

CEPC RF System and R&D

Jiyuan Zhai

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Mini-workshop - Key Beam Physics and Technologies Issues for Colliders January 13, 2022

Outline

- 1. CEPC SRF system design
- 2. CEPC SRF technology R&D
 - 650 MHz SRF for CEPC Collider
 - 1.3 GHz SRF for CEPC Booster
 - SRF infrastructure

CEPC Collider TDR Parameters

	ttbar	Higgs	W	Z				
Number of IPs	2							
Circumference [km]	100.0							
SR power per beam [MW]	30							
Half crossing angle at IP [mrad]	16.5							
Bending radius [km]	10.7							
Energy [GeV]	180	120	80	45.5				
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037				
Piwinski angle	1.21	5.94	6.08	24.68				
Bunch number	35	249	1297	11951				
Bunch spacing [ns]	4524	636	257	23 (10% gap)				
Bunch population [10 ¹⁰]	20	14	13.5	14				
Beam current [mA]	3.3	16.7	84.1	803.5				
Momentum compaction [10 ⁻⁵]	0.71	0.71	1.43	1.43				
Beta functions at IP (βx/βy) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9				
Emittance (εx/εy) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	0.27/1.4				
Beam size at IP (σx/σy) [um/nm]	39/113	15/36	13/42	6/35				
Bunch length (SR/total) [mm]	2.2/2.9	2.3/3.9	2.5/4.9	2.5/8.7				
Energy spread (SR/total) [%]	0.15/0.20	0.10/0.17	0.07/0.14	0.04/0.13				
Energy acceptance (DA/RF) [%]	2.3/2.6	1.7/2.2	1.2/2.5	1.3/1.7				
Beam-beam parameters (ξx/ξy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127				
RF voltage [GV]	10	2.2	0.7	0.12				
RF frequency [MHz]	650	650	650	650				
Longitudinal tune vs	0.078	0.049	0.062	0.035				
Beam lifetime (bhabha/beamstrahlung)[min]	81/23	39/40	60/700	80/18000				
Beam lifetime [min]	18	20	55	80				
Hour glass Factor	0.89	0.9	0.9	0.97				
Luminosity per IP[10 ³⁴ /cm ² /s]	0.5	5.0	16	115				

CEPC Booster TDR Parameters

• Injection energy: 10 GeV \rightarrow 20 GeV				Extraction		tt	Н		W	W Z						
,						Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection					
• Max energy: $120 \text{ GeV} \rightarrow 180 \text{ GeV}$				Beam energy	GeV	180	80 120		80	45.5						
				Bunch number		37	240	233+7	1230	3840	5760					
 Lower emittance — new lattice (TME) 				Maximum bunch charge	nC	0.96	0.7	23.2	0.73	0.8	0.83					
				Maximum single bunch current	μΑ	2.9	2.1	69.7	2.2	2.4	2.5					
				Threshold of single bunch current	μΑ	95	79									
	Injection	a 11	tt	Н	W	2	Z		Threshold of beam current (limited by RF system)	mA	0.3		1	4	10	16
	Beam energy	GeV	27	2.40	20	20.40	5760	<	Beam current	mA	0.11	0.51	0.99	2.69	9.2	14.4
	Bunch number	A	3/	240	1230	3840	5760	-	Bunches per pulse of Linac		1		1	1		2
	Threshold of single bunch current	μΑ	7.18	4.58	3.8		<	Time for ramping up	s	7.3	4	.5	2.7	1	.6	
	(limited by coupled bunch instability)	mA		T	27	-			Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.3	134.7	128.2
	Bunch charge	nC	1.07	0.78	0.81	0.89	0.92		Injection interval for top-up	s	65	3	38	155	15	3.5
	Single bunch current	μA	3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Current decay during injection			3%		20/				
	Beam current	mA	0.12				interval					370	0.027			
	Energy spread	% M-V		0.016			Energy spread	%	0.15	0.0)99	0.066	0.037			
	Momentum compaction factor	10-5						Synchrotron radiation	GeV	8.45	1.69		0.33	0.034		
	Emittance	nm		0.035				Momentum compaction factor	10-5	1.12						
	Natural chromaticity	H/V		-372/-269				Emittance	nm	2.83	1.26 0.56		0.	19		
	RF voltage	MV	438.0 197.1 122.4			Natural chromaticity	H/V		-372/-269							
	Betatron tune v_x/v_y		321.23/117.18			Betatron tune v_x / v_y		321.27/117.19								
	Longitudinal tune		0.13	0.087		0.069		$\left \right $	RF voltage	GV	9.3	2.	05	0.59	0.2	284
	RF energy acceptance	%	5.4	3.6		2.8			Longitudinal tune		0.13	0.0	087	0.069	0.0)69
<	Damping time	s	10.4			RF energy acceptance	%	1.34	1.	31	1.6	2.6				
	Bunch length of linac beam	mm	0.5			Damping time	ms	14.2	47	7.6	160.8		79			
	Energy spread of linac beam	%	0.16			1	Natural bunch length	mm	2.0	2	.0	1.7	0.	96		
	Emittance of linac beam	nm			10			<	Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

*Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

CEPC TDR RF Parameters (Collider Ring)

Version. 2022.01.12. Machine parameters: 2021.11 30 MW SR power per beam for each mode.	ttk	bar				
ttbar and Higgs half fill with common cavities for two	Additional	Existing	Higgs	W	Z	
rings, W and Z with separate cavities for two rings,	5-cell	2-cell				
Z use high current 1-cell cavity with RF bypass	cavities	cavities				
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0	.5	5	16	115	
RF voltage [GV]	10 (7.8	3 + 2.2)	2.2	0.7	0.12	
Beam current / beam [mA]	3	.4	16.4	84	803	
Bunch charge [nC]	32		22	21.6	22.4	
Bunch length [mm]	2	.9	3.9	4.9	8.7	
650 MHz cavity number	240	240	240	120/ring	30/ring	
Cell number / cavity	5	2	2	2	1	
Gradient [MV/m]	28.5	20	20	12.7	8.7	
$Q_0 @ 2 K$ at operating gradient (long term)	5E10		2E10			
HOM power / cavity [kW]	0.4	0.16	0.45	0.93	2.9	
Input power / cavity [kW]	194	56	250	250	1000	
Optimal Q _L	1E7	7E6	1.6E6	6.4E5	7.5E4	
Optimal detuning [kHz]	0.01	0.02	0.1	0.9	13.3	
Cavity number / klystron	4	12	2	2	1	
Klystron power [kW]	1400	1400	800	800	1400	
Klystron number	60	20	120	60	60	
Cavity number / cryomodule	4	6			1	
Cryomodule number	60	60 40			30	
Total cavity wall loss @ 2 K [kW]	9.5	4.7 1.9			0.45	

- · RF staging and bypass. Seamless mode switching.
- Z lower lumi in Stage 1.
- If start from Stage 2: W~1/2 Lumi, Z~1/10 Lumi.
- Transfer Higgs/ttbar RF power to high lumi Z.
- Klystron power and HOM handling capacity allow for 50 MW upgrade of ttbar, H, W. Add 30 cavities for Z 50 MW upgrade.

CEPC TDR RF Parameters (Booster Ring)

Version. 2022.01.12. Machine parameters: 2021.11 30 MW Collider SR power per beam for each mode. 20 GeV injection.	ttbar	Higgs off/on-axis	W	Z high current	
Extraction beam energy [GeV]	180	120	80	45.5	
Extraction average SR power [MW]	0.087	0.09	0.01	0.004	
Bunch charge [nC]	0.96	0.7	0.73	0.83	
Beam current [mA]	0.11	0.5/1	2.7	14.3	
Injection RF voltage [GV]	0.438	0.197	0.122	0.122	
Extraction RF voltage [GV]	9.3	2.05	0.59	0.28	
Extraction bunch length [mm]	1.9	1.9	1.6	0.9	
Cavity number (1.3 GHz 9-cell)	336	96	64	16	
Extraction gradient [MV/m]	26.7	20.6	8.9	17.1	
$Q_0 @ 2 K$ at operating gradient (long term)	1E10				
QL	4E7	1E7			
Cavity bandwidth [Hz]	33	130			
Peak HOM power per cavity [W]	0.4	1.2/2.3	7.8	105	
Input peak power per cavity [kW]	7.5	16/21.4	15	31	
SSA peak power [kW] (one cavity per SSA)	10	25	25	40	
Cryomodule number (8 cavities per module)	42	12	8	2	

- Higgs and ttbar half fill for injection timing with Collider ring. Transient beam loading tolerable.
- Transient beam loading of the booster for Higgs on-axis injection tolerable.
- Standard quasi-CW TESLA cryomodules for Higgs, W and ttbar.
- Two high current 8x9-cell cryomodules for Z with RF bypass, as well as more SSAs (or RF power transfer and combine from Higgs SSAs?) even for 50 MW upgrade. Not the limit for booster Z beam current ramp up.
- High gradient high Q 9-cell cavities for ttbar. Narrow bandwidth high gradient cavity voltage ramping through the multipacting region to be studied.
- SR, RF power, HOM power, cryogenic duty factors to be calculated with the real time structures.

