

CEPC collider ring lattice design for the high luminosity scheme

Yiwei Wang for the CEPC Accelerator Physics Group The Institute of High Energy Physics, Chinese Academy of Sciences

Mini-workshop on Accelerator Physics HEP2022 of HKUST IAS, January 13, 2022

Design requirement of the CEPC collider ring

- SR power 30MW (50 MW upgradable), 100km, 2 IPs
- Crab waist collision
- Local chromaticity correction for the interaction region
- Non-interleaved sextupoles
- Correction of sawtooth orbit
- Shared cavities for two beam @ tt, Higgs
- Dual aperture dipole and quadrupole magnets
- Spin polarized beam @ Z
- Asymmetric interaction region
- Compatible of $t\bar{t}/H/W/Z$ modes
- Compatible with SPPC

*ref: K. Oide, arXiv:1610.07170; M. Zobov et al, Phys. Rev. Lett. 104, 174801(2010); A. Milanese, PRAB 19, 112401 (2016); CEPC pre-CDR; CEPC-CDR

Key parameters of high luminosity scheme

C. Yu, Y. W. Wang, Y. Zhang, S. Bai, Y. Zhu, D. Wang, J. Gao et al

Key parameters of CDR scheme for Higgs

- L*=2.2m, θ c=33mrad, β x*=0.36m, β y*=1.5mm, Emittance=1.2nm
 - Strength requirements of anti-solenoids B_z~7.2T
 - Two-in-one type SC quadrupole coils (Peak field 3.8T & 136T/m)

Key parameters of high luminosity scheme for Higgs

- L*=1.9m, θ c=33mrad, β x*=0.33m, β y*=1.0mm, Emittance=0.64nm
 - Strength requirements of anti-solenoids $B_z \sim 7.2T$ (6.8T with a shorter solenoid)
 - Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron yoke

Reduction of the length from IP to 1st quadrupole without changing the front-end position of the FD cryo-module

To make the lattice robust and provide good start point for DA

Optimization of final doublet design for Higgs

- CEPC is mainly optimized at Higgs energy. The final doublet design was mainly optimized for Higgs.
 - Status of the FD @ Higgs: L*=1.9m, LQ1=2.5m, LQ2=1.5m, d=0.3m, KQ1A=142T/m, KQ1B=85T/m, KQ2=96T/m
 - Minimum of radiation power occurs at KQ1B/KQ1A≈0.6
 - Strength, length of Q1, Q2 and their distance are mainly constrained by superconducting, mechanical installation, vacuum technologies in the MDI.

—relative chromaticity on y plane—relative radiation power on y plane

Different strength ratio of Q1A and Q1B

Different length ratio of Q1A and Q1B when keep total length of Q1A+Q1B

- Minimum of radiation power occurs at **KQ1B/KQ1A≈0.6**Different length of Q1A and Q
- Different length of Q1A and Q1B doesn't affect much on the minimum of the power and chromaticity. This provides more freedom of the FD technical design.

Interaction region for all modes

 For the interaction region, the IP beta functions are refitted with the different combination of final doulets and the matching quadruples.

*ref: FCC-ee CDR

add quad Q3A and Q3B

Q1A+Q1B+Q2

ttbar

	L [m]	Strength [T/m]								
		ttbar	Higgs	W	Z					
Q1AIRU	1.21	-141	-141	-94	-110					
Q1BIRU	1.21	-59	-85	-56	+65					
Q2IRU	1.5	-51	+95	+63	0					
Q3AIRU	1.5	+40	0	0	+2					
Q3BIRU	1.5	+40	0	0	+2					
Q1AIRD	1.21	-142	-142	-95	-110					
Q1BIRD	1.21	-64	-85	-57	+65					
Q2IRD	1.5	-47	+96	+64	0					
Q3AIRD	1.5	+40	0	0	+2					
Q3BIRD	1.5	+40	0	0	+2					

Strength of other modes doesn't exceeded the one of Higgs mode.

Interaction region for all modes (cont.)

• For the interaction region, the IP beta functions are refitted with the different combination of final doulets and the matching quadruples.

*ref: FCC-ee CDR

	L [m]	Strength [T/m]							
		ttbar	Higgs	W	Z				
Q1AIRU	1.21	-141	-141	-94	-110				
Q1BIRU	1.21	-59	-85	-56	+65				
Q2IRU	1.5	-51	+95	+63	0				
Q3AIRU	1.5	+40	0	0	+2				
Q3BIRU	1.5	+40	0	0	+2				
Q1AIRD	1.21	-142	-142	-95	-110				
Q1BIRD	1.21	-64	-85	-57	+65				
Q2IRD	1.5	-47	+96	+64	0				
Q3AIRD	1.5	+40	0	0	+2				
Q3BIRD	1.5	+40	0	0	+2				

Strength of other modes doesn't exceeded the one of Higgs mode.

