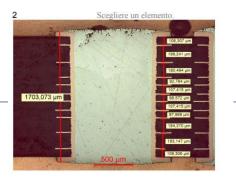
Stack-Up (with impedance simulation)

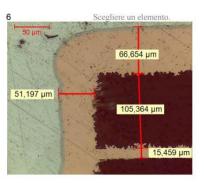
Manufacturing (_mfg.pdf, _mfg.zip)


- PDF print of engineering drawings
- Includes all layers: copper, mask, silk, paste, drill, panelisation
- Specific fab notes
 - Only to give detail on points already included in Specification!
- Stack-up table again in fab notes if relevant.



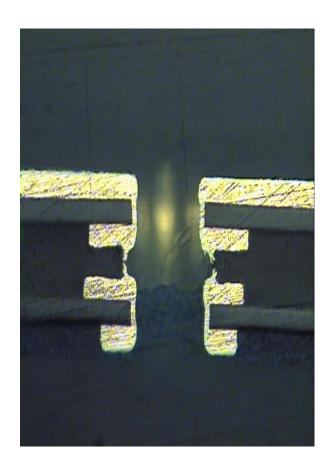
Manufacturing Drawings

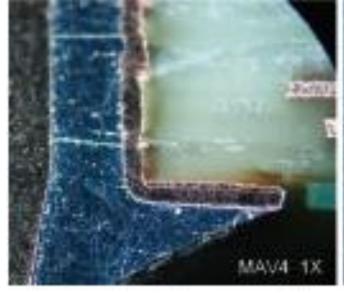


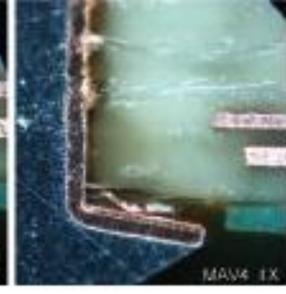

18/11/2021

Quality and Acceptance

- Electrical test (flying probe)
- Micro-section report
- Test coupons (if >2 layers)
- Impedance control if relevant (coupons + test report)







What can go wrong...

Design Specific Documentation

<u>Human Readable</u>

- Bill of Materials (BoM)
- Colour plans
- Clearly show process steps: SMT top, SMT bot, THT top, post assembly, etc.

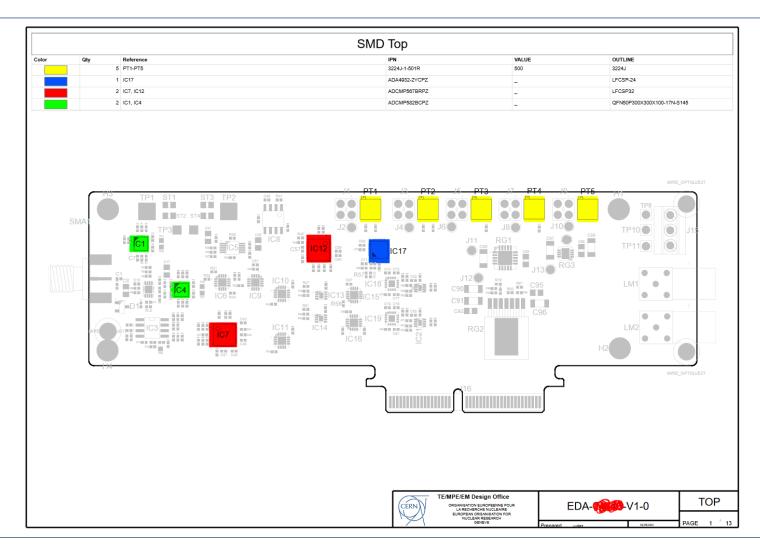
Machine Files

- Solder paste stencil
- SMT pick & place (top/bot)

Optional:

- ASCII CAD or ODB++
- AOI

Bill of Materials (BoM)