CEPC SRF Hardware Specifications

Suitable for 30/50 MW SR per beam	H, W, Z high gradient & high Q	HL-Z high current & power	ttbar very high gradient & high Q
Collider 650 MHz Cavity at 2 K	2-cell VT 4E10 @ 22 MV/m HT 2E10 @ 20 MV/m OP 1.5E10 @ 20 MV/m	1-cell 1E10 @ 8.7 MV/m	5-cell VT 6E10 @ 32 MV/m HT 5E10 @ 32 MV/m OP 5E10 @ 28.3 MV/m
Booster 1.3 GHz 9-cell Cavity at 2 K	VT 3E10 @ 24 MV/m HT 3E10 @ 22 MV/m OP 1E10 @ 20 MV/m	1E10@17 MV/m	VT 3E10 @ 32 MV/m HT 2E10 @ 32 MV/m OP 1E10 @ 26.7 MV/m
650 MHz Input Coupler variable	300/500 kW variable	1000 kW	300 kW variable
650 MHz HOM Coupler	1 kW	١	1 kW
650 MHz HOM Absorber	5 kW	10 kW	١

Outline

- 1. CEPC SRF system design
- 2. CEPC SRF technology R&D
 - 650 MHz SRF for CEPC Collider
 - 1.3 GHz SRF for CEPC Booster
 - SRF infrastructure

High Gradient 650 MHz Cavity

- EP fine grain 1-cell: 3.9E10@30MV/m,1.5E10@37.5MV/m.
- State-of-the-art high gradient 650 MHz cavity.

EP of 650 MHz single-cell cavity

Vertical test results of 650 MHz single-cell cavities

S. Jin et al., *Materials*, 2021, 14(24), 7654

High Q 650 MHz Cavity

- After medium-temperature (mid-T) furnace baking, Q reached 6.4E10 at 30 MV/m.
- World record high Q at high gradient for 650 MHz cavity.

Mid-T furnace baking of 650 MHz single-cell cavity

Vertical test results of 650 MHz single-cell cavity

CEPC 650 MHz Test Cryomodule

- Cavity string and module assembly. Modul installation in beamline, 2 K cool down test and RT coupler conditioning. Horizontal and beam test soon.
- IR laser output to 116 W. Photo-cathode QE to 5 %. DC gun vacuum to 1.5E-10 Pa, voltage to 350 kV. Buncher cavity high power tested.

CEPC 650 MHz Test Cryomodule

650 MHz 2 x 2-cell Cavity String Assembly

650 MHz Test Cryomodule Assembly

650 MHz Test Cryomodule Assembly

Magnetic Shielding and Compensating

Because of beam direction and larger beam pipe than 1.3 GHz, **only two shieldings** can reach the magnetic field requirement of high Q 650 MHz cavity: **cavity (2 K local) shield and module (RT global) shield**.

 $R_{\rm mag} = \eta \cdot S(l) \cdot (B_{\rm ext} + B_{\rm tc}) \sqrt{f}$

- 1. Flux trapping ratio: grain size, high-T annealing, fast cold down
- 2. Magnetic sensitivity: mean free path and other
- 3. Remnant magnetic field: demagnetization, magnetic shield, magnetic compensation
- 4. Thermocurrent induced magnetic field

Magnetic compensation with coils

Global Magnetic Shield of the 650 MHz CM

650 MHz Test Cryomodule Assembly

650 MHz Module Transport (IHEP to PAPS 80 km)

- Module transport on a frame with isolator springs. Three accelerometers attached.
- Max acceleration 0.4 g (average 0.1 g) in the whole process (< 1.5 g spec)</p>
- Cavity string vacuum monitored with cold gauge (powered by UPS). No leak.