RF staging for compatible modes

- 1st priority of the Higgs running and flexible switching
- Low cost at early stage
- Get high luminosity for all modes

Stage 1 (H/W run)

- Layout and parameters are same with CDR except longer central part
- Medium or low luminosity at Z

Stage 2 (HL-Z upgrade)

- Move Higgs cavities to center and add high current Z cavities.
- By-pass low current H cavities.

Stage 3(ttbar upgrade):

- Add ttbar cavities (low current, high gradient, high Q)
- Nb3Sn@4.2 K or others to significant reducing the cost of cryo-system and AC power.

by J. Y. Zhai, Yiwei Wang

ARC region for all modes

- Z and W modes need larger momentum compaction factor αp and thus larger emittance ϵx , Qs
 - To suppress the impedance induced instability at Z mode
 - To increase stable tune area if considering beam-beam effect and impedance consistently at W and Z modes

Microwave instability

$$I_{th} = \frac{\sqrt{2\rho} a_p \frac{E}{e} S_{e0}^2 S_l}{R \left| \frac{Z_{\parallel}}{n} \right|_{eff}}$$

Na Wang, CEPC Day, March 2020 stable tune area with both beam-beam and impedance (Z mode 90/90)

• Phase advance reduced from 90° to 60° for W and Z modes

	ttbar	Higgs	W	Z						
Number of IPs	2									
Circumference [km]	100.0									
SR power per beam [MW]	30									
Half crossing angle at IP [mrad]		16.5								
Bending radius [km]		10.7								
Energy [GeV]	180	120	80	45.5						
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037						
Piwinski angle	1.21	5.94	6.08	24.68						
Bunch number	35	249	1297	11951						
Bunch spacing [ns]	4524	636	257	25 (10% gap)						
Bunch population [10 ¹⁰]	20	14	13.5	14						
Beam current [mA]	3.3	16.7	84.1	803.5						
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43						
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9						
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	0.27/1.4						
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	13/42	6/35						
Bunch length (SR/total) [mm]	2.2/2.9	2.3/3.9	2.5/4.9	2.5/8.7						
Energy spread (SR/total) [%]	0.15/0.20	0.10/0.17	0.07/0.14	0.04/0.13						
Energy acceptance (DA/RF) [%]	2.3/2.6	1.7/2.2	1.2/2.5	1.3/1.7						
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127						
RF voltage [GV]	10	2.2	0.7	0.12						
RF frequency [MHz]	650	650	650	650						
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8						
Longitudinal tune Qs	0.078	0.049	0.062	0.035						
Beam lifetime (bhabha/beamstrahlung)[min]	81/23	39/40	60/700	80/18000						
Beam lifetime [min]	18	20	55	80						
Hour glass Factor	0.89	0.9	0.9	0.97						
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115						

Y.W. Wang, D. Wang, Y. Zhang, J. Y. zhai, S.Bai, Y.D. Liu, N. Wang, C. X. Cui, C.H. Yu, J. Gao et al

Optimization of the ARC aberration at ttbar and Higgs modes

- 2nd order chromaticity is a main aberration for the optimization of momentum acceptance with **2-repeated sextupole scheme**.
 - In previous versions, 2nd order chromaticity generated in the ARC region are corrected with IR knobs (phase advance or K1).
 - However, the IR knobs will generate distortions at IP (beta, alfa and dispersion) especially for the horizontal plane.
- A lattice with 8-repeated sextupoles scheme
 - much less 2nd order chromaticity for the horizontal plane

Optimization of the ARC aberration at W and Z modes

- The distribution of sextupoles for Higgs & ttbar mode allowed to select –I sextupole pairs for W &Z mode.
 - 6*6=36 cases for 23 cells
 - There are much more combinations if choose different cases in each arc section (184 cells)

1 st pair		2 nd pair		0.05					 I	i	Ш				Ш		Ш	Ш		I			Ш	П			Ш	Ш	Ш		dQx2 dQy2 dQx3	?
(1A, 2A)	(2B,3B)	(3A,4A)	(3B,4B)	0.04		П				Л	П				Ш	h	ı	Ш	Ш	I,		ı				ı		Ш	Ш	Ī	dQx2 dQy2 dQx3 dQy3	1
(1B, 2B)	-	(3A,4A)	(3B,4B)	0.02			Ш			Ш	Ш		П		Ш	Ш	ı	Ш	Ш				Ш			1		Ш	Ш			
(2A, 3A)	-	-	(3B,4B)	0.01				h							h																L	
				·	1 2	3	4 5	6 7	7 8	9 1	10 11	12	13 14	15	16 1	7 18	19 ID	20	21 22	23	24	25	26 27	2	8 29	30	31	32	33 34	35	36	

Optimization of the ARC aberration at W and Z modes (cont.)