Controls EDA-04443-V1-0							
Mechatro			L .				
Y- Mechano	(Les composants doivent etre fournis ROHS autant que possible) Liste de matériel / Material List (Parts must be supplied ROHS as much as possible)						
		(Les composants doivent être fournis ROHS autant que possible) LISTE DE MATERIEI / MA	ateria	I LIST (Parts must be supplied ROHS:	as much as possible)		
(A)	Client/Customer:				Through pins:	49	
(CÉRN)	DATE:				SMD pins on TOP:	810	
N	Dessinateur/Drawn by				SMD pins on BOTTOM:	122	
1	BE/CEM/EPR	Board dimensions: 140.0x50.8mm (Components on TOP: 24	44 ISMD	=215], on BOTTOM: 40 (SMD=40])	Total nb of pins:	981	
Ref.	Qty SCEM	Description	Value	Fournisseur/Manufacturer	Part Number	Boitier/Outline	
		Circuit Imprimé / Printed Cir	cuit E	Board			
EDA-04443-V1	11	NA62 Active CFD Printed Circuit Board (bare)		Panel of 2 PCBs		140.0x50.8mm	
		Matériel monté sur le PCB / Parts mo					
C1,C18,C20	3	50V 5% SMD Ceramic Capacitor - Class1 NP0/COG		GENERIC	CC0402 1NF 50V 5% NP0	0402	
C2->C7.C9->C11		16V 10% SMD X7R Ceramic Capacitor		GENERIC	CC0402 10NF 16V 10% X7R	0402	
C13,C19,C21->C28		TOV TOVE ONE ATT OCIATIO CAPACIO		CENTERNIO	000102_10141_100_1030_X110	0102	
C30,C32->C34							
C36,C38,C40->C48							
C52->C55,C57->C59) I						
C61->C68,C70,C73							
C74,C76,C78,C80							
C83,C86,C93,C94							
C100							
C8,C17,C31,C35		10V 10% SMD X7R Ceramic Capacitor	10uF	GENERIC	CC0805_10UF_10V_10%_X7R	0805	
C89							
C12,C29,C37,C39		16V 10% SMD X7R Ceramic Capacitor	100nF	GENERIC	CC0402_100NF_16V_10%_X7R	0402	
C49->C51,C56,C60 C69,C75,C77,C79	1 1						
C81,C82,C84,C85							
C87.C102->C135	1 1						
C14		50V 5% SMD Ceramic Capacitor - Class1 NP0/COG	120nE	GENERIC	CC0402 120PF 50V 5% NP0	0402	
C15		50V 0.25pF SMD Ceramic Capacitor - Class1 NP0/COG		GENERIC	CC0402 6PF 50V 0.25PF NP0	0402	
C18		16V 10% SMD X7R Ceramic Capacitor		GENERIC	CC0402 22NF 16V 10% X7R	0402	
C71,C72		50V 5% SMD Ceramic Capacitor - Class1 NP0/COG		GENERIC	CC0402 56PF 50V 5% NP0	0402	
C88,C90,C91,C96		10V 20% SMD X5R Ceramic Capacitor		GENERIC	CC1206_47UF_10V_20%_X5R	1206	
C97,C99							
C92,C95,C98,C101		10V 10% SMD X7R Ceramic Capacitor		GENERIC	CC0805_1UF_10V_10%_X7R	0805	
	1	Small Signal Diode			BAV99	SOT23	
IC1,IC4		Ultrafast SiGe Voltage Comparator		ANALOG DEVICES	ADCMP582BCPZ	LFCSP16	
	1	900 MHz Differential Amplifier		TEXAS INSTRUMENTS	LMH6553SD	DFN8	
IC3		Gain 4 Stable, Wideband Voltage Limiting Amplifier		TEXAS INSTRUMENTS	OPA699ID	SOIC8	
IC5	1	Voltage-Controlled Gain Amplifier		TEXAS INSTRUMENTS	VCA824IDGST	SOP5	

Colour Plan

18/11/2021

Machine Files

General advice:

- ASCII CAD (export from Altium)
 or OBD++ streamlines
 programming
- ALWAYS manage the panel layout in CAD, do not leave it to the PCB manufacturer.
- → Panel data in P&P + stencil!