Shocklog 298-17069 coupler position (every slot 10 s)

650 MHz Module Beamline Installation

Upstream gate valve installation

Downstream HOM absorber, taper, ion pump, gate valve

Upstream beamline connection

Downstream beamline and valve box connection

650 MHz Module Beamline Installation

Input coupler warm part, doorknob, waveguide

Module in the beamline

650 MHz Module 2 K Cool Down Test

- Cavity vacuum @ 2 K: 6E-7 Pa
- Cryogenics lines no leak. Most temperatures OK. Input coupler helium gas cooling test (need further optimize).
- Frequency: CAV#1 649.856 MHz, CAV#2 649.816 MHz. Tuners stretch the cavities ~150 kHz to 650 MHz.
- Input coupler Qin:
 - CAV#1: 1.2E6 (HT 35 kW@13 MV/m, Beam Test 49 kW@9.7 MV/m, 10 mA)
 - CAV#2: 1.8E6 (HT 35 kW@16 MV/m, Beam Test 76 kW@15 MV/m, 10 mA)
- HOM couplers fundamental mode Qe (double notch, tuning not needed): #1 6.8E13, #2 1.9E13. #3 2.1E12.
- Flux gates on cavity wall in the helium vessel: < 3 mG (with cavity local and vacuum vessel global shields)
- Warm up for couplers RT conditioning (up to 35 kW full reflection limited by the SSA).

650 MHz HLRF and LLRF

- 150 kW (total) solid state amplifier
- LLRF and timing system for 650 MHz module, laser, DC-Gun and buncher.

Power Meter

Timing Module Master Oscillator

LLRF Front-end

LLRF Controller (MicroTCA.4 Crate)

10MHz Rb Clock

Outline

- 1. CEPC SRF system design
- 2. CEPC SRF technology R&D
 - 650 MHz SRF for CEPC Collider
 - 1.3 GHz SRF for CEPC Booster
 - SRF infrastructure

Word Record high Q 9-cell cavity at high gradient

1300-N11

Mid-T furnace baked

Bulk EP+900C+oxidation in air +300C+HPR

Vertical Test on Dec 31, 2021 at PAPS VTS

4.5E+10 @ 16 MV/m

4.3E+10 @ 31.3 MV/m

1.3 GHz High Q Mid-T Cavity Horizontal Test

- Step 1a: Horizontal test with vertical test antenna (self excitation mode) at IHEP campus
 - Low Q0 (unknow heat load?), abnormal HOM notch change (HOM can thermal anchor?)
 - Flux gates and thermal sensors on cavity outside wall in helium vessel, double-layer magnetic shield and foils, thermal straps (HOM coupler, beam pipe), fast cool down and flux expulsion
- Step 1b: Horizontal test with vertical test antenna (self excitation mode) at PAPS
 - Successful, similar Q0 as vertical test, abnormal frequency and field flatness change (bellow support, overpressure)
 - Add thermal intercepts for cables, Q0 measurement comparison (mass-flow vs RF), input coupler flange heating
- Step 2: Horizontal test with input coupler (self excitation mode) at PAPS
 - Ongoing, got high Q0 for four 9-cell cavities but unstable for long time at high gradient (sporadic quench), need long-time conditioning, similar to LCLS-II and LCLS-II-HE cavities.
 - Input coupler thermal sensors, interlocks, thermal straps, RT online conditioning, cavity active pumping
- Step 3: Horizontal test with input coupler and tuner (GDR mode) at PAPS
 - Tuner, LLRF, microphonics ...

1.3 GHz High Q Mid-T Cavity Horizontal Test

1.3 GHz High Q Mid-T Cavity Horizontal Test

Horizontal test with high power input coupler (self excitation mode)

IHEP 1.3 GHz 9-cell Cavity Vertical Test

1.3 GHz High Q Cryomodule (8x9-cell)

CEPC booster 1.3 GHz SRF technology R&D and industrialization in synergy with domestic CW FEL projects.

- 1.3 GHz 8x9-cell high Q cryomodule prototype
- Component fabrication in 2021 to mid 2022
- Assemble and horizontal test in 2022
- Ship to Dalian in 2023

Outline

- 1. CEPC SRF system design
- 2. CEPC SRF technology R&D
 - 650 MHz SRF for CEPC Collider
 - 1.3 GHz SRF for CEPC Booster
 - SRF infrastructure

Summary

- CEPC RF system design and parameters are converging towards TDR. Many challenges in system design and technical R&D.
- Achieved high Q and high gradient cavity with mid-T baking.
- 650 MHz and 1.3 GHz module prototyping in progress.
- New SRF facility PAPS at IHEP Huairou Campus is supporting these R&D as well as the near term cryomodule mass production practice for the domestic projects.

Thank

you,

IBHERBENDES