• Cancellation of main aberration has period of 23*3 cells.

Lattice of half ring

Dynamic aperture requirement

	ttbar	Higgs	W	${f Z}$
Horizontal Emittance in collider/booster [nm]	1.4 / 2.83	0.64 / 1.26	0.87 / 0.56	0.27 / 0.19
DA requirement from injection	$13.9 \sigma_x \times 7 \sigma_y$ off axis	$14.4 \sigma_x \times 7 \sigma_y$ off axis $7 \sigma_x \times 7 \sigma_y$ on axis	$10.5 \sigma_x \times 5 \sigma_y$ off axis	$11.8 \sigma_x \times 5 \sigma_y$ off axis
Beam lifetime (mainly bhabha and beamstrahlung) [min]	18	20	55	80
Energy acceptance requirement from beam lifetime [%]	2.3	1.7	1.2	1.3

DA requirement	ttbar	Higgs	W	Z
with on-axis injection	-	$7\sigma_x \times 15\sigma_y \times 1.7\%$	-	-
with off-axis injection	$13.9\sigma_x \times 20\sigma_y \times 2.3\%$	$14.4\sigma_x \times 15\sigma_y \times 1.7\%$	$10.5\sigma_x \times 9\sigma_y \times 1.2\%$	$11.8\sigma_x \times 9\sigma_y \times 1.3\%$

* need beam-beam simulation to check for y

Dynamic aperture status @ Higgs and ttbar

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- DA optimized with 84 variables (64 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advance)
 - Further optimization is under going (totally 256 arc families)

Synchrotron motion

Radiation loss in all magnets

Tapering

Crab waist sextupole

Maxwellian fringes

Kinematic terms

Finite length of sextupole

Dynamic aperture status @ Z and W

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- DA optimized with 116 variables (96 arc sextupole families + 8 IR sextupoles + 4 multipoles + 8 phase advance)
 - Further optimization is under going (160 arc familes to be turned on)

magnets

Tapering

Crab waist sextupole

Maxwellian fringes

Kinematic terms

Finite length of sextupole

Dynamic aperture with error @ Higgs

Yiwei Wang

- Error correction with 50 and 100 um misalignment in IR quadrupoles
 - closed orbit distortion (COD) and dispersion free steering (DFS) correction has been done
 - DA with 418 and 270 (out of 1000) error seeds satisfy the on-axis injection requirements
- Further optimization with 100 um misalignment in IR quadrupoles is undergoing.

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{\rm z}$ (mrad)	Field error
Dipole	0.10	0.10	0.1	0.01%
Arc Quadrupole	0.10	0.10	0.1	0.02%
IR Quadrupole	0.05	0.05	0.05	
Sextupole	0.10	0.10	0.1	

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{\rm z}$ (mrad)	Field error
Dipole	0.10	0.10	0.1	0.01%
Arc Quadrupole	0.10	0.10	0.1	0.02%
IR Quadrupole	0.10	0.10	0.10	
Sextupole	0.10	0.10	0.1	

Lattice version cepc.lat.diff.8713.346.2p used $\epsilon x = 0.64$ nm, $\beta = 0.33$ m/1mm, L*=1.9m

—DA w/o error

—DA of each seed

-statistic errors

—requirement

Summary

- The high luminosity scheme of CEPC collider ring with 30MW has been designed by mainly squeezing the βy* and emittance.
 - New aberration correction scheme in ARC region, compatible final quadrupoles in IR
 - Phase advance reduced from 90° to 60° for W/Z mode to suppress impedance instability and increase stable tune area
 - Dynamic aperture w/o error for four modes achieve the requirement of energy acceptance. The
 DA can be further optimized with more arc sextupole families.
- The imperfection correction to the high luminosity lattice is on going.
 - With transverse alignment of 50um and 100um for final quadrupoles and 100um for other magnets
 - The dynamic aperture @ Higgs with 418 and 270 out of 1000 error seeds satisfy the on-axis injection requirements