- P&P for each component:
 - Reference
 - x-position
 - y-position
 - Rotation
 - Part number

Goals

Target	Approach	
Accurate quotation	Human readable summaryEasy to read and digestHighlight key process-defining feato	→ Human readable→ Standard templates
Within specification	Referring to industrial standardsProper tolerances	→ Don't over-specify
Acceptable quality	 Quality controls and reports clearly 	
Minimum cost	 Easy, clear quoting reduces margin 	→ Contract basis
Retain intellectual property	 Don't allow changes which are not 	reflected in the design

→ Changes not allowed unless clearly discussed

Three Layers

Design

Generic Specification

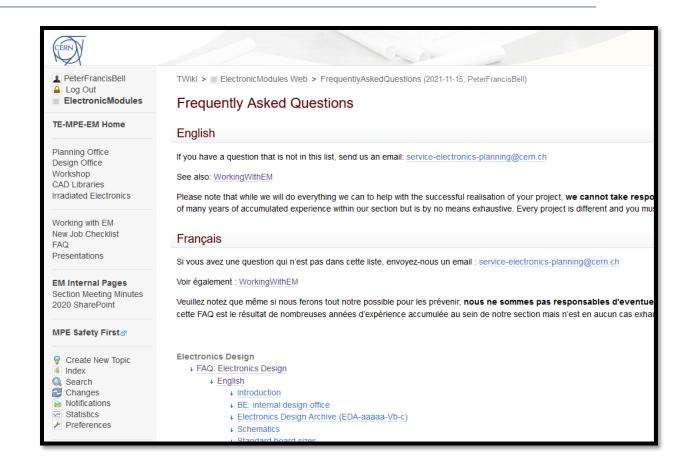
Industry Standards

18/11/2021

EDA or design files

Standard documents, generic for all designs

- IPC-2221A
- IPC-6011, IPC-A-600
- IPC-A-610, J-STD-001
- etc

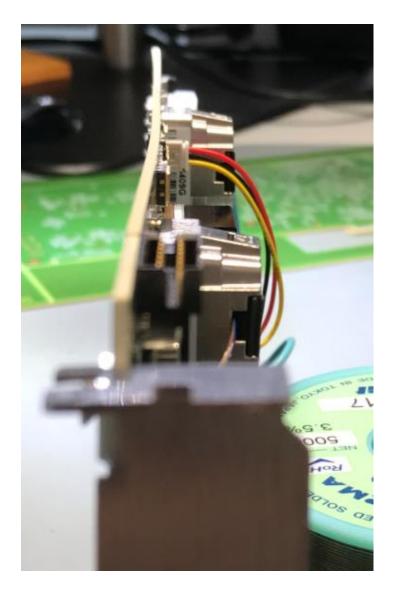

Final Tips

Start with standard libraries

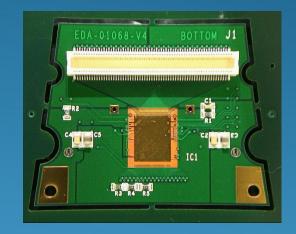
- https://twiki.cern.ch/twiki/bin/view/Electronic Modules/ComponentLibraries
- Available for Altium and Cadence
- Very well maintained and standardised
- "For free" to the CERN community

Frequently Asked Questions

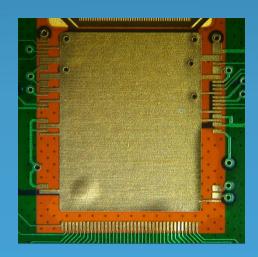
https://twiki.cern.ch/twiki/bin/view/Electronic
 Modules/WebHome



18/11/2021

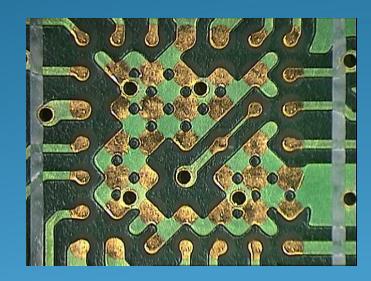


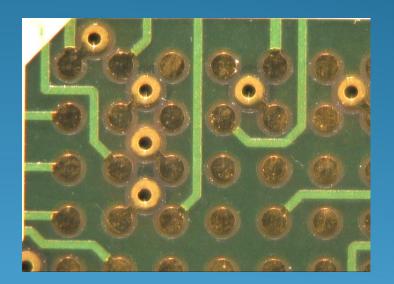
UNRELIABILITY AT CERN


Practical case: poor outsourcing practices

Does this board look like rocket science?

- Double-sided SMD
- 1 CoB (chip on board)
- 2 connectors
- 12 resistors/capacitors


- 600+ boards
- 50% yield due to PCB delamination


UNRELIABILITY AT CERN

Poor design practices: some examples

BGA design classics

Every ball shall have an individual pad with the same shape, except on certain occasions for reliability improvement

Vias close to BGA pads shall be tented to avoid solder wicking inside it and thus ensure homogene solder volume in joints